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Abstract

Random Forest (RF) has been widely used in the learning-based labeling. In RF, each sample is 

directed from the root to each leaf based on the decisions made in the interior nodes, also called 

splitting nodes. The splitting nodes assign a testing sample to either left or right child based on the 

learned splitting function. The final prediction is determined as the average of label probability 

distributions stored in all arrived leaf nodes. For ambiguous testing samples, which often lie near 

the splitting boundaries, the conventional splitting function, also referred to as hard split function, 

tends to make wrong assignments, hence leading to wrong predictions. To overcome this 

limitation, we propose a novel soft-split random forest (SSRF) framework to improve the 

reliability of node splitting and finally the accuracy of classification. Specifically, a soft split 
function is employed to assign a testing sample into both left and right child nodes with their 

certain probabilities, which can effectively reduce influence of the wrong node assignment on the 

prediction accuracy. As a result, each testing sample can arrive at multiple leaf nodes, and their 

respective results can be fused to obtain the final prediction according to the weights accumulated 

along the path from the root node to each leaf node. Besides, considering the importance of 

context information, we also adopt a Haar-features based context model to iteratively refine the 

classification map. We have comprehensively evaluated our method on two public datasets, 

respectively, for labeling hippocampus in MR images and also labeling three organs in Head & 

Neck CT images. Compared with the hard-split RF (HSRF), our method achieved a notable 

improvement in labeling accuracy.

1 Introduction

Many anatomy labeling methods have been proposed recently. These methods can be 

roughly categorized into two classes: 1) multi-atlas based and 2) learning-based methods. In 

the multi-atlas based methods, a set of already-labeled images, namely atlases, are used to 

guide the labeling of new target image [1]. Specifically, given a new target image, multiple 

atlas images are first registered onto this target image, and then the estimated deformation 

fields are applied to transform the corresponding label maps of atlases to the target image. 

Finally, all warped atlas label maps are fused for labeling the target image. Specially, in the 
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label fusion step, patch-based similarity is often used as weight to propagate the neighboring 

atlas labels to the target image, for potentially overcoming errors from the registration. The 

limitation of multi-atlas based methods is that 1) the labeling accuracy highly depends on 

registration between atlas and target images; 2) the patch similarity is often handcrafted 

based on the predefined features (e.g., image intensity), which might not be effective for 

labeling all types of anatomical structures, thus potentially limiting the labeling accuracy.

On the other hand, learning-based labeling methods have attracted much attention recently. 

In the learning-based methods, a strong classifier, such as Adaboost [2], random forests [3] 

and artificial neural networks [4], is often used to classifying whether a voxel belongs to the 

interested anatomical structure, based on the local appearance features. In the testing stage, 

the learned classifiers are applied to voxel-wisely classify the whole target image. These 

learning-based labeling methods can identify the discriminative features specific to each 

anatomical structure and make full use of appearance information for anatomy labeling. For 

example, Zikic et al. [5] developed so-called atlas forest to learn a classification forest for 

each atlas. Tu et al. [6] adopted the probabilistic boosting tree (PBT) for labeling the MR 

brain images with Haar features and texture features. Also, Kim et al. [7] utilized Adaboost 

algorithm to train classifiers in multiple atlas image spaces. Then, the final segmentation of a 

target image is achieved by averaging the labeling results from all classifiers. In addition to 

just using local appearance information, many researches have shown that the context 

information is also very useful in identifying an object from a complex scene. In the field of 

anatomy labeling, many learning-based methods combined appearance with context features 

to improve the labeling accuracy. For example, Zikic et al. [5] constructed a population 

mean atlas to provide the rough context information for the target image. Tu et al. [6] 

proposed an auto-context model (ACM) to extract the context information embedded in the 

tentative labeling map of the target image for iterative refinement of labeling results. Kim et 

al. [7] extracted the context information from an initial labeling probability map of the target 

image, obtained by using the multi-atlas based method. Compared to the multi-atlas based 

methods, the learning-based methods can easily learn discriminative features and further 

utilize context information to improve the labeling performance.

