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Abstract

Fundamental to regulatory guidelines is to identify chemicals that are implicated with adverse 

human health effects and inform public health risk assessors about “acceptable ranges” of such 

environmental exposures (e.g., from consumer products and pesticides). The process is made more 

difficult when accounting for complex human exposures to multiple environmental chemicals. 

Herein we propose a new class of nonlinear statistical models for human data that incorporate and 

evaluate regulatory guideline values into analyses of health effects of exposure to chemical 

mixtures using so-called ‘desirability functions’ (DFs). The DFs are incorporated into nonlinear 

regression models to allow for the simultaneous estimation of points of departure for risk 

assessment of combinations of individual substances that are parts of chemical mixtures detected 

in humans. These are, in contrast to published so-called biomonitoring equivalent (BE) values and 

human biomonitoring (HBM) values that link regulatory guideline values from in vivo studies of 

single chemicals to internal concentrations monitored in humans. We illustrate the strategy through 

the analysis of prenatal concentrations of mixtures of 11 chemicals with suspected endocrine 

disrupting properties and two health effects: birth weight and language delay at 2.5 years. The 

strategy allows for the creation of a Mixture Desirability Function i.e., MDF, which is a uni-

dimensional construct of the set of single chemical DFs; thus, it focuses the resulting inference to 

a single dimension for a more powerful one degree-of-freedom test of significance. Based on the 

application of this new method we conclude that the guideline values need to be lower than those 

for single chemicals when the chemicals are observed in combination to achieve a similar level of 

protection as was aimed for the individual chemicals. The proposed modeling may thus suggest 

data-driven uncertainty factors for single chemical risk assessment that takes environmental 

mixtures into account.
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1. Introduction

Human biomonitoring data of mixtures of environmental toxicants, particularly during 

pregnancy, provide important evidence of exposure to chemicals with purported adverse 

health outcomes (e.g., endocrine disrupting chemicals; EDCs). However, simply identifying 

critical mixtures and chemicals that are “bad actors”, through epidemiology data, does not 

adequately inform public health risk assessors about “acceptable ranges” of environmental 

exposures – which is fundamental to (non cancer) regulatory guidelines and mitigation 

strategies.

Guideline values, such as the tolerable or acceptable daily intake (TDI/ADI) or reference 

(RfD) values are important tools for risk assessment of chemicals in the environment, 

including e.g., contaminants and pesticide residues. These values are generally derived from 

single chemical experimental toxicity studies and describe a “safe” exposure level of a single 

chemical to which a person can be exposed each day for a long time (usually lifetime) 

without suffering harmful effects. It is determined by applying assessment factors (to 

account for the uncertainty in the data) to point of departures (PODs) such as the highest 

dose in human or animal studies which has been demonstrated not to cause toxicity 

(NOAEL) and the lower confidence interval of a Benchmark dose (BMDL) (EPA, 2007). 

When animal based PODs are used, assessment factors are generally applied to account for 

(1) differences between the experimental setup and the actual human exposure, e.g. route-to-

route extrapolation, subchronic-to-chronic extrapolation, (2) interspecies differences, (3) 

intra-species differences/ variability within the human population, i.e. differences between 

the typical/average human and sensitive humans, and (4) uncertainty in the data, e.g., poor 

quality data and missing toxicity studies.

Progress in analytical chemistry and toxicokinetic modeling has created possibilities of 

monitoring toxicants in biological media (i.e., blood, urine, hair, nails, body tissues, fluids 

and exhaled breath, or the amount of metabolites in tissues and fluids). A first official 

reference to guidance values for human biomonitoring (HBM) values was made in 1974, and 

a first set of three so called Biological Limit Values (BLV) (lead, toluene and 

trichloroethylene), was introduced for occupational settings with the MAK list in 1981 (Bolt 

and Thier, 2006). The first American Biological Exposure Indices (BEI) report was 

published by ACGIH in 1984 (ACGIH, 1984).

