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Abstract

Background and purpose: To predict treatment response and survival of NSCLC patients 

receiving stereotactic body radiation therapy (SBRT), we develop an unsupervised machine 

learning method for stratifying patients and extracting meta-features simultaneously based on 

imaging data.

Material and methods: This study was performed based on an 18F-FDG-PET dataset of 100 

consecutive patients who were treated with SBRT for early stage NSCLC. Each patient’s tumor 

was characterized by 722 radiomic features. An unsupervised two-way clustering method was 

used to identify groups of patients and radiomic features simultaneously. The groups of patients 

were compared in terms of survival and freedom from nodal failure. Meta-features were computed 

for building survival models to predict survival and free of nodal failure.

Results: Differences were found between 2 groups of patients when the patients were clustered 

into 3 groups in terms of both survival (p = 0.003) and freedom from nodal failure (p = 0.038). 

Average concordance measures for predicting survival and nodal failure were 0.640 ± 0.029 and 

0.664 ± 0.063 respectively, better than those obtained by prediction models built upon clinical 

variables (p < 0.04).

Conclusions: The evaluation results demonstrate that our method allows us to stratify patients 

and predict survival and freedom from nodal failure with better performance than current 

alternative methods.
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Recent years have witnessed a phenomenal growth of radiomic studies of lung cancer for the 

prediction of treatment responses, patient stratification, and prognosis based on radiological 

imaging data [1–4]. Particularly, radiomic features extracted from CT images have 

demonstrated promising performance for the prediction of overall survival and disease free 

survival in patients with non-small cell lung cancer (NSCLC) [5–10]. Promising 

performance of radiomic features for predicting distant metastasis has been demonstrated in 

lung adenocarcinoma patients [11] and early stage NSCLC patients [12]. Several studies 

have demonstrated that radiomic features extracted from CT images are associated with 

tumor recurrence in NSCLC patients after stereotactic body radiation therapy (SBRT) [13], 

and they are also capable of predicting the pathological response in patients after 

neoadjuvant chemoradiation [14]. 18F-FDG PET/CT imaging data have also been adopted to 

predict clinical endpoints, such as overall/disease-free survival [15], local/distant recurrence 

[16], and distant metastasis [17]. Radiomic features are associated with epidermal growth 

factor receptor mutation status in lung adenocarcinomas [18], and the biological basis of 

radiomic features have also been explored in the view of molecular pathways in lung cancer 

[19]. Moreover, the combination of radiomic features and genetic biomarkers could boost 

the prediction performance for predicting tumor recurrence in stage I NSCLC patients [20].

Regardless of the differences in these radiomic lung cancer studies in imaging modality and 

clinical problems, all of them adopt a radiomics framework consisting of feature extraction, 

feature selection/dimensionality reduction, and prediction modeling [21–25]. It is common 

in radiomic studies to extract a large number of imaging features in order to increase 

discriminative power of radiomic features. Feature selection or dimensionality reduction 

techniques are typically used to alleviate the difficulties with dimensionality (small sample 

size and large feature dimensionality) and improve the prediction performance [26–28]. 

Most feature selection techniques are designed in a supervised setting to identify 

discriminative features by optimizing performance of prediction models based on validation 

datasets and are, therefore, prone to overfitting training data in small sample size studies. On 

the other hand, feature dimensionality reduction techniques, such as principal component 

analysis (PCA) [29], learn a new feature representation to characterize original features in a 

lower dimension feature space in an unsupervised setting. However, the low-dimension 

representation is not necessarily informative for building prediction models, as no relevant 

guidance is utilized in both the feature extraction and feature dimensionality reduction.

To narrow the gap between the supervised feature selection and unsupervised dimensionality 

reduction procedures, we introduce an unsupervised two-way clustering analysis method 

[30] for reducing feature dimensionality and learning meta-features by simultaneously 

identifying sub-clusters of samples and radiomic features [31]. Particularly, the sub-clusters 

of the features capture covariations among high dimensional features to generate a low-

dimension representation, and the sub-clusters of samples facilitate characterization of 
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samples with different feature patterns and in turn serve as weak supervision that could lead 

to more informative feature dimensionality reduction for capturing differences of feature 

patterns between sub-clusters of samples.

