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Abstract

Multimodal affective computing, learning to recognize and interpret human affect and subjective 

information from multiple data sources, is still challenging because:(i) it is hard to extract 

informative features to represent human affects from heterogeneous inputs; (ii) current fusion 

strategies only fuse different modalities at abstract levels, ignoring time-dependent interactions 

between modalities. Addressing such issues, we introduce a hierarchical multimodal architecture 

with attention and word-level fusion to classify utterance-level sentiment and emotion from text 

and audio data. Our introduced model outperforms state-of-the-art approaches on published 

datasets, and we demonstrate that our model’s synchronized attention over modalities offers visual 

interpretability.

1 Introduction

With the recent rapid advancements in social media technology, affective computing is now 

a popular task in human-computer interaction. Sentiment analysis and emotion recognition, 

both of which require applying subjective human concepts for detection, can be treated as 

two affective computing subtasks on different levels (Poria et al., 2017a). A variety of data 

sources, including voice, facial expression, gesture, and linguistic content have been 

employed in sentiment analysis and emotion recognition. In this paper, we focus on a 

multimodal structure to leverage the advantages of each data source. Specifically, given an 

utterance, we consider the linguistic content and acoustic characteristics together to 

recognize the opinion or emotion. Our work is important and useful because speech is the 

most basic and commonly used form of human expression.

A basic challenge in sentiment analysis and emotion recognition is filling the gap between 

extracted features and the actual affective states (Zhang et al., 2017). The lack of high-level 

feature associations is a limitation of traditional approaches using low-level handcrafted 

features as representations (Seppi et al., 2008; Rozgic et al., 2012). Recently, deep learning 

structures such as CNNs and LSTMs have been used to extract high-level features from text 

and audio (Eyben et al., 2010a; Poria et al., 2015). However, not all parts of the text and 

vocal signals contribute equally to the predictions. A specific word may change the entire 
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sentimental state of text; a different vocal delivery may indicate inverse emotions despite 

having the same linguistic content. Recent approaches introduce attention mechanisms to 

focus the models on informative words (Yang et al., 2016) and attentive audio frames 

(Mirsamadi et al., 2017) for each individual modality. However, to our knowledge, there is 

no common multimodal structure with attention for utterance-level sentiment and emotion 

classification. To address such issue, we design a deep hierarchical multimodal architecture 

with an attention mechanism to classify utterance-level sentiments and emotions. It extracts 

high-level informative textual and acoustic features through individual bidirectional gated 

recurrent units (GRU) and uses a multi-level attention mechanism to select the informative 

features in both the text and audio module.

Another challenge is the fusion of cues from heterogeneous data. Most previous works 

focused on combining multimodal information at a holistic level, such as integrating 

independent predictions of each modality via algebraic rules (Wöllmer et al., 2013) or fusing 

the extracted modality-specific features from entire utterances (Poria et al., 2016). They 

extract word-level features in a text branch, but process audio at the frame-level or utterance-

level. These methods fail to properly learn the time-dependent interactions across modalities 

and restrict feature integration at timestamps due to the different time scales and formats of 

features of diverse modalities (Poria et al., 2017a). However, to determine human meaning, 

it is critical to consider both the linguistic content of the word and how it is uttered. A loud 

pitch on different words may convey inverse emotions, such as the emphasis on “hell” for 

anger but indicating happy on “great”. Synchronized attentive information across text and 

audio would then intuitively help recognize the sentiments and emotions. Therefore, we 

compute a forced alignment between text and audio for each word and propose three fusion 

approaches (horizontal, vertical, and fine-tuning attention fusion) to integrate both the 

feature representations and attention at the word-level.

We evaluated our model on four published sentiment and emotion datasets. Experimental 

results show that the proposed architecture outperforms state-of-the-art approaches. Our 

methods also allow for attention visualization, which can be used for interpreting the internal 

attention distribution for both single- and multi-modal systems. The contributions of this 

paper are: (i) a hierarchical multimodal structure with attention mechanism to learn 

informative features and high-level associations from both text and audio; (ii) three word-

level fusion strategies to combine features and learn correlations in a common time scale 

across different modalities; (iii) word-level attention visualization to help human 

interpretation.

The paper is organized as follows: We list related work in section 2. Section 3 describes the 

proposed structure in detail. We present the experiments in section 4 and provide the result 

analysis in section 5. We discuss the limitations in section 6 and conclude with section 7.

2 Related Work

Despite the large body of research on audio-visual affective analysis, there is relatively little 

work on combining text data. Early work combined human transcribed lexical features and 

low-level hand-crafted acoustic features using feature-level fusion (Forbes-Riley and 
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Litman, 2004; Litman and Forbes-Riley, 2004). Others used SVMs fed bag of words (BoW) 

and part of speech (POS) features in addition to low-level acoustic features (Seppi et al., 

2008; Rozgic et al., 2012; Savran et al., 2012; Rosas et al., 2013; Jin et al., 2015). All of the 

above extracted low-level features from each modality separately. More recently, deep 

learning was used to extract higher-level multimodal features. Bidirectional LSTMs were 

used to learn long-range dependencies from low-level acoustic descriptors and derivations 

(LLDs) and visual features (Eyben et al., 2010a; Wöllmer et al., 2013). CNNs can extract 

both textual (Poria et al., 2015) and visual features (Poria et al., 2016) for multiple kernel 

learning of feature-fusion. Later, hierarchical LSTMs were used (Poria et al., 2017b). A deep 

neural network was used for feature-level fusion in (Gu et al., 2018) and (Zadeh et al., 2017) 

introduced a tensor fusion network to further improve the performance. A very recent work 

using word-level fusion was provided by (Chen et al., 2017). The key differences between 

this work and the proposed architecture are: (i) we design a fine-tunable hierarchical 

attention structure to extract word-level features for each individual modality, rather than 

simply using the initialized textual embedding and extracted LLDs from COVAREP 

(Degottex et al., 2014); (ii) we propose diverse representation fusion strategies to combine 

both the word-level representations and attention weights, instead of using only word-level 

fusion;(iii) our model allows visualizing the attention distribution at both the individual 

modality and at fusion to help model interpretability.