For environmental exposure to the general public, two main no-menclatures have been 

concurrently developed but both refer to the guidance values translated to equivalent human 

concentration levels in blood, urine, or other biological matrices using complex 

pharmacokinetic modeling. Scientists in the United States have derived so-called 

biomonitoring equivalent (BE) values (Hays et al., 2007; Aylward et al., 2013). BE values 

are concentrations of a chemical or its metabolites in a biological medium that is consistent 

with an existing health-based exposure guideline (Krishnan et al., 2010). Concurrently, the 
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German Human Biomonitoring Commission defined two HBM-values: the HBM-I value is 

defined as the concentration of a single substance in humans below which no adverse health 

effect should be expected (i.e., identifying an “acceptable exposure range”); the HBM-II 

value is defined as the concentration of a substance in human biological material at which 

(and above) adverse effects are possible, indicating an acute need for reduction of exposure 

(Angerer et al., 2011; Apel et al., 2016). The evaluation of HBM values is a part of the 

recently funded HBM4EU, a joint project of 28 countries, the European Environment 

Agency and the European Commission (https://www.hbm4eu.eu/the-project/).

We note the equivalence of HBM-I and BE values. Both values are generally based on single 

chemical experimental data from animal studies (i.e., dose response experiments). However, 

they do not account for exposure to mixtures of similarly acting environmental chemicals. 

This is a major shortcoming since all available data demonstrate that humans are not 

exposed to single compounds, but to complex mixtures of numerous molecules (e.g., 

Crinnion, 2010).

Herein, we propose methods to incorporate this regulatory concept of PODs in human data, 

somewhat analogous to (unadjusted) BE values and HBM values, into the analysis of 

mixture related health effects using epidemiological data. Specifically, we propose to 

estimate guideline values directly in human data with uncertainty factor adjustments made 

post hoc. To our knowledge such estimates of guideline values from human studies in 

mixtures has not been previously considered.

We incorporate the concept of “acceptable concentration ranges” of exposure below 

identified regulatory guideline values (i.e., HBM and BE values are uncertainty adjusted 

PODs; for convenience, subsequently referred to as HBM values) in regression models using 

desirability functions (DF) (Fig. 1). DFs are widely used in industry for optimizing 

processes with multiple responses, where the quality of a product or process with one or 

more characteristic outside of some “desired” limits are unacceptable (Harrington Jr., 1965; 

Derringer, 1994; Derringer and Suich, 1980; Shih et al., 2003; Coffey et al., 2007; Costa et 

al., 2011). However, DFs have not been applied to mixtures of environmental exposures in a 

regulatory context.

Our objective is to demonstrate simultaneous estimation of “points of departure” values in a 

new class of models, i.e., “Acceptable Concentration Range” (ACR) models, using maternal 

concentrations of EDCs from biomonitoring in a pregnancy cohort linked to health effects in 

the children, i.e., birth weight and language delay at 2.5 years of age. This is a first step in 

the development of a new class of statistical models that incorporates regulatory guidance 

concepts into regression models of epidemiology data.

2. Methods

2.1. Pregnancy cohort study

The Swedish Environmental Longitudinal, Mother and child, Asthma and allergy (SELMA) 

is a pregnancy cohort study designed to investigate prenatal exposure to environmental 

chemicals and health outcomes related to growth, developmental and chronic diseases in 
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children. SELMA recruited pregnant women in the county of Värmland, Sweden, between 

September 2007 and March 2010. Women who could read Swedish and were not planning to 

move out of the county were recruited at their first antenatal care visit; 8394 pregnant 

women were identified, 6658 were eligible and 2582 (39%) agreed to participate. The 

women were enrolled at median week 10 of pregnancy (range week 3–27, where 96% were 

recruited before week 13 of pregnancy). Detailed recruitment selection criteria and sample 

collection procedures have been published previously (Bornehag et al., 2012). The Ethics 

Committee in Uppsala, Sweden approved the SELMA protocol and all participants signed 

informed consents prior to the start of data collection.

2.2. Outcome variables

Language development is routinely assessed in Sweden when children are 30 months of age. 

This validated assessment consists of a nurse evaluation and a parental questionnaire on 

language use. If warranted, the nurse discusses possible referral (to a speech therapist, 

audiologist, psychologist or pediatrician) with the parent (Mattsson et al., 2001). The 

questionnaire asks about the number of words the child uses; responses are categorized as < 

25, 25–50 and > 50 words. Our primary study outcome is a parental report of the use of 50 

words or fewer (yes or no), which we denote here as Language Delay (LD). Data on LD are 

available from 1113 children. However, with complete case analyses using covariates, the 

sample size reduced to 840.

Data on birth weight (and gestational age at birth), from the Swedish birth register, are 

available for 1938 children. However, with complete case analyses using covariates, the 

sample size reduced to 1323.