Methods and materials

Dataset

This study was performed based on a longitudinal 18F-FDG-PET/CT dataset of 100 

consecutive patients who were treated with SBRT for early stage (T1a, T1b, and T2a) 

NSCLC under approval from the institutional review board. The patients were examined on 

a PET/CT scanner of Phillips Gemini TF TOF 16 (Phillips Medical Systems, Amsterdam, 

Netherlands) at the department of Radiology, hospital of University of Pennsylvania. For CT 

images, slice thickness was 4 mm; matrix size was 512 × 512 with PixelSpacing of 1.1719 × 

1.1719 mm2. For PET images, slice thickness was 4 mm; matrix size was 144 × 144 with 

PixelSpacing of 4 × 4 mm2. The PET data were reconstructed using ordered subset 

expectation maximization (OSEM) reconstruction and were attenuation-corrected using the 

CT data.

All patients had a solid component of their NSCLC tumor. Although, all these patients were 

treated uniformly (12.5 Gy × 4 fractions or 10 Gy × 5 fractions), they had different primary 

tumor outcomes. More details of the dataset are illustrated in Table 1. We focused on overall 

survival and freedom from nodal failure as the clinical endpoints in this study, as only a 

small proportion of the patients had local failure and metastasis.

Prediction modeling with unsupervised learning of radiomic features

Our method consists of 3 steps, as illustrated in Fig. 1. Radiomic features are first extracted 

from the solid component of each patient’s NSCLC tumor, and the features of all patients 

are formulated as a data matrix X ∊ RN×F, where N is the number of patients and F is the 

number of radiomic features of each patient. Then, an unsupervised two-way clustering 

method is applied to the data matrix to simultaneously clustering the patients and the 

features into sub-clusters, yielding patient stratification labels and the low-dimension feature 

representations. Finally, clinical outcome analyses of patients at both group and individual 

subject levels were performed.

Radiomic feature extraction

For each patient, the solid component of NSCLC tumor was delineated using CaPTk 

software [32]. Specifically, candidate tumor regions were detected automatically using a 

random walk based image segmentation method based on its PET and CT images [33–35], 

the primary solid component was then identified by one experienced radiologist, and finally 

the segmentation result was further checked visually and modified manually if necessary.

Radiomic features of the tumor were extracted from the standardized uptake value (SUV) 

map of the PET scan for each patient [36]. In particular, 11 morphologic features were 

extracted from the tumor region. Moreover, 79 texture features of the tumor region were 

extracted from the SUV map and their counterparts after wavelet decomposition (8 maps), 
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respectively, including the first order features, gray level co-occurrence matrix features, gray 

level size zone matrix features, and gray level run length matrix features, all the features 

used and their definitions are provided Table S1 in the supplementary material. In total, 722 

radiomic features of the tumor were extracted for each subject. As suggested for PET 

imaging data based analysis [37], we adopted the fixed bin size strategy for the gray-level 

discretization with the bin size set to 0.2. The mean number of gray levels for all the patients 

was 31.68, with a standard deviation of 25.11, reflecting the fact that tumors of different 

patients had varied SUV ranges [37]. The feature extraction was carried out in the 3D space 

and 26-connected neighborhood was adopted.

Supplementary data associated with this article can be found, in the online version, at https://

doi.org/10.1016/j.radonc.2018.06.025.

We also used an alternative gray-level discretization scheme (Max-Lloyd algorithm [38]) to 

extract radiomic features in order to evaluate if the prediction performance is robust to the 

gray-level discretization schemes (presented in the supplemental material).

Unsupervised two-way clustering

To simultaneously clustering the patients and the radiomic features into sub-clusters, we 

implemented the unsupervised two-way clustering procedure using a matrix tri-factorization 

technique [30]. Given the feature matrix X ∊ RN×F, where N is the number of patients and F 
is the number of radiomic features, the matrix tri-factorization decomposes X into three low-

rank matrices A, S, and Y, by optimizing the approximation error

min
A, S, Y

∥ X − ASY ∥F
2, s.t.A ⩾ 0, S ⩾ 0, Y ⩾ 0, AT A = I, YYT = I,

where I is an identify matrix. As illustrated in Fig. 1, the low-rank matrix A ∈ R+
N × Ks

encodes the membership of Ks sub-clusters of patients, matrix Y ∈ R+
K f × F

 encodes the 

membership of Kf subclusters of features, matrix S ∈ R+
Ks × K f  encodes scales of different 

data points as well as interactions between A and Y, and Ks and Kf are two parameters set 

prior to the unsupervised two-way clustering.

The optimization problem was solved using an alternative optimization strategy [30]. Once 

the decomposition results were obtained, the low-dimension meta-features M ∈ R+
N × K f  were 

calculated as M = AS, which were utilized to build prediction models for predicting clinical 

outcomes.