Our architecture is inspired by the document classification hierarchical attention structure 

that works at both the sentence and word level (Yang et al., 2016). For audio, an attention-

based BLSTM and CNN were applied to discovering emotion from frames (Huang and 

Narayanan, 2016; Neumann and Vu, 2017). Frame-level weighted-pooling with local 

attention was shown to outperform frame-wise, final-frame, and frame-level mean-pooling 

for speech emotion recognition (Mirsamadi et al., 2017).

3 Method

We introduce a multimodal hierarchical attention structure with word-level alignment for 

sentiment analysis and emotion recognition (Figure 1). The model consists of three major 

parts: text attention module, audio attention module, and word- level fusion module. We first 

make a forced alignment between the text and audio during preprocessing. Then, the text 

attention module and audio attention module extract the features from the corresponding 

inputs (shown in Algorithm 1). The word-level fusion module fuses the extracted feature 

vectors and makes the final prediction via a shared representation (shown in Algorithm 2).

3.1 Forced Alignment and Preprocessing

The forced alignment between the audio and text on the word-level prepares the different 

data for feature extraction. We align the data at the word-level because words are the basic 

unit in English for human speech comprehension. We used aeneas1 to determine the time 

interval for each word in the audio file based on the Sakoe-Chiba Band Dynamic Time 

Warping (DTW) algorithm (Sakoe and Chiba, 1978).

1https://www.readbeyond.it/aeneas/
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For the text input, we first embedded the words into 300-dimensional vectors by word2vec 
(Mikolov et al., 2013), which gives us the best result compared to GloVe and LexVec. 

Unknown words were randomly initialized. Given a sentence S with N words, let wi 

represent the ith word. We embed the words through the word2vec embedding matrix We 

by:

T i = Wewi, i ∈ [1, N] (1)

where Ti is the embedded word vector.

For the audio input, we extracted Mel-frequency spectral coefficients (MFSCs) from raw 

audio signals as acoustic inputs for two reasons. Firstly, MFSCs maintain the locality of the 

data by preventing new bases of spectral energies resulting from discrete cosine transform in 

MFCCs extraction (Abdel-Hamid et al., 2014). Secondly, it has more dimensions in the 

frequency domain that aid learning in deep models (Gu et al., 2017). We used 64 filter banks 

to extract the MFSCs for each audio frame to form the MFSCs map. To facilitate training, 

we only used static coefficients. Each word’s MFSCs can be represented as a matrix with 64 

× n dimensions, where n is the interval for the given word in frames. We zero-pad all 

intervals to the same length L, the maximum frame numbers of the word in the dataset. We 

did extract LLD features using OpenSmile (Eyben et al., 2010b) software and combined 

them with the MFSCs during our training stage. However, we did not find an obvious 

performance improvement, especially for the sentiment analysis. Considering the training 

cost of the proposed hierarchical acoustic architecture, we decided the extra features were 

not worth the tradeoff. The output is a 3D MFSCs map with dimensions [N, 64, L].

3.2 Text Attention Module

To extract features from embedded text input at the word level, we first used bidirectional 

GRUs, which are able to capture the contextual information between words. It can be 

represented as:

t_hi , t_hi = bi_GRU T i , i ∈ [1, N] (2)

Where bi_GRU is the bidirectional GRU, t_hi  and t_hi  denote respectively the forward 

and backward contextual state of the input text. We combined t_hi  and t_hi  as t _hi to 

represent the feature vector for the ith word. We choose GRUs instead of LSTMs because 

our experiments show that LSTMs lead to similar performance (0.07% higher accuracy) 

with around 25% more trainable parameters.

To create an informative word representation, we adopted a word-level attention strategy that 

generates a one-dimensional vector denoting the importance for each word in a sequence 

(Yang et al., 2016). As defined by (Bahdanau et al., 2014),
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Algorithm 1

FEATURE EXTRACTION

1: procedure FORCED ALIGNMENT

2:  Determine time interval of each word

3:  find wi ← → [Aij], j ∈ [1, L], i ∈ [1, N]

4: end procedure

5: procedure TEXT BRANCH

6:  Text Attention Module

7:  for i ∈ [1, N] do

8:   Ti ← getErnbedded(wi)

9:   t_hi ← bi_GRU(Ti)

10:   t_ei ← getEnergies(t_hi)

11:   t_αi ← getDistribution(t_ei)

12:  end for

13:  return t_hi, t_αi

14: end procedure

15: procedure AUDIO BRANCH

16:  for i ∈ [1, N] do

17:   Frame-Level Attention Module

18:   for j ∈ [1, L] do

19:    f_hij ← bi_GRU (Aij)

20:    f_eij ← getEnergies(f_hij)

21:    f_αij ← getDistribution(f_eij)

22:   end for

23:   f_Vi ← weightedSum(f_αij, f_hij)