2.3. Selection of covariates for analyses

Models for LD were adjusted for child sex and gestational age at birth, maternal education, 

early pregnancy weight, smoking status, and urinary creatinine to adjust for urinary dilution. 

Birth weight models also included parity, maternal age and fish intake in the family.

2.4. Exposures

Exposure data from the first trimester of pregnancy (at enrollment) are available for 41 

compounds in urine (metabolites) and serum from over 2300 mothers in the SELMA study, 

with concentrations above levels of quantification (LOQ) in at least 50% of the samples. Of 

these 41 compounds, we identified 11 with established HBM values, derived by the HBM 

Commission of the German Environmental Agency (Commission, 2014) or BE values from 

the Centers for Disease Control and Prevention (Aylward et al., 2013) (Table 1). These HBM 

values are defined as the concentration or range of concentrations of a chemical or its 

metabolites in a biological matrix that is consistent with an existing non-cancer health–based 

exposure guidance value such as a RfD or TDI (Hays et al., 2008a, 2008b; LaKind et al., 

2008).

First morning void urine samples were obtained from 2325 pregnant women (out of the 2582 

participating women) at their first visit to the antenatal care center, i.e., at enrollment to the 

study (Bornehag et al., 2012). Urine samples were collected in supplied glass containers at 
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home and transferred into polypropylene tubes, without any other assisting equipment, for 

easy transportation. Samples were stored at −20 °C before being processed at the laboratory 

at Occupational and Environmental Medicine (OEM), Lund University, Sweden, according 

to methods/procedures previously described in (Bornehag et al., 2015). Metabolites from 

phthalates and alkyl phenols were analyzed according to the method presented by 

Gyllenhammar et al. (2017). Aliquots of 0.2 mL of urine were treated with glucoronidase 

and labeled internal standards (IS) of all analyzed compounds were added and the samples 

were analyzed using liquid chromatography triple quadrupole linear ion trap mass 

spectrometer (LC/MS/MS). The LOD was determined from chemical blank samples. 

Quality control (QC) samples and chemical blank samples were analyzed within each 

sampling batch (96 samples including standards, QCs and lab blanks). The creatinine 

concentrations were analyzed according to an enzymatic method described by Mazzachi et 

al. (2000). Urinary phthalates including 10 metabolites were analyzed including; 

Mono‑ethyl phthalate (MEP), metabolite of DEP; Mono‑n‑butyl phthalate (MnBP), 

metabolite of DBP; Mono‑benzyl phthalate (MBzP), metbolite of BBzP; 

Mono‑(2‑ethylhexyl) phthalate (MEHP), Mono‑(2‑ethyl‑5‑hydroxylhexyl) phthalate 

(MEHHP), Mono‑(2‑ethyl‑5‑oxohexyl) phthalate (MEOHP), Mono‑(2‑ethyl‑5‑car-

boxypentyl) phthalate (MECPP), metabolites of DEHP; Mono‑hydroxy‑iso‑nonyl phthalate 

(MHiNP), Mono‑, oxo‑iso-nonyl phthalate (MOiNP), Mono‑carboxy‑iso‑octyl phthalate 

(MCiOP), metabolites of DiNP; and urinary alkyl phenols including 2 compounds; 

Bisphenol A (BPA) and Triclosan (TCS).

Serum collected at enrollment was analyzed for perfluorinated alkyl acids (PFAAs) and 

cotinine using LC/MS/MS at OEM according to Lindh et al. (2012). Briefly, aliquots of 0.1 

mL serum were added with IS for all analyzed compounds and the proteins were 

precipitated by acetonitrile and vigorously shaking for 30 min. The samples were then 

centrifuged and the supernatant analyzed. The analyses of PFOA and PFOS are part of the 

Round Robin inter-comparison program (Professor Dr. Med. Hans Drexler, Institute and 

Out-patient Clinic for Occupational-, Social- and Environmental Medicine, University of 

Erlangen-Nuremberg, Germany) with results within the tolerance limits. Analyses were 

made of 8 compounds including perfluoroheptanoic acid (PFHpA), perfluorooctanoic acid 

(PFOA), perfluorononanoic acid (PFNA), perfluorodecanoic acid (PFDA), 

perfluoroundecanoic acid (PFUnDA), perfluorododecanoic acid (PFDoDA), 

perfluorohexane sulfonate (PFHxS) and perfluorooctane sulfonate (PFOS). If cotinine levels 

were below 0.2 ng/mL, subjects were categorized as non-smoker; if cotinine levels were > 

15 ng/mL, subjects were considered as active smokers; and while in between, subjects were 

considered as passive smokers (Jefferis et al., 2010).