Patient stratification and prediction of survival and free of nodal failure

Based on the clustering results of patients and the meta-features obtained from the 

unsupervised two-way clustering, patient stratification and prediction of overall survival and 

freedom from nodal failure were carried out.
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For assessing patient stratification performance of the two-way clustering method, Kaplan–

Meier estimation [39] was adopted to estimate a survival function for each group of patients 

with respect to survival and freedom from nodal failure, and group differences were 

examined using Log-rank test [40].

We set the number of sub-clusters regarding patients Ks to 2 and 3 respectively, with an 

assumption that 2 sub-clusters of patients might stratify patients into groups with low and 

high risks with respect to mortality and nodal failure, whereas 3 sub-clusters might stratify 

them into groups with low, medium, and high risks. The number of meta-feature was set to 

10, determined using a cross-validation strategy based on its performance for survival 

prediction. More details are provided in the supplemental material.

For predicting each patient’s risk of mortality and nodal failure, the meta-features extracted 

for each patient were used to build prediction models using 3 different survival modeling 

techniques, including Cox proportional hazard regression (Cox regression) [30], Cox 

regression with LASSO (Cox_lasso) [31], and random survival forests (RSF) [32]. 

Particularly, the Cox regression method is a standard survival modeling technique. Both the 

Cox regression and Cox_lasso methods are semi-parametric models, but the latter could 

select informative features during the model training. The RSF method is fully non-

parametric, capable of selecting informative features. Different parameter settings for Ks and 

Kf of the two-way clustering method were adopted to investigate the associations between 

prediction performance and the parameters. Specifically, Ks was set to 2, 3, and 4 

respectively, and Kf varied from 2 to 11 with an increment of 1, which was a reasonable 

range for the present study with 100 patients [41,42]. All the prediction models were trained 

and evaluated under the same 3-fold crossvalidation setting, and concordance index (c-

index) was adopted to evaluate the prediction performance. The cross-validation procedure 

was repeated 100 times, and the average performance (mean and standard deviation of c-

index) was reported. Prediction models were built using R packages survival, glmnet, and 

randomForestSRC. The Cox_lasso method’s sparsity parameter was determined 

automatically using a nested 3-fold cross-validation. For the RSF model, 500 decision trees 

were adopted and the minimum leaf size of the tree was set to 5.

The proposed method was compared with alternative techniques. Particularly, for evaluating 

the patient stratification performance, our method was compared with K-means clustering 

for clustering the patients based on 722 radiomic features with the same setting. For 

evaluating feature dimensionality performance, our method was compared with PCA that 

was adopted to obtain low-dimension feature representations for building survival prediction 

models. The prediction performance of PCA features was estimated using the same cross-

validation procedure as described above.

To build prediction models with parameters automatically determined based on training data, 

a nested 5-fold crossvalidation was adopted to determine the parameters by searching 

parameter combinations (Ks ∊ (2, 3, 4) and Kf ∊ [5, 11]). For the PCA-based feature 

extraction, the optimal number of features was identified in [5,11] in the same way. 

Prediction models were also built upon clinical variables, including age, body mass index 

(BMI), race, sex, smoking status, T stage, tumor size, forced expiratory volume 1 (FEV1), 
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FEV1/FVC (forced vital capacity), and histology, for predicting the risk of mortality and 

nodal failure at the individual subject level. A 3-fold cross-validation was adopted to 

evaluate all the methods, and the cross-validation was also repeated 100 times, with the 

mean prediction performance reported.

The prediction models built upon different features were compared in terms of their 

prediction performance using Wilcoxon signed-rank test [43].

Experimental results

Patient stratification

Fig. 2 shows results of the Kaplan-Meier estimations regarding survival and freedom from 

nodal failure for different patient groups. When the patients were stratified into 2 groups, the 

differences between them in terms of survival and freedom from nodal failure were not 

statistically significant as revealed by Log-rank test, although differences between the 

Kaplan-Meier plots of the two groups were subjectively visible. When the patients were 

stratified into 3 groups, the groups with low (green curve) and high (blue curve) risks of 

mortality were significantly different in their survival (p = 0.003), and they were also 

different in terms of freedom from nodal failure (p = 0.038), as shown in Fig. 2 top and 

bottom right respectively. The group (red curve) in-between had a medium risk in terms of 

both mortality and nodal failure. Overall, these results demonstrated that the two-way 

clustering could help stratify patients with different clinical endpoints. The two-way 

clustering result regarding the original radiomic features is illustrated in Fig. S1 in the 

supplementary material.