24:   Word-Level Attention Module

25:   w_hi ← bi_GRU(f_Vi)

26:   w_ei ← getEnergies(w_hi)

27:   w_αi ← getDistribution(w_ei)

28:  end for

29:  return w_hi, w_αi

30: end procedure

we compute the textual attentive energies t_ei and textual attention distribution t_αi by:

t_ei = tanh W tt_hi + bt , i ∈ [1, N] (3)

t_αi =
exp t_ei

⊤vt

∑k = 1
N exp t_ek

⊤vt
(4)

Gu et al. Page 5

Proc Conf Assoc Comput Linguist Meet. Author manuscript; available in PMC 2019 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



where Wt and bt are the trainable parameters and vt is a randomly-initialized word-level 

weight vector in the text branch. To learn the word-level interactions across modalities, we 

directly use the textual attention distribution t_αi and textual bidirectional contextual state 

t_hi as the output to aid word-level fusion, which allows further computations between text 

and audio branch on both the contextual states and attention distributions.

3.3 Audio Attention Module

We designed a hierarchical attention model with frame-level acoustic attention and word-

level at tention for acoustic feature extraction.

Frame-level Attention captures the important MFSC frames from the given word to 

generate the word-level acoustic vector. Similar to the text attention module, we used a 

bidirectional GRU:

f _hi j , f _hi j = bi_GRU Ai j , j ∈ [1, L] (5)

Where f _hi j  and f _hi j  denote the forward and backward contextual states of acoustic 

frames. Aij denotes the MFSCs of the jth frame from the ith word, i ∊ [1, N]. f_hij represents 

the hidden state of the jth frame of the ith word, which consists of f _hi j  and f _hi j . We 

apply the same attention mechanism used for textual attention module to extract the 

informative frames using equation 3 and 4. As shown in Figure 1, the input of equation 3 is 

f_hij and the output is the frame-level acoustic attentive energies f_eij. We calculate the 

frame-level attention distribution f_αij by using f_eij as the input for equation 4. We form the 

word-level acoustic vector f_Vi by taking a weighted sum of bidirectional contextual state 

f_hij of the frame and the corresponding frame-level attention distribution f_αij Specifically,

f _V i = ∑ j f _αi j f _hi j (6)

Word-level Attention aims to capture the word-level acoustic attention distribution w_αi 

based on formed word vector f_Vi. We first used equation 2 to generate the word-level 

acoustic contextual states w_hi, where the input is f_Vi and w_hi = w_hi , w_hi . Then, we 

compute the word-level acoustic attentive energies w_ei via equation 3 as the input for 

equation 4. The final output is an acoustic attention distribution w_αi from equation 4 and 

acoustic bidirectional contextual state w_hi.

3.4 Word-level Fusion Module

Fusion is critical to leveraging multimodal features for decision-making. Simple feature 

concatenation without considering the time scales ignores the associations across modalities. 

We introduce word-level fusion capable of associating the text and audio at each word. We 

propose three fusion strategies (Figure 2 and Algorithm 2): horizontal fusion, vertical fusion, 

and fine-tuning attention fusion. These methods allow easy synchronization between 
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modalities, taking advantage of the attentive associations across text and audio, creating a 

shared high-level representation.

Algorithm 2

FUSION

1: procedure FUSION BRANCH

2:  Horizontal Fusion (HF)

3:  for i ∈ [1, N] do

4:   t_Vi ← weighted(t_αi, t_hi)

5:   w_hi ← weighted(w_αi, w_αi)

6:   Vi ← dense([t_Vi, w_Vi])

7:  end for

8:  Vertical Fusion (VF)

9:  for i ∈ [1, N] do

10:   hi ← dense([t_hi, w_hi])

11:   s_αi ← average([t_αi, w_αi])

12:   Vi ← weighted(hi, s_αi)

13:  end for

14:  Fine-tuning Attention Fusion (FAF)

15:  for i ∈ [1, N] do

16:   u_ei ← getEnergies(hi)

17:   u_αi ← getDistribution(u_ei, s_αi)

18:   Vi ← weighted(hi, u_αi)

19:  end for

20:  Decision Making

21:  E ← convNet(V1, V2,…, VN)

22:  return E

23: end procedure

Horizontal Fusion (HF) provides the shared representation that contains both the textual 

and acoustic information for a given word (Figure 2 (a)). The HF has two steps: (i) 

combining the bidirectional contextual states (t_hi and w_hi in Figure 1) and attention 

distributions for each branch (t_αi and w_αi in Figure 1) independently to form the word-

level textual and acoustic representations. As shown in Figure 2, given the input (t_αi, t_hi) 

and (w_αi, w_hi), we first weighed each input branch by:

t_V i = t_αit_hi (7)

w_V i = w_αiw_hi (8)
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where t_Vi and w_Vi are word-level representations for text and audio branches, 

respectively; (ii) concatenating them into a single space and further applying a dense layer to 

create the shared context vector Vi, and Vi = (t_Vi, w_Vi). The HF combines the unimodal 

contextual states and attention weights; there is no attention interaction between the text 

modality and audio modality. The shared vectors retain the most significant characteristics 

from respective branches and encourages the decision making to focus on local informative 

features.

