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Abstract
In this paper, we aimed to understand and analyze the outputs of a convolutional neural network model that classifies the laterality
of fundus images. Our model not only automatizes the classification process, which results in reducing the labors of clinicians,
but also highlights the key regions in the image and evaluates the uncertainty for the decision with proper analytic tools. Our
model was trained and tested with 25,911 fundus images (43.4% of macula-centered images and 28.3% each of superior and
nasal retinal fundus images). Also, activation maps were generated to mark important regions in the image for the classification.
Then, uncertainties were quantified to support explanations as to why certain images were incorrectly classified under the
proposed model. Our model achieved a mean training accuracy of 99%, which is comparable to the performance of clinicians.
Strong activations were detected at the location of optic disc and retinal blood vessels around the disc, which matches to the
regions that clinicians attend when deciding the laterality. Uncertainty analysis discovered that misclassified images tend to
accompany with high prediction uncertainties and are likely ungradable. We believe that visualization of informative regions and
the estimation of uncertainty, along with presentation of the prediction result, would enhance the interpretability of neural
network models in a way that clinicians can be benefitted from using the automatic classification system.
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Introduction

Retinal fundus image is readily used by ophthalmologists and
other medical professionals for detecting and monitoring
vision-threatening eye diseases (e.g., age-related macular de-
generation [1] and glaucoma) and ocular complication of sys-
temic diseases (e.g., diabetic retinopathy [2] and hypertensive
retinopathy). Until now, classification of retinal fundus images
has been performed manually by human experts using a pre-
determined set of rules by looking at the location of optic disc
and the surrounding retinal blood vessels. Macular-centered

images share a property which makes them relatively easy to
be classified by human experts: laterality of fundi and location
of optic disc match. However, non-macular-centered images
(e.g., seven standard fields defined by the Early Treatment
Diabetic Retinopathy Study (ETDRS) group [3]) require more
information than the location of optic disc for classification.

In this paper, we present a convolutional neural network [4]
(CNN)model for laterality classification of fundus images that
performs close to clinician level. Furthermore, we illustrate
activation maps that highlight important features of fundi in
laterality classifications so that clinicians can understand
where the network attends for the prediction. Finally, we mea-
sured uncertainties in predictions to examine statistical differ-
ence between correctly classified images and misclassified
images.

Materials and Methods

Dataset

We used the retinal fundus image database of Seoul National
University Bundang Hospital after removing all patient-
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specific information (e.g., patient identification number,
name, date of birth, age, sex, study date, diagnosis, other clin-
ical information). The images in the database were converted
into Joint Photographic Experts Group (JPEG) format with
randomly generated, laterality-indicative filenames. We in-
cluded 25,911 retinal fundus images in the present study;
43.4% of these images were macula-centered images and the
remaining 28.3% each were superior and nasal images. Figure
1 illustrates several examples of macular-centered, superior,
and nasal images. This study was approved by the Institutional
Review Board (IRB) of Seoul National University Bundang
Hospital (IRB no. B-1508-312-107), and requirement of in-
formed consent was waived from the IRB. The study com-
plied with the guidelines of the Declaration of Helsinki.

Pre-Processing

Before the training phase, every RGB channel of an input
image was normalized to a z-score [5]. This ensures that clas-
sification results to be invariant of intensities and color con-
trasts of the images and therefore enables the model to make
predictions solely based on the shape configurations of the
fundi. The black background of the fundus images was ex-
cluded in normalization.

Model Architecture

Our model consists of five blocks of convolutional layers of
3 × 3 kernels, 2 × 2 strides with a ReLU activation function,
followed by two fully connected layers with a softmax

activation function that has two nodes in the output layer (il-
lustrated in Fig. 2).

Also, the cross-entropy loss function is used with L2 regu-
larization for weights in the network, given by Eq. (1):
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where n denotes the number of samples in the training data, yi
is the output label (indicated by 0 or 1 in binary classification
task), and ŷi is the output prediction for a sample image. Here,
λ is set to be 0.0005, which was chosen by random search
between 0.001 and 0.0001. We have also added L2 regulari-
zation for biases in a similar fashion to Eq. (1). Our model is
implemented using Keras, an open-source neural network li-
brary written in Python, with Tensorflow backend. We have
run the iterations for 100 epochs for training, which showed
convergence of validation loss and set the keep-rate of all
dropout layers to be 0.5 as widely used in the literature.