Our method belongs to the learning-based labeling methods. Specifically, we use random 

forest as classifier for voxel-wise labeling. The major contribution of our paper is proposing 
a novel variant of random forest, namely soft-split random forest (SSRF), which improves 
the performance of the conventional RF in anatomical labeling. In the conventional RF, a 

testing sample follows one path from the root to leaf, based on the decisions made at each 

splitting node. For the ambiguous testing samples, which often locate near the splitting 

boundaries, they can arrive at a wrong leaf node due to the wrong assignment made in any of 

the splitting nodes. To overcome this problem, we propose a “soft split” strategy to handle 

this problem. Specifically, in each split, we take a probabilistic view and allow each sample 

to go both left and right nodes with their certain probabilities, which are determined 

according to the distance of this sample to the splitting decision boundary. Finally, the 

probability for each leaf is the multiplication of all probabilities along the path, and the 

prediction of a sample is the weighted average over all non-zero leaf nodes. By using this 

strategy, we can relieve the problem caused by the mis-assignment in any of the splitting 

nodes. Experimental results show significant improvement by using SSRF, compared to the 
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conventional RF. Besides, to further refine the labeling result, Haar-features based context 

model (HCM) is proposed to iteratively construct a sequence of classification forests by 

updating the context features from the newly-estimated label maps for training. Validated on 

two public datasets, ADNI and Head & Neck datasets, our proposed method consistently 

outperforms the conventional RF (using the hard split function).

2 Random Forest

Random Forest (RF) is an ensemble learner, which consists of multiple decision trees. Each 

tree is independently trained in a randomized fashion. Since the RF classifier is able to 

handle a high-dimension feature space efficiently and is inherently multi-class, it has 

recently gained popularity on anatomy labeling. As similar to the common learning 

techniques, random forest consists of training and testing stages.

RF Training

Given a set of training data D = {(hi, li)|i = 1, …, N}, where hi and li are the feature vector 

and class label of the i-th training sample, RF aims to learn a non-linear mapping from the 

feature vector h of a sample to the corresponding class label l by constructing multiple 

decision trees. In RF classification, each decision tree is independently trained based on one 

subset of samples randomly extracted from the training set D. In terms of the tree structure, a 

decision tree consists of two types of nodes, namely split nodes and leaf nodes. Each split 

node links two child nodes (left and right child nodes). In order to build a decision tree for 

classification, a split function is learned at each split node, which optimally splits the 

samples into two child nodes. A standard split function (decision stump function) is defined 

as follows:

f h j, τ = 0, h j ≤ τ
1, h j > τ

(1)

where j is the element index of h, h(j) is the j-th feature of h, and τ is a threshold. If h(j) ≤ τ, 

f(h|j, τ) is set zero, indicating that the sample h is assigned to left-child node; otherwise, if 

f(h|j, τ) is one, the sample h is assigned to right-child node. To determine the optimal 

combination of feature and threshold, a random sub-set of features and the corresponding 

thresholds are sampled and tested. The one that offers the maximum entropy reduction is 

regarded as the optimal pair for this split function. After learning the split function, the 

samples are split and passed to two child nodes for recursive splitting. The training of a 

decision tree starts with finding the optimal split at the root node, and then recursively 

proceeds on child nodes until either the maximum tree depth is reached or the number of 

training samples is too small to split. Finally, the leaf node stores the class label distribution 

p(l) of all training samples falling into this leaf node.

RF Testing

For a new testing sample, RF pushes it through each learned decision tree, starting at the 

root node. At each split node, the testing sample is assigned to one of child nodes by 
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applying the corresponding decision stump function. If the function response is zero, the 

testing sample is assigned to the left child node; if the function response is one, it is assigned 

to the right child node. When the testing sample reaches a leaf node, the class label 

distribution p(l) stored in that leaf node is used as the output of the decision tree and 

assigned as the probability of the testing sample belonging to class label l. For the entire 

forest, the final probability p l  of the testing sample assigned to class label l is the average 

of outputs from all decision trees, i.e. p l = 1
T ∑l = 1

T p l , where T is the number of decision 

trees.

3 Proposed Method

3.1 Soft-Split Random Forest

In the testing stage, the conventional random forest makes “hard split” (i.e., either left or 

right) at each split node and thus assigns each sample with only one path from the root to a 

leaf node. This splitting strategy is effective when there exist a clear boundary among 

samples of different class labels. However, there may exist ambiguous samples, which lie 

near (or even lie on) splitting boundaries (Fig. 1(a)), which could lead to wrong assignment. 

Specifically, training samples may highly overlap in the feature space (Fig. 1(b)), which 

makes it difficult to find a clear separation/split. That is, there will be many “hard-to-split” 

samples close to the splitting hyper-plane, which are ambiguous in some sense. For those 

samples, even though they locate on one side of the hyper-plane, they are also likely 

belonging to the other side due to small noise. The conventional way of hard split tends to 

ignore this fact, and may misclassify sample to wrong side, thus leading to inaccurate 

prediction.

To solve this problem, we propose to use “soft split” strategy applied in the testing stage. 