Vertical Fusion (VF) combines textual attentions and acoustic attentions at the word-level, 

using a shared attention distribution over both modalities instead of focusing on local 

informative representations (Figure 2 (b)). The VF is computed in three steps: (i) using a 

dense layer after the concatenation of the word-level textual (t_hi) and acoustic (w_hi) 

bidirectional contextual states to form the shared contextual state hi; (ii) averaging the 

textual (t_αi) and acoustic (w_αi) attentions for each word as the shared attention 

distribution s_αi; (iii) computing the weight of hi and s_αi as final shared context vectors Vi, 

where Vi = his_αi. Because the shared attention distribution (s_αi) is based on averages of 

unimodal attentions, it is a joint attention of both textual and acoustic attentive information.

Fine-tuning Attention Fusion (FAF) preserves the original unimodal attentions and 

provides a fine-tuning attention for the final prediction (Figure 2 (c)). The averaging of 

attention weights in vertical fusion potentially limits the representational power. Addressing 

such issue, we propose a trainable attention layer to tune the shared attention in three steps: 

(i) computing the shared attention distribution s_αi and shared bidirectional contextual states 

hi separately using the same approach as in vertical fusion; (ii) applying attention fine-

tuning:

u_ei = tanh Wuhi + bu (9)

u_αi =
exp u_ei

⊤vu

∑k = 1
N exp u_ek

⊤vu
+ s_αi (10)

where Wu, bu, and vu are additional trainable parameters. The u_αi can be understood as the 

sum of the fine-tuning score and the original shared attention distribution s_αi; (iii) 

calculating the weight of u_αi and hi to form the final shared context vector Vi.

3.5 Decision Making

The output of the fusion layer Vi is the ith shared word-level vectors. To further make use of 

the combined features for classification, we applied a CNN structure with one convolutional 

layer and one max-pooling layer to extract the final representation from shared word-level 

vectors (Poria et al., 2016; Wang et al., 2016). We set up various widths for the 

convolutional filters (Kim, 2014) and generated a feature map ck by:
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f i = tanh WcV i: i + k − 1 + bc (11)

ck = max f 1, f 2, …, f N (12)

where k is the width of the convolutional filters, fi represents the features from window i to i
+k−1. Wc and bc are the trainable weights and biases. We get the final representation c by 

concatenating all the feature maps. A softmax function is used for the final classification.

4 Experiments

4.1 Datasets

We evaluated our model on four published datasets: two multimodal sentiment datasets 

(MOSI and YouTube) and two multimodal emotion recognition datasets (IEMOCAP and 

EmotiW).

MOSI dataset is a multimodal sentiment intensity and subjectivity dataset consisting of 93 

reviews with 2199 utterance segments (Zadeh et al., 2016). Each segment was labeled by 

five individual annotators between −3 (strong negative) to +3 (strong positive). We used 

binary labels based on the sign of the annotations’ average.

YouTube dataset is an English multimodal dataset that contains 262 positive, 212 negative, 

and 133 neutral utterance-level clips provided by (Morency et al., 2011). We only consider 

the positive and negative labels during our experiments.

IEMOCAP is a multimodal emotion dataset including visual, audio, and text data (Busso et 

al., 2008). For each sentence, we used the label agreed on by the majority (at least two of the 

three annotators). In this study, we evaluate both the 4-catgeory (happy+excited, sad, anger, 
and neutral) and 5-catgeory (happy+excited, sad, anger, neutral, and frustration) emotion 

classification problems. The final dataset consists of 586 happy, 1005 excited, 1054 sad, 

1076 anger, 1677 neutral, and 1806 frustration.

EmotiW2 is an audio-visual multimodal utterance-level emotion recognition dataset consist 

of video clips. To keep the consistency with the IEMOCAP dataset, we used four emotion 

categories as the final dataset including 150 happy, 117 sad, 133 anger, and 144 neutral. We 

used IBM Watson3 speech to text software to transcribe the audio data into text.

4.2 Baselines

We compared the proposed architecture to published models. Because our model focuses on 

extracting sentiment and emotions from human speech, we only considered the audio and 

text branch applied in the previous studies.

2https://cs.anu.edu.au/few/ChallengeDetails.html
3https://www.ibm.com/watson/developercloud/speech-to-text/api/v1/
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4.2.1 Sentiment Analysis Baselines—BL-SVM extracts a bag-of-words as textual 

features and low-level descriptors as acoustic features. An SVM structure is used to classify 

the sentiments (Rosas et al., 2013).

LSTM-SVM uses LLDs as acoustic features and bag-of-n-grams (BoNGs) as textual 

features. The final estimate is based on decision-level fusion of text and audio predictions 

(Wöllmer et al., 2013).

C-MKL1 uses a CNN structure to capture the textual features and fuses them via multiple 

kernel learning for sentiment analysis (Poria et al., 2015).

TFN uses a tensor fusion network to extract interactions between different modality-specific 

features (Zadeh et al., 2017).

LSTM(A) introduces a word-level LSTM with temporal attention structure to predict 

sentiments on MOSI dataset (Chen et al., 2017).

4.2.2 Emotion Recognition Baselines—SVM Trees extracts LLDs and handcrafted 

bagof-words as features. The model automatically generates an ensemble of SVM trees for 

emotion classification (Rozgic et al., 2012).

GSV-eVector generates new acoustic representations from selected LLDs using Gaussian 

Super-vectors and extracts a set of weighed handcrafted textual features as an eVector. A 

linear kernel SVM is used as the final classifier (Jin et al., 2015).

C-MKL2 extracts textual features using a CNN and uses openSMILE to extract 6373 

acoustic features. Multiple kernel learning is used as the final classifier (Poria et al., 2016).