Fig. 3 shows patient stratification results obtained by applying K-means to the original 

radiomic features. Similar to the results obtained by the two-way clustering method, no 

significant group difference was found when the patients were stratified into 2 groups. When 

the patients were clustered into 3 groups, a marginal difference was observed between two 

groups in terms of survival (p = 0.041). However, they were not different in terms of 

freedom from nodal failure. These results indicate that the K-means clustering did not 

perform as good as the two-way clustering method for patient stratification in terms of both 

survival and freedom from nodal failure.

Patient stratification has also been obtained according to their T stage statuses, with 3 

subgroups corresponding to T1a, T1b, and T2a. No significant difference was observed 

between different subgroups, and Kaplan-Meier plots regarding survival and nodal failure 

are shown in Fig. S2 in the supplemental material.

Prediction of overall survival and freedom from nodal failure

Fig. 4 shows prediction performance obtained by different prediction models. In each plot, 

the x-axis refers the number of meta-features, and the y-axis refers to the c-index of the 

prediction models. As shown in the top row of Fig. 4, the prediction models built upon meta-

features obtained by two-way clustering outperformed their PCA-based counterparts in 

terms of survival, especially when the number of patient groups was 3. With respect to nodal 
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failure as shown in the bottom row of Fig. 4, the Cox_lasso and RSF models built with the 

proposed meta-features outperformed the corresponding PCA-based models, while the Cox 

model built upon PCA-based features obtained better performance.

Fig. 5 shows different meta-features’ overall prediction performance that was calculated as 

the sum of the c-index measures of the Cox-regression, Cox-lasso, and RSF prediction 

models with different numbers of features. The results demonstrated that the proposed meta-

features had better prediction performance than PCA features when the number of meta-

features was greater than 3, indicating that these proposed meta-features were more 

informative for the prediction of survival and freedom from nodal failure.

Based on the meta-features extracted by the two-way clustering method, the c-index 

regarding survival obtained by Cox model, Cox_lasso model, and RSF model were 0.640 

± 0.029, 0.617 ± 0.034, and 0.552 ± 0.044 respectively. For nodal failure, the c-index were 

0.637 ± 0.049, 0.607 ± 0.076, and 0.664 ± 0.063 respectively. Based on the PCA-based 

meta-features, the c-index regarding survival obtained by Cox model, Cox_lasso model, and 

RSF model were 0.605 ± 0.075, 0.541 ± 0.094, and 0.515 ± 0.062 respectively; for nodal 

failure the c-index were 0.660 ± 0.081, 0.592 ± 0.111, and 0.555 ± 0.071 respectively. 

Specifically, for predicting survival the best prediction model built upon the proposed meta-

features was better than that build upon the PCA-based meta-features (p < 0.001); for 

predicting nodal failure the best prediction model built upon the proposed meta-features was 

better than that build upon the PCA-based meta-features, but without statistical significance 

(p = 0.328). For the RSF models, the prediction performance was not sensitive to the number 

of trees and leaf size adopted, prediction performance with different settings are illustrated 

in Fig. S3 in the supplemental material.

The prediction models built upon clinical variables had numerically worse performance. For 

survival prediction, c-index values obtained by the Cox model, the Cox_lasso model, and the 

RSF model were 0.529 ± 0.045, 0.531 ± 0.059, and 0.535 ± 0.046 respectively. For nodal 

failure, c-index values of these models were 0.496 ± 0.063, 0.433 ± 0.105, and 0.480 

± 0.065, respectively. All these prediction models had worse performance than their 

counterparts build upon the radiomic features (p < 0.04).

Prediction models were also built upon combination of clinical variables and radiomic 

features. For the survival prediction, c-index values obtained by the Cox_lasso, and RSF 

model were 0.595 ± 0.042, and 0.581 ± 0.042, respectively. For the nodal failure, c-index 

values of these models were 0.551 ± 0.055, and 0.617 ± 0.057, respectively. These 

prediction models had better prediction performance than those build upon clinical variables 

alone, indicating that radiomic features could provide complementary and discriminative 

information for the prediction.