The basic idea of soft split is that, when a new sample comes to a split node, instead of 

classifying it into only one child node in each split, we take a probabilistic view and allow 

each sample go to both left and right nodes with certain probabilities, which are determined 

by the distance of this sample to the learned splitting decision boundary. Finally, the 

probability of each leaf is the multiplication of all probabilities along the path from the root 

to the leaf, and the label probability of a testing sample is the weighted average of all leaf 

nodes of all trees visited with non-zero probability.

Specifically, in the testing stage of RF, for each split node, we define a soft split function 

based on the distance of the testing sample to the learned splitting decision boundary. 

Mathematically, the soft split function is defined as follows:

f S ht j0, τ0 = 1
1 + e−σd , d =

ht j0 − τ0
rmax − τ0

ht j ≥ τ0

ht j0 − τ0
τ0 − rmin

ht j ≤ τ0

(2)
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where ht is the feature vector of the testing sample, j0 and τ0 are the optimal feature index 

and threshold of the hard split function learned in the training stage, rmin and rmax are the 

minimum and maximum feature responses of training samples arrived in this split node, 

respectively, and σ is the tuning parameter that controls the slop of the function. To avoid the 

problem caused by different feature scales, the distance d is normalized to [0,1] by using 

rmin and rmax. Based on the soft split function, we use pR = fS and pL = 1 − fS for indicating 

the probabilities of the testing sample assigned to the right child node and the left child 

node, respectively. It can be clearly seen from fS that when ht(j) ≫ τ0, pR → 1 and when 

ht(j) ≪ τ0, pR → 0; e.g., the larger distance between feature response ht(j0) and the 

boundary τ0 is, the more extreme the probabilities are. To improve the testing, when the 

feature response ht(j0) is far from the boundaryτ0, the soft split function becomes hard split, 

and the sample is assigned to either left or right child node as follows:

f S′ =

0 f S < c

f S c ≤ f S ≤ 1 − c

1 f S > 1 − c
(3)

where c ∈ [0,0.5] is the cutting parameter.

Thus, using the soft split, a new sample will be split into both left and right nodes at each 

split node with certain probabilities. Finally, for each leaf node, its weight is computed as 

the multiplication of all probabilities along the path from the root node to itself. The 

estimated label probability of this new sample is weighted average of label probabilities of 

all leaf nodes across all different trees.

3.2 Haar-Features Based Context Model (HCM)

In the section, we present a Haar-features based context model (HCM) to iteratively improve 

the labeling accuracy by using both low-level appearance features (computed from the target 

image) and high-level context features (computed from tentative labeling probability maps 

of the target image). Specifically, at each iteration, random forest outputs a tentative labeling 

probability map of the target image, from which we can compute Haar-like features. These 

features are called context features and can be used together with the intensity features to 

refine the labeling results. In the following paragraphs, we detail the training and testing 
stages of our HCM.

Training—In the initial iteration, we first use the simple multi-atlas based majority voting 

to initialize the labeling probability maps of the training images. Specifically, for each 

training image, we linearly align all other images onto this image and then adopt the 

majority voting to obtain an initial labeling map by propagating labels from all aligned 

images to this image. In the second iteration, for each training voxel x in the training image, 

we extract Haar-like features from both training image and the initial labeling probability 

maps. The Haar-like features extracted from training image are called intensity features, and 

those extracted from probability maps are called context features. They can be combined as 

input features to train next random forest classifier. During the training of each split node, 
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the minimum and maximum feature responses (rmin and rmax) are saved, in order to 

normalize the sample-to-boundary distance for the testing samples (Eq. 2). After the current 

RF classifier is trained, we can apply it to each training image for estimating the new 

labeling probability maps by combining local appearance and context information. Since the 

new labeling probability maps are often better than those obtained by majority voting, as 

shown in Fig. 2, we can use these new maps to replace those obtained by majority voting 

and compute the new context features. Once the context features have been updated, a new 

random forest classifier can be learned. This procedure is iterated until we obtain O sets of 

RF classifiers, each set containing one random forest classifier for each anatomical structure.

Testing—Given a new testing image, the labeling probability of each voxel is iteratively 

updated similarly as done in the training stage. Specifically, all the training images (atlases) 

are first linearly aligned onto the testing image, and majority voting is further used to fuse 

the label maps of all aligned atlases to initialize the probability map of the testing image. 

Then, Haar-like features are extracted from both testing image and the estimated probability 

map to serve as intensity and context features, respectively. Based on both features, with the 

learned RF, we can obtain new labeling probability maps, which can be fed into the next 

learned RF to further refine the labeling probability maps. This iterative procedure continues 

until all learned RF classifiers have been applied. Fig. 2 demonstrates this process of 

labeling hippocampus on a typical target image.