H-DMS uses a hybrid deep multimodal structure to extract both the text and audio 

emotional features. A deep neural network is used for feature-level fusion (Gu et al., 2018).

4.2.3 Fusion Baselines—Utterance-level Fusion (UL-Fusion) focuses on fusing text 

and audio features from an entire utterance (Gu et al., 2017). We simply concatenate the 

textual and acoustic representations into a joint feature representation. A softmax function is 

used for sentiment and emotion classification.

Decision-level Fusion (DL-Fusion) Inspired by (Wöllmer et al., 2013), we extract textual 

and acoustic sentence representations individually and infer the results via two softmax 

classifiers, respectively. As suggested by Wöllmer, we calculate a weighted sum of the text 

(1.2) result and audio (0.8) result as the final prediction.

4.3 Model Training

We implemented the model in Keras with Tensorflow as the backend. We set 100 as the 

dimension for each GRU, meaning the bidirectional GRU dimension is 200. For the decision 

making, we selected 2, 3, 4, and 5 as the filter width and apply 300 filters for each width. We 

used the rectified linear unit (ReLU) activation function and set 0.5 as the dropout rate. We 

also applied batch normalization functions between each layer to overcome internal 
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covariate shift (Ioffe and Szegedy, 2015). We first trained the text attention module and 

audio attention module individually. Then, we tuned the fusion network based on the word-

level representation outputs from each fine-tuning module. For all training procedures, we 

set the learning rate to 0.001 and used Adam optimization and categorical cross-entropy 

loss. For all datasets, we considered the speakers independent and used an 80–20 training-

testing split. We further separated 20% from the training dataset for validation. We trained 

the model with 5-fold cross validation and used 8 as the mini batch size. We set the same 

amount of samples from each class to balance the training dataset during each iteration.

5 Result Analysis

5.1 Comparison with Baselines

The experimental results of different datasets show that our proposed architecture achieves 

state-of-the-art performance in both sentiment analysis and emotion recognition (Table 1). 

We re-implemented some published methods (Rosas et al., 2013; Wöllmer et al., 2013) on 

MOSI to get baselines.

For sentiment analysis, the proposed architecture with FAF strategy achieves 76.4% 

weighted accuracy, which outperforms all the five baselines (Table 1). The result 

demonstrates that the proposed hierarchical attention architecture and word-level fusion 

strategies indeed help improve the performance. There are several findings worth 

mentioning: (i) our model outperforms the baselines without using the low-level handcrafted 

acoustic features, indicating the sufficiency of MFSCs; (ii) the proposed approach achieves 

performance comparable to the model using text, audio, and visual data together (Zadeh et 

al., 2017). This demonstrates that the visual features do not contribute as much during the 

fusion and prediction on MOSI; (iii) we notice that (Poria et al., 2017b) reports better 

accuracy (79.3%) on MOSI, but their model uses a set of utterances instead of a single 

utterance as input.

For emotion recognition, our model with FAF achieves 72.7% accuracy, outperforming all 

the baselines. The result shows the proposed model brings a significant accuracy gain to 

emotion recognition, demonstrating the pros of the fine-tuning attention structure. It also 

shows that word-level attention indeed helps extract emotional features. Compared to C-

MKL2 and SVM Trees that require feature selection before fusion and prediction, our model 

does not need an additional architecture to select features. We further evaluated our models 

on 5 emotion categories, including frustration. Our model shows 4.2% performance 

improvement over H-DMS and achieves0.644 weighted-F1. As H-DMS only achieves0.594 

F1 and also uses low-level handcrafted features, our model is more robust and efficient.

From Table 1, all the three proposed fusion strategies outperform UL-Fusion and DL-Fusion 

on both MOSI and IEMOCAP. Unlike utterance-level fusion that ignores the time-scale-

sensitive associations across modalities, word-level fusion combines the modality-specific 

features for each word by aligning text and audio, allowing associative learning between the 

two modalities, similar to what humans do in natural conversation. The result indicates that 

the proposed methods improve the model performance by around 6% accuracy. We also 

notice that the structure with FAF outperforms the HF and VF on both MOSI and 
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IEMOCAP dataset, which demonstrates the effectiveness and importance of the FAF 

strategy.

5.2 Modality and Generalization Analysis

From Table 2, we see that textual information dominates the sentiment prediction on MOSI 

and there is an only 1.4% accuracy improvement from fusing text and audio. However, on 

IEMOCAP, audio-only outperforms text-only, but as expected, there is a significant 

performance improvement by combining textual and audio. The difference in modality 

performance might because of the more significant role vocal delivery plays in emotional 

expression than in sentimental expression.

We further tested the generalizability of the proposed model. For sentiment generalization 

testing, we trained the model on MOSI and tested on the YouTube dataset (Table 3), which 

achieves 66.2% accuracy and 0.665 F1 scores. For emotion recognition generalization 

testing, we tested the model (trained on IEMOCAP) on EmotiW and achieves 61.4% 

accuracy. The potential reasons that may influence the generalization are: (i) the biased 

labeling for different datasets (five annotators of MOSI vs one annotator of Youtube);(ii) 

incomplete utterance in YouTube dataset (such as “about”, “he”, etc.); (iii) without enough 

speech information (EmotiW is a wild audio-visual dataset that focuses on facial 

expression).

5.3 Visualize Attentions

Our model allows us to easily visualize the attention weights of text, audio, and fusion to 

better understand how the attention mechanism works. We introduce the emotional 

distribution visualizations for word-level acoustic attention (w_αi), word-level textual 

attention (t_αi), shared attention (s_αi), and fine-tuning attention based on the FAF structure 

(u_αi) for two example sentences (Figure 3). The color gradation represents the importance 

of the corresponding source data at the word-level.