Guided Grad-Class Activation Mapping

Class Activation Mapping [6] (CAM) is useful in visualizing
activation maps of features of interest, since convolutional
layers are known to contain spatial information, and therefore
can be treated as feature extractors. It can also be used as a
debugging tool; it allows to judge if the model predictions are
correct and reliable. However, CAM requires some adjust-
ments to the existing model: removal of fully connected layers
and retraining of the modified model. This modification might
lead to a considerable loss in accuracy. For this reason, we
employ Grad-CAM method, a generalization of CAM, which

Fig. 1 Examples of fundus
images in the Retinal Fundus
Photo Database in SNU Bundang
Hospital. Each column illustrates
example images of center,
superior, and nasal fundi,
respectively. a–c correspond to
ocular sinister (left) and d–f
correspond to ocular dexter
(right)
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does not require any modifications nor retraining of the
model.

The activation map for class c is obtained by first
calculating the importance weights αc

k via global aver-
age pooling:
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where Z is the normalizing constant, Ak
ij denotes each

pixel of the activation map Ak , and wc
k denotes the

class feature weights.
Grad-CAM heatmap for class c, Lc, is simply a rectified,

weighted combination of feature maps.
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In addition, guided backpropagation is used along with
Grad-CAM, which is a slight variant of backpropagation
method. It has been shown that guided Grad-CAM gives
much clearer class-discriminative activation maps than CAM
or Grad-CAM [7].

Dropout Uncertainty

Amodel confidence is not captured by standard deep learning
tools and is often misinterpreted by the model prediction. It
has been shown that uncertainty information can be obtained
from the model predictions using dropout layers: by sampling
from Bernoulli distribution of probability equal to keep rate at
dropout layers. This is equivalent in practice to running sev-
eral forward passes through the neural network and calculat-
ing the predictive variance. Formally, we calculate the empir-
ical estimator for predictive mean by running T forward
passes:

E y½ �≈ 1

T
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where x is the input vector and ŷ denotes the output vector of
the prediction. The empirical estimator for predictive variance
is given as follows:
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where τ is the model precision (omitted) and ID denotes the
identitymatrix. The variance information can be used to detect
images for which the model is unsure of its predictions. The
benefit of dropout Bayesian approximation method is that it
allows to estimate the prediction uncertainties by simply
collecting the results from existing neural network [8].

Experimental Setup

The dataset is randomly partitioned into training and valida-
tion sets of the ratio of 8 to 2, and we perform 5-fold cross-
validation. By running the same number of epochs five times,
we find the sample mean of resulting prediction probabilities.
Also, we used Grad-CAM [7] technology to highlight regions
that the network focuses on for the classification and dropout
layers via Bayesian approximation [8] for estimation of uncer-
tainty in predictions.

Results

Model Performance

We compared classification accuracy with VGG-16 [9] and
AlexNet [4]. In both networks, only the number of nodes in
the last softmax layer is changed to 2 and the networks are
trained from the scratch with the same hyperparameters
(weight decay, number of epochs, keep rate in dropout). Our
model has achieved an accuracy of mean 98.9% with standard
deviation of 0.11% (Table 1) in all types of images
outperforming VGG-16 and performing similarly to
AlexNet. Also, similar trends were observed when accuracy
is measured separately for superior, nasal, and center images.

Fig. 2 Overview of our neural network architecture. Starting from 32
convolution filters, the number of filters increases by a factor of 2 after
every max pooling layer (indicated by the numbers above the boxes). The

first FC layer uses a ReLU activation function with 256 filters, followed
by the second FC layer with a softmax activation function and two filters.
The last layer is a softmax output with two nodes
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Note that our model entails about a half as many parameters as
AlexNet does but performs similarly.

Guided Grad-CAM Heatmaps

As illustrated in Fig. 3, we can generate evident and coherent
activation maps for most images in the dataset using guided
Grad-CAM visualization method. We observe dominant acti-
vations at optic discs and relatively lower activations along the
retinal blood vessels. This corresponds to what human experts
tend to see when classifying laterality of fundus images: the
location of optic disc and the arrangements of blood vessels
[10].

We further eliminate optic discs from fundus images and
re-generate guided Grad-CAM heatmaps while maintaining
the model. Since the model is trained with images of un-
touched optic discs, it is expected that the model could not
recognize the disc. The occlusion of optic discs is done by
performing segmentation with U-net [11] (trained using im-
ages in the DRION database [12]) and filling the pixels of the

optic disc with the average value of the surrounding pixels. As
shown in Fig. 4, when the optic disc is occluded, the activa-
tions are more widespread along retinal blood vessels, which
is also interesting as clinicians would look at vessel branches
around the disc when the disc is not fully visible. We also
notice minimal activations at the occlusion region (i.e., the
location of optic disc). This trend is consistent regardless of
the macular centrality of the fundus images.