Discussion

Radiomic analysis has been a powerful tool to investigate the associations between imaging 

data and clinical endpoints quantitatively. Due to high-dimensional features extracted from 

the imaging data, feature selection and feature dimensionality reduction is crucial to obtain 
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robust and reliable analysis results in radiomic analysis studies, especially in those with a 

small sample size [21–23]. In this study, we have proposed an unsupervised two-way 

clustering technique to perform patient stratification and feature dimensionality reduction 

simultaneously, with the hypothesis that the patient stratification and feature dimensionality 

reduction will benefit from each other. The experiment results have demonstrated that the 

proposed method could achieve competitive performance compared with the conventional 

patient stratification and feature extraction techniques with respect to both patient 

stratification and prediction of patient survival and freedom from nodal failure. Compared 

with prediction models built upon clinical measures, the prediction models built upon 

radiomic features had better prediction performance. Prediction models built upon 

combination of clinical variables and radiomic features had better performance than those 

built upon clinical variable alone, but worse than those built upon radiomic features alone. 

One possible reason is that all the patients in the present study were at early stage (89% at 

T1 stage and 11% at T2 stage) and therefore the clinical variables could not provide 

discriminative information for the prediction. As shown in the supplementary material, the 

tumor volume was significantly correlated with survival (p < 0.05) and nodal failure (p < 

0.0005), the SUVmax measure was not significantly correlated with survival or nodal failure 

(p > 0.5), and prediction models built upon the tumor volume and SUVmax measures had 

relatively worse prediction performance than those built upon the complex radiomic 

features. These results further demonstrated that more discriminative information than the 

tumor volume and SUVmax measures could be extracted from imaging data [44].

Radiomic features have been investigated for the prognosis in NSCLC patients in terms of 

different clinical endpoints [1–4]. The prognosis is typically formulated as a supervised 

machine learning problem and feature selection is usually adopted to improve the 

performance of the prognosis models. Feature selection is usually performed based on the 

feature’s reproducibility and discriminative power [26–28]. The reproducibility is typically 

calculated based on test-retest datasets, which requires datasets at multiple time points from 

the same subjects. While the test-retest dataset is not always available, the features with high 

reproducibility are not necessarily informative for prediction tasks. Features selected 

according to their discriminative power are typically more informative for prediction; 

however, it is prone to overfitting the training data, especially in studies with a small sample 

size. Unsupervised feature dimension reduction techniques, such as PCA, are capable of 

capturing associations among the original features, they are not optimized for prognosis 

tasks, as no information relevant to clinical endpoints is used to drive the feature extraction.

Recent studies have demonstrated that clustering patients based on their radiomic signatures 

could lead to clinical meaningful stratification, such as low/high mortality risk and 

recurrence risk [45]. This indicates that patient stratification could provide weak supervision 

for extracting features relevant to clinical endpoints. Inspired by this observation, we 

developed this unsupervised two-way clustering method to perform the patient stratification 

and feature dimensionality reduction (meta-feature extraction) simultaneously, with the 

assumption that patient stratification and meta-feature extraction could benefit from each 

other. While the patient stratification provides weak supervision to extract features that are 

potentially informative for predicting clinical endpoints, the features extracted in turn 

facilitate the patient stratification. The survival analysis results of the NSCLC patients in this 
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study have demonstrated the advantages of the proposed method compared to conventional 

current alternatives in which the patient stratification and the meta-feature extraction are 

typically decoupled. For the patient stratification, the results obtained by the proposed 

method showed larger differences between different groups with respect to both patient 

survival and freedom from nodal failure than those obtained by the K-means clustering 

method, demonstrating benefits brought to the patient stratification by the meta-feature 

extraction. On the other hand, the prediction performance in terms of both survival and 

freedom from nodal failure also showed that the features extracted by the two-way clustering 

were more informative than those obtained by the PCA method across different feature 

dimensions and prediction model settings, demonstrating benefits of weak supervision from 

the patient stratification.

In the present study, we found that the patient stratification with 3 clusters showed better 

performance than that with 2 clusters, as demonstrated by results shown in Fig. 2. On the 

other hand, the 3-cluster patient stratification also yielded more informative meta-features 

for building prognosis models as shown in Figs. 4 and 5, indicating that it provides 

informative guidance for the meta-feature extraction. Increasing the number of clusters of 

patients to 4 did not lead to better meta-feature as shown in Fig. 4, indicating that a more 

complex model might capture confounding information that affected the meta-feature 

extraction adversely.

The quantization (discretization) of SUVs into a set of discrete values has been investigated 

and discussed in recent studies [37,46]. Particularly, the SUV quantization methods using a 

fixed number of bins and a fixed bin size in SUV unit have been compared for clinical 

treatment response assessment [37]. It has been demonstrated that the SUV quantization 

using a fixed bin size in SUV unit across tumor images could yield textural feature values 

that are defined on the same SUV scale, allowing for a meaningful comparison of texture 

between images. A variety of other SUV quantization methods have also been discussed 

[46]. However, no conclusion has been reached with respect to a standard method.