Based on our visualization, the textual attention distribution (t_αi) denotes the words that 

carry the most emotional significance, such as “hell” for anger (Figure 3 a). The textual 

attention shows that “don’t”, “like”, and “west-sider” have similar weights in the happy 
example (Figure 3 b). It is hard to assign this sentence happy given only the text attention. 

However, the acoustic attention focuses on “you’re” and “west-sider”, removing emphasis 

from “don’t” and “like”. The shared attention (s_αi) and fine-tuning attention (u_αi) 

successfully combine both textual and acoustic attentions and assign joint attention to the 

correct words, which demonstrates that the proposed method can capture emphasis from 

both modalities at the word-level.

6 Discussion

There are several limitations and potential solutions worth mentioning: (i) the proposed 

architecture uses both the audio and text data to analyze the sentiments and emotions. 

However, not all the data sources contain or provide textual information. Many audio-visual 

emotion clips only have acoustic and visual information. The proposed architecture is more 

related to spoken language analysis than predicting the sentiments or emotions based on 
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human speech. Automatic speech recognition provides a potential solution for generating the 

textual information from vocal signals. (ii) The word alignment can be easily applied to 

human speech. However, it is difficult to align the visual information with text, especially if 

the text only describes the video or audio. Incorporating visual information into an aligning 

model like ours would be an interesting research topic. (iii) The limited amount of 

multimodal sentiment analysis and emotion recognition data is a key issue for current 

research, especially for deep models that require a large number of samples. Compared large 

unimodal sentiment analysis and emotion recognition datasets, the MOSI dataset only 

consists of 2199 sentence-level samples. In our experiments, the EmotiW and MOUD 

datasets could only be used for generalization analysis due to their small size. Larger and 

more general datasets are necessary for multimodal sentiment analysis and emotion 

recognition in the future.

7 Conclusion

In this paper, we proposed a deep multimodal architecture with hierarchical attention for 

sentiment and emotion classification. Our model aligned the text and audio at the word-level 

and applied attention distributions on textual word vectors, acoustic frame vectors, and 

acoustic word vectors. We introduced three fusion strategies with a CNN structure to 

combine word-level features to classify emotions. Our model outperforms the state-of-the-

art methods and provides effective visualization of modality-specific features and fusion 

feature interpretation.

Acknowledgments

We would like to thank the anonymous reviewers for their valuable comments and feedback. We thank the useful 
suggestions from Kaixiang Huang. This research was funded by the National Institutes of Health under Award 
Number R01LM011834.

References

Ossama Abdel-Hamid Abdel-rahman Mohamed, Jiang Hui, Deng Li, Penn Gerald, and Yu Dong. 2014 
Convolutional neural networks for speech recognition. IEEE/ACM Transactions on audio, speech, 
and language processing, 22(10):1533–1545.

Bahdanau Dzmitry, Cho Kyunghyun, and Bengio Yoshua. 2014 Neural machine translation by jointly 
learning to align and translate. arXiv preprint arXiv:1409.0473.

Busso Carlos, Bulut Murtaza, Lee Chi-Chun, Kazemzadeh Abe, Mower Emily, Kim Samuel, Jean-
nette N Chang Sungbok Lee, and Narayanan Shrikanth S. 2008 Iemocap: Interactive emotional 
dyadic motion capture database. Language resources and evaluation, 42(4):335.

Chen Minghai, Wang Sen, Paul Pu Liang Tadas Baltrušaitis, Zadeh Amir, and Morency Louis-
Philippe. 2017 Multimodal sentiment analysis with word-level fusion and reinforcement learning In 
Proceedings of the 19th ACM International Conference on Multimodal Interaction, pages 163–171. 
ACM.

Degottex Gilles, Kane John, Drugman Thomas, Raitio Tuomo, and Scherer Stefan. 2014 Covarepa 
collaborative voice analysis repository for speech technologies In Acoustics, Speech and Signal 
Processing (ICASSP), 2014 IEEE International Conference on, pages 960–964. IEEE.

Eyben Florian, Martin Wöllmer Alex Graves, Schuller Björn, Douglas-Cowie Ellen, and Cowie Roddy. 
2010a On-line emotion recognition in a 3-d activation-valence-time continuum using acoustic and 
linguistic cues. Journal on Multimodal User Interfaces, 3(1–2):7–19.

Gu et al. Page 13

Proc Conf Assoc Comput Linguist Meet. Author manuscript; available in PMC 2019 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Eyben Florian, Wöllmer Martin, and Schuller Björn. 2010b Opensmile: the munich versatile and fast 
open-source audio feature extractor In Proceedings of the 18th ACM international conference on 
Multimedia, pages 1459–1462. ACM.

Forbes-Riley Kate and Litman Diane. 2004 Predicting emotion in spoken dialogue from multiple 
knowledge sources. In Proceedings of the Human Language Technology Conference of the North 
American Chapter of the Association for Computational Linguistics: HLT-NAACL 2004.

Gu Yue, Chen Shuhong, and Marsic Ivan. 2018 Deep multimodal learning for emotion recognition in 
spoken language. arXiv preprint arXiv:1802.08332.

Gu Yue, Li Xinyu, Chen Shuhong, Zhang Jianyu, and Marsic Ivan. 2017 Speech intention 
classification with multimodal deep learning In Canadian Conference on Artificial Intelligence, 
pages 260–271. Springer.