We conclude that our model considers the information of
optic disc as well as that of the neighboring retinal blood
vessels for laterality classification of fundus images.

Prediction Uncertainties

Using the dropout Bayesian approximation method, we cal-
culate uncertainty (i.e., sample variance) of every fundus
image in the validation set through 50 forward passes
through the network. We perform the Mann-Whitney U test
to examine whether there is a statistically significant differ-
ence in uncertainties between groups of correctly and

Table 1 Performance comparisons among our model, AlexNet, and VGG-16 architectures via 5-fold cross-validation

Image type No. of params

Superior Nasal Center All

Mean Standard deviation Mean Standard deviation Mean Standard deviation Mean Standard deviation

Our model 98.38% 0.77% 99.61% 0.10% 99.24% 0.30% 98.98% 0.11% 13,876,194

AlexNet 98.19% 0.44% 99.56% 0.01% 99.47% 0.21% 98.96% 0.08% 24,100,226

Vgg-16 97.94% 0.53% 99.47% 0.12% 99.47% 0.28% 98.50% 0.17% 89,954,626

Fig. 3 Guided Grad-CAM acti-
vation maps generated from su-
perior, nasal, and center fundus
images. a–c are original fundus
images (superior, nasal, center)
and d–f correspond to activation
maps of superior, nasal, and cen-
ter fundus, respectively. High ac-
tivations are observed at the loca-
tion of optic disc and the sur-
rounding vasculature
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incorrectly classified images. Mann-Whitney U test is a non-
parametric test which does not require samples to follow a
known distribution, which is suitable to the purpose of our
analysis. It turned out that the means of uncertainties of
images from these two groups are significantly different
from each other (p value < 0.0001). This result supports
the claim that incorrectly classified images do have higher
prediction uncertainties than correctly classified images. It
has been observed that the means of the uncertainties in
two groups differ by a magnitude of order of 2.

Figure 5 shows two direct examples of incorrectly classi-
fied fundus images. These images are not usable in practice
for detection of fundus diseases or any other types of fundus
examinations as they do not show the fundus in its entirety; for
instance, optic disc and the retinal blood vessels are not clearly
visible. The first image is extremely opaque, and the second
image contains many black spots that substantially interfere
with the image.

Discussion

Our convolutional neural network showed accuracy of 99%,
which is comparable to the performance of clinicians as is the
case for other deep learning systems for other image classifi-
cation tasks. In fact, the classification of laterality is straight-
forward but mundane that clinicians do not favor to do. Also,
there exists potential that human errors due to fatigues and
mistakes in manipulation lead to wrong decisions. In that
sense, the automated system would have practical benefits
when deployed in clinics as the burdens of clinicians are re-
duced significantly.

Furthermore, it is also imperative for clinicians to understand
how the decision is made from the automated system, since the
results cannot be trusted otherwise. To resolve this issue, we
visualized regions in the image that the neural network pays
attention for the decision. We found that optic disc and the
surrounding vessels are determinant regions in the images that

Fig. 4 Guided Grad-CAM acti-
vation maps when the optic discs
are occluded. a–c are fundus im-
ages of which the optic discs are
occluded (superior, nasal, and
center) and d–f correspond to ac-
tivation maps of the fundus im-
ages. High activations are ob-
served along the retinal blood
vessels excluding the optic disc

Fig. 5 Two examples of
incorrectly classified fundus
images by our neural network
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decide the laterality. This is interesting because clinicians also
look at the disc and vessels around it for making the decision.

With uncertainty analysis, it is possible to translate the degree
of confidence in the decision from the neural network into a
concrete number. Convolutional neural networks only do return
prediction results, though it is also possible to approximate the
uncertainty in the decision with the technical trick proposed
recently. From our data, we discovered that misclassified images
tend to have higher uncertainty than correctly classified images
and misclassified images mainly consist of ungradable images.
In fact, the ability to estimate uncertainty is also beneficial and
critical in the clinical context as the system should refer to cli-
nicians when unsure of its decision.

In conclusion, we expect that our model not only improves
the efficiency of fundus laterality classification in clinics by
delivering prompt and automatic predictions with high accu-
racy but also provides promising ways to interacting with an
automated system for clinicians by presenting determinant
regions for the decision and estimating uncertainty in the
decision.
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