Finally, PCB and DDT/DDE were also analyzed in serum. In the sample preparation, 13C-

labeled internal standards of each compound were added to samples. Dichloromethane-

hexane was used for extraction. Extracts were cleaned with multilayer silica columns. The 

eluate was concentrated for GC–MS/MS analysis (Agilent 7010 GC–MS/MS system, 

Wilmington, DE, USA) (Koponen et al., 2013). In each batch of samples (total n = 76) two 

blanks, control serum sample (NIST SRM 1958) and an in-house low concentration control 

samples (1 to 9 dilution of SRM 1958 with new born calf serum) were included. Coefficients 
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of variation (CV) were below 5% for SRM 1958 and diluted SRM 1958, with the exception 

of p,p′-DDT in the diluted samples (RSD % = 12%).

The BE value for DDT + DDE is 5 μg/g serum lipid (Aylward et al., 2013). Lipid 

concentrations are not available in SELMA women. The average total lipid (TL) 

concentration in pregnant women (N = 186) from the 2005–06 cycle of NHANES (NCHS 

and CDC, 2005) was calculated using TL = (2.27 ∗ Total Cholesterol) + Triglycerides 

+ 62.3. With average Total Cholesterol = 229 mg/dL and average Triglycerides = 190 

mg/dL, the average TL = 773 mg/dL. The adjusted BE is (5) (773)/100 μg/L = 38.65 μg/L 

serum.

2.5. Statistical considerations

Desirability Functions translate any variable of interest to a “desirability scale” between 0 

(completely undesirable) and 1 (most desirable) (Fig. 1). We propose DFs where each 

chemical concentration Xm is mapped to a desirability (unit) scale using a chemical-specific 

DF. A desirability value for chemical m, dm, takes value dm = 1 when that exposure is in the 

“acceptable range” (i.e., similar to the concept of exposure below the HBM values). Less 

desirable values, those above the acceptable range, receive values 0 < dm < 1 with dm = 0 

being completely undesirable. Following the DF literature (e.g., (Harrington Jr., 1965)), 

exposure-specific DFs are combined using the geometric mean, which, in this setting, gives 

the mixture DF (MDF), denoted by D, that characterizes overall desirability. For a mixture, 

D = 1 if all components of a mixture are within their respective acceptable range, while 0 < 

D < 1 if at least one component of the mixture is outside the acceptable range. As noted by 

Coffey et al. (2007), the geometric mean is used in the DF literature to create the MDF 

because the product in the geometric mean is more sensitive than the sum in the arithmetic 

mean to values below 1.

Various models for DFs have been used in the literature; e.g., smooth functions (Shih et al., 

2003; Gennings et al., 2010); and connected line segments (Harrington Jr., 1965; Coffey et 

al., 2007). Coffey et al. (2007) noted the choice of the functional form of the DFs did not 

have an appreciable impact on the results of their analysis.

We use non-smooth “join-point” DFs with join-points δm, m = 1, …, M, that parameterize 

the boundary of the acceptable range and slope parameters γm, m = 1, M, that characterize 

potency for exposures above the acceptable ranges. Specifically, we use the “low is better” 

type of DF functions (e.g., (Coffey et al., 2007)) corresponding to HBM values where dm = 1 

for Xm < δm with decreasing desirability for Xm > δm (Fig. 1):

dm
low =

1 Xm < δm
low

exp −γm
low Xm − δm

low , Xm ≥ δm
low

This non-smooth “join-point” function is of interest as the join point supports the concept of 

regulatory guidance values that define “acceptable concentration ranges”, i.e., below δm 

(These are the proposed unadjusted HBM values without an uncertainty factor adjustment). 

The γm parameter determines the steepness of the function above the join point; i.e., the 
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higher the value the faster the function approaches zero, the asymptote of the function. 

These slope parameters are associated with the potency of the compound. For convenience 

in interpretation, we transform all concentrations (Xm) to centered and scaled log-

concentrations (i.e., the difference in log transformed concentrations and the sample mean, 

divided by the sample standard deviation (SD) so that a unit change in concentration is 1 SD 

for each chemical). Finally, we note these are empirical models and are not purported to 

have biological interpretations.