Huang Che-Wei and Narayanan Shrikanth S. 2016 Attention assisted discovery of sub-utterance 
structure in speech emotion recognition. In INTERSPEECH, pages 1387–1391.

Ioffe Sergey and Szegedy Christian. 2015 Batch normalization: Accelerating deep network training by 
reducing internal covariate shift. In International conference on machine learning, pages 448–456.

Jin Qin, Li Chengxin, Chen Shizhe, and Wu Huimin. 2015 Speech emotion recognition with acoustic 
and lexical features In Acoustics, Speech and Signal Processing (ICASSP), 2015 IEEE 
International Conference on, pages 4749–4753. IEEE.

Kim Yoon. 2014 Convolutional neural networks for sentence classification. arXiv preprint arXiv:
1408.5882.

Litman Diane J and Forbes-Riley Kate. 2004 Predicting student emotions in computer-human tutoring 
dialogues In Proceedings of the 42nd Annual Meeting on Association for Computational 
Linguistics, page 351 Association for Computational Linguistics.

Mikolov Tomas, Sutskever Ilya, Chen Kai, Corrado Greg S, and Dean Jeff. 2013 Distributed 
representations of words and phrases and their compositionality. In Advances in neural 
information processing systems, pages 3111–3119.

Mirsamadi Seyedmahdad, Barsoum Emad, and Zhang Cha. 2017 Automatic speech emotion 
recognition using recurrent neural networks with local attention In Acoustics, Speech and Signal 
Processing (ICASSP), 2017 IEEE International Conference on, pages 2227–2231. IEEE.

Morency Louis-Philippe, Mihalcea Rada, and Doshi Payal. 2011 Towards multimodal sentiment 
analysis: Harvesting opinions from the web In Proceedings of the 13th international conference on 
multi-modal interfaces, pages 169–176. ACM.

Neumann Michael and Vu Ngoc Thang. 2017 Attentive convolutional neural network based speech 
emotion recognition: A study on the impact of input features, signal length, and acted speech. 
arXiv preprint arXiv:1706.00612.

Poria Soujanya, Cambria Erik, Bajpai Rajiv, and Hussain Amir. 2017a A review of affective 
computing: From unimodal analysis to multimodal fusion. Information Fusion, 37:98–125.

Poria Soujanya, Cambria Erik, and Gelbukh Alexander. 2015 Deep convolutional neural network 
textual features and multiple kernel learning for utterance-level multimodal sentiment analysis. In 
Proceedings of the 2015 conference on empirical methods in natural language processing, pages 
2539–2544.

Poria Soujanya, Cambria Erik, Hazarika Devamanyu, Majumder Navonil, Zadeh Amir, and Morency 
Louis-Philippe. 2017b Context-dependent sentiment analysis in user-generated videos. In 
Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics 
(Volume 1: Long Papers), volume 1, pages 873–883.

Poria Soujanya, Chaturvedi Iti, Cambria Erik, and Hussain Amir. 2016 Convolutional mkl based 
multimodal emotion recognition and sentiment analysis In Data Mining (ICDM), 2016 IEEE 16th 
International Conference on, pages 439–448. IEEE.

Rosas Verönica Pérez, Mihalcea Rada, and Morency Louis-Philippe. 2013 Multimodal sentiment 
analysis of spanish online videos. IEEE Intelligent Systems, 28(3):38–45.

Rozgic Viktor, Ananthakrishnan Sankaranarayanan, Saleem Shirin, Kumar Rohit, and Prasad Rohit. 
2012 Ensemble of svm trees for multimodal emotion recognition In Signal & Information 
Processing Association Annual Summit and Conference (APSIPA ASC), 2012 Asia-Pacific, pages 
1–4. IEEE.

Gu et al. Page 14

Proc Conf Assoc Comput Linguist Meet. Author manuscript; available in PMC 2019 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Sakoe Hiroaki and Chiba Seibi. 1978 Dynamic programming algorithm optimization for spoken word 
recognition. IEEE transactions on acoustics, speech, and signal processing, 26(1):43–49.

Savran Arman, Cao Houwei, Shah Miraj, Nenkova Ani, and Verma Ragini. 2012 Combining video, 
audio and lexical indicators of affect in spontaneous conversation via particle filtering In 
Proceedings of the 14th ACM international conference on Multimodal interaction, pages 485–492. 
ACM.

Seppi Dino, Batliner Anton, Schuller Björn, Steidl Stefan, Vogt Thurid, Wagner Johannes, Devillers 
Laurence, Vidrascu Laurence, Amir Noam, and Aharonson Vered. 2008 Patterns, prototypes, 
performance: classifying emotional user states. In Ninth Annual Conference of the International 
Speech Communication Association.

Wang Haohan, Meghawat Aaksha, Morency Louis-Philippe, and Xing Eric P. 2016 Select-additive 
learning: Improving cross-individual generalization in multimodal sentiment analysis. arXiv 
preprint arXiv:1609.05244.

Wöllmer Martin, Weninger Felix, Knaup Tobias, Schuller Björn, Sun Congkai, Sagae Kenji, and 
Morency Louis-Philippe. 2013 Youtube movie reviews: Sentiment analysis in an audio-visual 
context. IEEE Intelligent Systems, 28(3):46–53.