In the present study, we used both the SUV quantization methods with a fixed number of 

bins and a fixed bin size in SUV unit. When the SUV quantization method with a fixed bin 

size of 0.2 SUV unit was used, the mean number of gray levels for all the patients was 

31.68, with a standard deviation of 25.11, reflecting the fact that tumors of different patients 

had varied SUV ranges. For the SUV quantization method with a fixed number of bins, two 

settings of 32 and 64 bins were adopted (the supplementary material). For the prediction of 

survival, the SUV quantization method with a fixed bin size in SUV units had led to better 

performance, while the SUV quantization method with a fixed number of bins had yielded 

better performance for the prediction of nodal failure. These results suggest that the SUV 

quantization methods merit further investigation.

Our study has several limitations. First, we did not include CT data in the analysis since 

tumors in CT scans were not well coregistered with those in PET scans after linear 

registration due to the respiratory motions [47]. We did not extract radiomic features from 

CT scan based on our current segmentation results due to relatively low spatial resolution of 

the CT scans after registration. The main aim of this study was to investigate and validate if 
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the unsupervised two-way clustering could improve feature representations compared with 

conventional unsupervised feature dimension reduction methods. Advanced non-rigid 

multimodal image registration may help accurately register tumors in CT and PET scans, or 

tumors could be segmented for PET and CT scans separately [9,10]. The potential benefit of 

multimodal imaging features merits further investigation. Second, although our study 

included all consecutive patients treated in a very homogenous way, the sample size of our 

study is modest, and the method has not been validated based on external validation data. 

We will further validate our method based on data collected at multiple institutions.

In conclusion, we proposed an unsupervised machine leaning algorithm for simultaneous 

patient stratification and feature dimensionality reduction (meta-feature extraction), aiming 

to achieve robust performance for predicting treatment response and survival based on 

radiomic features. The evaluation results demonstrated that our method can achieve 

promising performance for distinguishing patients with different outcomes and extracting 

meta-features that are predictive for estimating various clinical outcomes. The proposed 

method is applicable to other cancer studies.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Prediction modeling with unsupervised learning of radiomic features, including radiomic 

feature extraction, unsupervised two-way clustering for meta-feature extraction, and clinical 

outcome analyses of patients at both group and individual subject levels.
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Fig. 2. 
Kaplan–Meier plots of groups of patients stratified by the unsupervised two-way clustering 

method regarding overall survival (top) and freedom from nodal failure (bottom) with 

settings of 2 groups (left) and 3 groups (right). Group differences were examined using Log-

rank tests. Tables in the right plots show p values between group 1 (g1), group 2 (g2), and 

group 3 (g3) with respect to survival (top) and freedom from nodal failure (bottom), 

respectively.
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Fig. 3. 
Kaplan–Meier plots of groups of patients stratified by the K-means clustering method 

regarding overall survival (top) and freedom from nodal failure (bottom) with settings of 2 

groups (left) and 3 groups (right)). Group differences were examined using Log-rank tests. 

Tables in the right plots show p values between group 1 (g1), group 2 (g2), and group 3 (g3) 

with respect to survival (top) and freedom from nodal failure (bottom), respectively. No 

correspondence between the group IDs shown in Figs. 3 and 2.
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Fig. 4. 
Performance of prediction models built upon meta-features extracted by the unsupervised 

two-way clustering and PCA with respect to survival (top row) and freedom from nodal 

failure (bottom row) using different prediction models. Plots of g2, g3, and g4 are results 

obtained with the two-way clustering based meta-features with 2, 3, and 4 groups of 

patients, respectively.
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Fig. 5. 
Overall prediction performance of prediction models built upon the PCA features (left) and 

the two-way clustering features (right) with respect to survival (top) and freedom from nodal 

failure (bottom).
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Table 1

Characteristics of patients in this study.

Age (years) 70.6 ± 11.8

Sex (M/F) 48%/52%

Current or former smoker 96%

Deceased 39%

Nodal failure 17%

Local failure 7%

Metastasis 9%

T stage (T1a/T1b/T2a) 59%/30%/11%

Histology (adenocarcinoma/squamous cell carcinoma/poorly differentiated/no tissue diagnosis) 22%/29%/9%/40%

Mean tumor size ±SD, cm 1.99 ± 0.87
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