2.5.1. Estimation—For a single analyte the unknown parameters of the DF are estimated 

in a generalized nonlinear model (Seber and Wild, 1989); i.e.,

g μi =
β0 + β1(1) + Zi

Tθ Xi < δlow

β0 + β1 exp −γlow Xi − δlow + Zi
Tθ Xi ≥ δlow

(1)

where Xi is the centered and scaled concentration of the analyte and Zi is a vector of 

covariates for the ith subject with a link function g(.) relating the mean to the regression 

model (e.g., a logit link for binary data such as language delay). For the identity link (i.e., 

g(μ) = μ), the criterion for estimation is to minimize sum of squared errors (SSE); for the 

logit link, the criterion is to maximize the binomial likelihood. In either case, nonlinear 

iterative algorithms are used to determine parameter estimates where the “current” vector of 

parameter estimates is changed a step at a time using a linear approximation, a Taylor series 

approximation, or modification of these (Seber and Wild, 1989). In the piecewise ACR 

model, these step changes may result in parameter estimates of the join point that fall 

outside the observed data range.

When the join point is estimated outside the data range, the model is over-parameterized and 

the covariance matrix is not positive definite. For this reason we construct percentile-based 

asymmetric confidence bands on the join points (δm’s) using B = 100 bootstrap samples 

(i.e., 100 random samples with replacement each of size N). However, join point estimates 

that exceed the data range are somewhat arbitrary as they do not change the objective 

function for estimation (i.e., SSE or log likelihood function); e.g., a join point 1 unit above 

max(X) has the same objective function as a join point 10,000 units above max(x). Thus, 

interpretation of the upper limit of the percentile-based confidence interval should be made 

relative to the observed data range. Finally, for comparison to the exponential model in Eq. 

(1), we have considered a piecewise model using a logistic nonlinear function in the 

supplement (Table S3).

For a mixture of M analytes, the analyte-specific join points (δm’s) and potency parameters 

(γm’s) are jointly estimated from the generalized nonlinear model using the mixture 

desirability function (MDF):

g μi = β0 + β1 d1 × d2 × … × dM

1
M + Zi

Tγ = β0 + β1MDF + Zi
Tγ (2)
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This is a novel estimation of a metric in environmental epidemiology where only 

concentrations above estimated guidance values contribute to the estimated mixture effect. A 

simplified case of the “low is better” DF is where the potency weights are fixed at γ = 1 and 

only the join points are estimated, which may be useful when the problem is ill-conditioned 

and or to get good starting values for the join point(s).

To accommodate complex correlation patterns among the environmental chemicals, we 

include an ensemble step. That is, similar to weighted quantile sum (WQS) regression 

(Carrico et al., 2015), we estimate the unknown parameters across a large number (generally, 

B = 1000) of bootstrap samples; i.e., samples of the observations taken with replacement for 

the specified total sample size. The average estimates for the join-point and potency 

parameters across the bootstrap samples comprise the final estimates for the analysis with 

bootstrap confidence intervals for the join points. Tests of significance of β1 in Eqs. (1) and 

(2) are conducted using a generalized linear model (GLM), adjusted for covariates.

2.6. Demonstration of the HBM models using simulation studies

We simulated data using a threshold response surface model to relate X and Y, thereby 

simulating from a model with an acceptable concentration. Following Schwartz et al. (1995), 

consider the generalized linear threshold model,

g(μ) =
β0, xTθ ≤ δ

β0 + xTθ − δ, xTθ > δ

where 𝜃 is an M-vector containing regression parameters that define the threshold contour 

(i.e., where xT𝜃 = δ and g(μ) = β0). We used this model in a simulation study of DEHP and 

PFOA as estimated from SELMA data. In brief, we used observed standardized 

concentrations of DEHP and PFOA from the SELMA study. We hypothesized an association 

with birth weight using the threshold response surface model with an identity link (g(μ) = μ), 

where higher concentrations are associated with a lower mean. These data were used to 

demonstrate the proposed strategy in the next section.