Yang Zichao, Yang Diyi, Dyer Chris, He Xiaodong, Smola Alex, and Hovy Eduard. 2016 Hierarchical 
attention networks for document classification. In Proceedings of the 2016 Conference of the 
North American Chapter of the Association for Computational Linguistics: Human Language 
Technologies, pages 1480–1489.

Zadeh Amir, Chen Minghai, Poria Soujanya, Cambria Erik, and Morency Louis-Philippe. 2017 Tensor 
fusion network for multimodal sentiment analysis. arXiv preprint arXiv:1707.07250.

Zadeh Amir, Zellers Rowan, Pincus Eli, and Morency Louis-Philippe. 2016 Mosi: multimodal corpus 
of sentiment intensity and subjectivity analysis in online opinion videos. arXiv preprint arXiv:
1606.06259.

Zhang Shiqing, Zhang Shiliang, Huang Tiejun, Gao Wen, and Tian Qi. 2017 Learning affective 
features with a hybrid deep model for audio-visual emotion recognition. IEEE Transactions on 
Circuits and Systems for Video Technology.

Gu et al. Page 15

Proc Conf Assoc Comput Linguist Meet. Author manuscript; available in PMC 2019 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1: 
Overall Architecture
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Figure 2: 
Fusion strategies. t_hi: word-level textual bidirectional state. t_αi: word-level textual 

attention distribution. w_hi: word-level acoustic bidirectional state. w_αi: word-level 

acoustic attention distribution. s_αi: shared attention distribution. u_αi: fine-tuning attention 

distribution. Vi: shared word-level representation.
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Figure 3: 
Attention visualization.

Gu et al. Page 18

Proc Conf Assoc Comput Linguist Meet. Author manuscript; available in PMC 2019 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Gu et al. Page 19

Ta
b

le
 1

:

C
om

pa
ri

so
n 

of
 m

od
el

s.

Se
nt

im
en

t 
A

na
ly

si
s 

(M
O

SI
)

E
m

ot
io

n 
R

ec
og

ni
ti

on
 (

IE
M

O
C

A
P

)

A
pp

ro
ac

h
C

at
eg

or
y

W
A

(%
)

U
A

(%
)

W
ei

gh
te

d-
F

l
A

pp
ro

ac
h

C
at

eg
or

y
W

A
(%

)
U

A
(%

)
W

ei
gh

te
d-

F
l

B
L

-S
V

M
*

2-
cl

as
s

70
.4

70
.6

0.
66

8
SV

M
 T

re
es

4-
cl

as
s

67
.4

67
.4

-

L
ST

M
-S

V
M

*
2-

cl
as

s
72

.1
72

.1
0.

67
4

G
SV

-e
 V

ec
to

r
4-

cl
as

s
63

.2
62

.3
-

C
-M

K
L

1
2-

cl
as

s
73

.6
-

0.
75

2
C

-M
K

L
2

4-
cl

as
s

65
.5

65
.0

-

T
FN

2-
cl

as
s

75
.2

-
0.

76
0

H
-D

M
S

5-
cl

as
s

60
.4

60
.2

0.
59

4

L
ST

M
(A

)
2-

cl
as

s
73

.5
-

0.
70

3
U

L
-F

us
io

n*
4-

cl
as

s
66

.5
66

.8
0.

66
3

U
L

-F
us

io
n*

2-
cl

as
s

72
.5

72
.5

0.
73

0
D

L
-F

us
io

n*
4-

cl
as

s
65

.8
65

.7
0.

66
5

D
L

-F
us

io
n*

2-
cl

as
s

71
.8

71
.8

0.
72

0
O

ur
s-

H
F

4-
cl

as
s

70
.0

69
.7

0.
69

5

O
ur

s-
H

F
2-

cl
as

s
74

.1
74

.4
0.

74
4

O
ur

s-
V

F
4-

cl
as

s
71

.8
71

.8
0.

71
3

O
ur

s-
V

F
2-

cl
as

s
75

.3
75

.3
0.

75
5

O
ur

s-
FA

F
4-

cl
as

s
72

.7
72

.7
0.

72
6

O
ur

s-
FA

F
2-

cl
as

s
76

.4
76

.5
0.

76
8

O
ur

s-
FA

F
5-

cl
as

s
64

.6
63

.4
0.

64
4

W
A

 =
 w

ei
gh

te
d 

ac
cu

ra
cy

. U
A

 =
 u

nw
ei

gh
te

d 
ac

cu
ra

cy
.

* de
no

te
s 

th
at

 w
e 

du
pl

ic
at

ed
 th

e 
m

et
ho

d 
fr

om
 c

ite
d 

re
se

ar
ch

 w
ith

 th
e 

co
rr

es
po

nd
in

g 
da

ta
se

t i
n 

ou
r 

ex
pe

ri
m

en
t.

Proc Conf Assoc Comput Linguist Meet. Author manuscript; available in PMC 2019 July 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Gu et al. Page 20

Table 2:

Accuracy (%) and F1 score on text only(T), audio only (A), and multi-modality using FAF (T+A).

Modality
MOSI IEMOCAP

WA Fl WA Fl

T 75.0 0.748 61.8 0.620

A 60.2 0.604 62.5 0.614

T+A 76.4 0.768 72.7 0.726
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Table 3:

Accuracy (%) and F1 score for generalization testing.

Approach

MOSI
↓

YouTube

IEMOCAP
↓

EmotiW

WA Fl WA Fl

Ours-HF 62.9 0.627 59.3 0.584

Ours-VF 64.7 0.643 60.8 0.591

Ours-FAF 66.2 0.665 61.4 0.608
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