4 Experiments

In this section, we perform experimental validation of our proposed method on the ADNI1 

dataset and the Head & Neck2 dataset for evaluating its performance. In ADNI dataset, we 

apply our method to segment the hippocampus from MRI images. In Head & Neck dataset, 

we apply our method to segment parotid glands and brain stem from CT images. To 

demonstrate the superiority of soft-split over hard-split RF, we compare our method to the 

hard-split RF without (HSRF) and with HCM (HSRF+HCM), respectively. To quantitatively 

evaluate the labeling accuracy, we use the Dice Similarity Coefficient (DSC) to measure the 

overlap degree between automatic and manual labeling results. In the experiments, we use 

five-fold cross-validation to evaluate the performance of our method, as well as the 

comparison methods.

Parameters

In the training stage, we train 20 trees for each RF. The maximum tree depth is set to 20, and 

the minimum number of samples in each leaf node is set to 4. In the training of each tree 

node, 1000 random Haar-like features are extracted from intensity image, and 100 random 

Haar-like features are extracted from the labeling probability map. σ and c in the soft-split 
random forest (SSRF) are set to 0.1 and 0.1, respectively.

1http://www.adni-info.org/
2http://www.imagenglab.com/pddca_18.html
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ADNI Dataset

The ADNI dataset contains the segmentations of the left and right hippocampi (LH and RH) 

of brain MRIs, which have been manually labeled by expert. The size of each MR image is 

256 × 256 × 256. We randomly selected 64 subjects to evaluate both performances of our 

method and the comparison methods. The selected subset of ADNI includes 16 normal 

control (NC), 32 MCI (Mild Cognitive Impairment) subjects, and 16 AD (Alzheimer 

Disease) subjects. The middle columns of Table 1 list the results for the labeling of left and 

right hippocampi. We can see that soft-split random forest improves over the hard-split 
random forest. With the inclusion of Haar-features based context information, the 

performance is further boosted. Fig. 3 demonstrates a qualitative comparison.

Head & Neck Dataset

The Head & Neck dataset consists of 40 CT images. Each image contains manually labeled 

left and right parotid glands (LP and RP), and brain stem (BS). The spatial resolution of 40 

CT images ranges over [0.76 − 2.34] × [0.76 − 2.34] × [1.25 − 3] mm. The right columns of 

Table 1 show the labeling results for the left and right parotid glands, and brain stem, which 

also indicates the advantages of our proposed soft-splitting and HCM. Fig. 4 provides a 

qualitative comparison. To provide some comparisons, we cite recent results from [8]. In [8], 

the authors proposed a segmentation method based on multiple atlases, statistical appearance 

models and geodesic active contours (MABSInShape), which obtains average DSC 81% for 

LP, 84% for RP, and 86% for BS. It is worth noting that this method is evaluated on a subset 

of our dataset with only 18 high-resolution CT images, while we use 40 CT images 

containing both low- and high- resolution CT Images. Specifically, for high-resolution CT 

image set, SSRF and SSRF+HCM methods respectively obtain the average DSC 82% and 

83% for LP, 85% and 86% for RP, and 88% and 89% for BS. By comparing our methods 

with MABSInShape, our methods also obtain better results.

5 Conclusion

In this paper, we propose a soft-split random forest (SSRF) to effectively improve the 

reliability of the conventional random forest. Besides, the Haar-features based context model 

(HCM) is also proposed to improve the labeling performance by utilizing the context 

information of the target image. Specifically, we use Haar-like features to iteratively extract 

context information from the tentatively-estimated labeling probability maps of the target 

image. Our method shows more accurate labeling results than the conventional RF, on both 

ADNI and Head & Neck datasets.
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Fig. 1. 
Feature space distribution of voxels inside and outside hippocampus. Red and yellow boxes 

in (a) represent local patches of voxels outside and inside the hippocampus, respectively. 

Red crosses and yellow circles in (b) represent feature distributions of voxels outside and 

inside the hippocampus, respectively. Blue vertical line in (b) denotes a splitting decision 

boundary.
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Fig. 2. 
The labeling probability map of hippocampus at each iterative layer of HCM. Red contours 

denote the ground-truth boundary of hippocampus.
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Fig. 3. 
Qualitative comparison of the labeling results of hippocampus for one subject using 4 

different methods (red: manual labeling result; green: automated labeling results; blue: 

overlap between manual and automated labeling results).
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Fig. 4. 
Qualitative comparison of labeling results of LP (top) and BS (bottom) for one subject using 

4 different methods (red: manual labeling results; green: automated labeling results; blue: 

overlap between manual and automated labeling results).
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