3. Results

To set the concept of incorporating guideline values into the analysis of human data, we 

begin by simulating data for two environmental chemicals based on birth weight in the 

SELMA cohort. We use prenatal DEHP metabolite levels in urine and PFOA levels in 

prenatal serum, using standardized concentrations (Fig. 2A), where the simulated region of 

no effect can be seen for these two compounds. We assume an underlying response surface 

of standardized birth weight with contours of constant response below the mean of concern 

(i.e., contours of constant response are depicted in Fig. 2B indicating lower birth weight as 

the concentrations of either chemical increases), where the ‘true region of no effect’ is 

identified by observations marked as blue in Fig. 2A. We simultaneously estimated the delta 

values in the DFs for (simulated) DEHP and PFOA in the MDF embedded in the regression 

model (Eq. (2)) as depicted in Fig. 2C and D. The model allows for different potencies for 

the chemicals where the slope above the “HBM value” decreases in “desirability” for PFOA 
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at a faster rate than for DEHP. The resulting histogram for the MDF indicates that roughly 

65% of the subjects had concentrations in the acceptable region and 35% had concentrations 

of at least one of the two chemicals above the join point (Fig. 2E). Estimation of the MDF 

results in the construction of an “acceptable region” as a square in the lower left quadrant 

(generalized to a hyper-cube in higher dimensions) based on the corresponding single DFs 

(Fig. 2F). Thus, the subjects denoted by blue plus signs in the lower left quadrant are 

correctly identified as in an acceptable region where the green squares denote subjects 

incorrectly identified in this quadrant; i.e., the risk of the health effect is underestimated for 

the subjects denoted by green in the estimated acceptable region. On the other hand, the 

subjects denoted by green points in the other three quadrants are correctly identified as in a 

region of concern.

3.1. Analysis of prenatal exposures in SELMA

Of the 41 compounds/metabolites measured in urine and serum during 1st trimester in the 

SELMA cohort, we identified published HBM values for 11 chemicals/classes (Table 1) 

including phthalate metabolites, phenols, PFOS and PFOA, sum of three PCBs and DDT/

DDE. The published HBM values for these compounds/metabolites are generally higher 

than high exposures determined by the 95th percentile measured in SELMA, i.e., has an 

adequate margin of safety. The notable exceptions are for the PFOS and PFOA where the 

HBM values (2 and 5 ng/mL blood plasma, respectively) are below the 95th percentile in the 

SELMA pregnant women, indicating that adverse health effects cannot be excluded (Table 

1).

We evaluated the potential association between prenatal exposure data from the SELMA 

pregnancy cohort and health outcomes (birth weight and language delay at 30 months of 

age) adjusted for covariates. Data on birth weight and covariates were available for 1323 

children. For language delay data were available for 840 children. We estimated single 

analyte HBM values both separately following Eq. (1) and simultaneously in a mixture 

model following Eq. (2).

3.1.1. Analysis of birth weight—The single analyte estimates of PODs (i.e., the join 

points in Eq. (1)) were below the published values for 9 of 11 analytes, PFOA and PFOS 

were slightly higher (Table 1). This means that the measured exposures for 9 of the 11 

chemicals were considered “safe” according to the current published HBM values since their 

concentrations were below the corresponding published HBM value. Nevertheless, there is 

an observation in the human data that concentrations below the published values are 

associated with changes in birth weight (i.e., less desirable prenatal concentrations are 

associated with lower birth weight). Further, the upper bootstrap 90% confidence limit on 

the single chemical PODs were within the observed concentration ranges and below the 

published guidelines with the exception of DEHP, PFOA and PFOS; thus, even accounting 

for uncertainty in the estimates, the upper limits are generally below published values. 

However, only four of the beta coefficients associated with the DF for the single chemical 

analyses were significant (PFOA, PFOS, PCBs and DDT/DDE). So even though there is an 

indication of an association with lower birth weight, seven single chemical analyses did not 

reach statistical significance. When estimated simultaneously, 10 of the 11 POD estimates 
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from the MDF were within the bootstrap 90% confidence interval on the single chemical 

POD values; all 11 of the 90% confidence intervals from the MDF overlapped those of the 

single analyte analyses. As expected, single chemical evaluations are conducted in the 

presence of other chemicals and may therefore be somewhat similar to the mixture model.

Using the mixture model, roughly 35% of the SELMA women had all 11 of these prenatal 

concentrations in the acceptable range (i.e., D = 1) as indicated by the MDF (Fig. 3A). 

Among the remaining 65% of the subjects with D < 1 (i.e., less desirable concentrations of 

one or more components in the mixture), there was a significant association between higher 

desirability (as measured by MDF) and increased birth weight (Table 2, p < 0.001; Fig. 3C). 

The beta coefficient 0f 0.97 associated with MDF (Table 2) indicates that, for example, a 0.1 

increase in the MDF (e.g., from 0.8 to 0.9) is associated with a 0.097 increase in 

standardized birth weight, i.e., a 9.7% of the SD of birth weight increase. Thus, the MDF 

decreased by 0.1 units (corresponding to higher, less desirable concentrations) is associated 

with a 9.7% SD decrease in birth weight.

For comparison, when the published BE values, or when not available, HBM values, were 

set as join points in a MDF (i.e., where the join points were fixed by published values in 

Table 1 and the slope parameters were estimated, compared to above where both the join 

points and slope parameters were estimated), 43% of the SELMA women were estimated to 

have prenatal concentrations completely in the acceptable range. The significant association 

with birth weight (Table S1) was dominated by PFOA and to a lesser degree, PFOS. Thus, 

the estimated PODs indicated there is additional signal in more analytes than just the two 

perfluorinated compounds.

3.1.2. Analysis of language delay—The upper limits of the 90% asymmetric 

confidence intervals were within the observed data range for 9 of 11 of the analytes, with 

PFOS and the PCBs the exception. We omit the PCBs from comparison of the upper limit 

(1.6) to the published value (1.75) since the estimates above the data range are not supported 

by a change in the objective function. The single analyte estimates of the join points were 

below the published values for 9 of 11 analytes (Table 1) with PFOA and PFOS above the 

published values. However, none of the beta coefficients associated with the DF for the 

single chemical analyses were significant. When estimated simultaneously, all 11 analytes 

had estimated POD values within the 90% confidence intervals of the single analyte models 

and all 11 of the 90% confidence intervals for the single chemicals and the MDF overlapped. 

As expected the single chemical and mixture estimates are similar; even single chemical 

analyses are implicitly adjusted for other compounds. Using the mixture model, roughly 

45% of the SELMA women had all 11 of these prenatal concentrations in the acceptable 

range (i.e., D = 1) as indicated by the MDF (Fig. 3B). Among the remaining 55% of the 

subjects with D < 1 (i.e., less desirable concentrations of one or more components in the 

mixture), there was a significant association between higher desirability (as measured by 

MDF) and decreased risk of language delay (Table 3, p = 0.013; Fig. 3D).

In contrast, when the published HBM values were set as join points in a MDF, 99% of the 

SELMA women were estimated to have prenatal concentrations completely in the acceptable 

range and there was no significant association with language delay (Table S2; p = 0.172). 
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Thus, the HBM model parameterized to include the risk assessment concept of acceptable 

range of concentrations provides an indication that the published HBM values are too high 

to provide adequate protection for neurodevelopmental effects as measured by language 

delay from prenatal exposures to mixtures in the SELMA pregnancy cohort.

3.2. Comparison between the piecewise exponential model and the piecewise logistic 
model

We compared the estimates of the join points using the piecewise exponential ACR model in 

Eq. (1) to the estimates using a piecewise logistic ACR model (Supplementary Results, 

Table S3); i.e.,

g(μ; γ > 0) =
β0 + β1(1) + Zi

Tθ, X < δ

β0 + β1
2

1 + exp γ(X − δ) + Zi
Tθ, X ≥ δ

Comparisons were made using the metric of absolute difference in estimates relative to the 

average (ADA): i.e.,
δ1 − δ2

δ1 + δ2 /2
 where δ1 is the estimate from the piecewise exponential ACR 

model and δ2 is the estimate from the piecewise logistic ACR model. The join point 

estimates are closer in the analysis of birth weight compared to the binary outcome of 

language delay, using the average ADA. In the analysis of birth weight, in single chemical 

models the average ADA was 9% (SD = 0.03); in the MDF, the average ADA was 3% (SD = 

0.02). In the analysis of LD, in single chemical models the average ADA was 22% (SD = 

0.17); in the MDF, the average ADA was 25% (SD = 0.14). This comparison of two 

functional forms for the DF in Eq. (1) is the beginning of a more extensive characterization 

of the ACR model proposed herein.

4. Discussion

We have proposed a new class of regression models for human based epidemiology data 

where the concept of regulatory guidelines is embedded within the model using desirability 

functions. The resulting models are nonlinear models with both a potency parameter and 

join point (i.e., POD, an unadjusted HBM value) parameter estimated per analyte. We 

further propose a bootstrap step where the final POD estimates are given by the average 

across the bootstrap sample estimates; bootstrap confidence intervals are produced for each 

single chemical POD parameter and within the mixture. These are new models; we illustrate 

their use using chemical mixtures from the SELMA pregnancy cohort related to risk of low 

birth weight and language delay. Our objective is to introduce the concept of embedding 

regulatory guideline parameters in regression models of human data. We leave as future 

research further lines of inquiry regarding more complete characterization of the models.

The estimate of δm is an empirical estimate of a POD for the mth compound (e.g., (Apel et 

al., 2016)). The impact of mapping concentrations of environmental chemicals to a DF is 

that all concentrations below the estimated POD are collapsed to a single value (i.e., dm = 1), 

similar to a background control group. This incorporates the regulatory concept that these 
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concentrations are all “acceptable” while higher concentrations are less desirable. 

Importantly, we do not interpret the analyses as a biological indication of no effect below the 

join point as in a threshold model; instead, it is a regulatory concept imposed on the data. 

The advantage of the mapping is that the geometric mean of the individual d values is 

available for construction of an index for evaluating the mixture effect.

We have presented percentile-based asymmetric confidence intervals on the join points (δm) 

based on bootstrap sampling. When the join point is estimated above the observed data (i.e., 

δm > max(Xm)), the model is over-parameterized with no change in the objective function 

for an estimate of, say, 1 unit or 10,000 units above max(Xm). Thus, the interpretation of the 

upper limit of the confidence interval should be in comparison to the maximum observed 

concentration. The upper 95th percentile of the join point estimates was within the observed 

data range in all cases (Table 1) except for PFOS and the PCBs in the analysis of LD. We 

can claim the concentrations of PFOS exceeds the BE value since even the average bootstrap 

estimate exceeds the guideline; however, the upper confidence limit on the PCBs cannot be 

compared to the BE value as it is (arbitrarily) estimated above the observed data range.

It is important to note the distinction between HBM values derived from in vivo studies with 

pharmacokinetic models linking the PODs from animals to humans, and those estimated 

POD values from epidemiology data, as proposed herein. Even when estimating single 

joinpoints in Eq. (1) using human data, the true exposure is to multiple chemicals not 

specified in the model. It is reasonable to expect that the estimated PODs would be lower 

than those from experimental animal studies that truly represent a single exposure. In fact, 

these estimated values of the join points might provide additional information for selecting 

uncertainty factors (UFs) for published HBM values in order to address the lack of 

information related to combined exposure. Comparing the published values in Table 1 with 

estimated values (Single chemical analyses and Mixture analysis), the “mixtures UF” for the 

phthalates (except for DEHP) and phenols could be in the order of 10 to 100 (e.g., the 

published BE value for MEP is 18,000 μg/L compared to the estimated join points for single 

chemical and mixture models ranging between 150 and 325 μg/L, ratios between 55 and 

120). For PFOS and PFOA, however, the published HBM values are quite similar to the 

PODs estimated in the analysis of birth weight and language delay, and hence the mixture 

UF would be close to 1. Interestingly, the HBM values for PFOA and PFOS are based on 

human epidemiological studies (translation of commission report into English: (HBM, 

2016)), whereas, HBM-values for the other chemicals are based on single chemical 

experimental dose-response studies performed with laboratory animals.

The proposed ACR models estimate PODs using important health effects as an outcome 

variable (here, birth weight for growth and language delay for neurodevelopment). A 

continuing line of inquiry is how to select estimated PODs across multiple health effects. 

There is a growing literature that humans are at risk for comorbid conditions, so that 

estimated PODs may be similar (e.g., within an order of magnitude) across a set of analyses. 

For example, neurodevelopment may impact impulsive behavior, which may lead to over-

eating and to obesity (Nazar et al., 2016). The analysis of impulsive behavior may provide 

useful HBM values also to measures of obesity.
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As the number of analytes increases in the analysis of MDF, we anticipate potential ill-

conditioning concerns from complex correlation patterns in exposure variables. Good 

starting values from single analyte analyses may be found by conditioning on join points to 

estimate weight parameters, and using/comparing multiple nonlinear iterative algorithms. 

We also set d = 1 for components when the single analyte estimate of the join point exceeds 

the observed data and remove the corresponding DF parameters from the mixture model.

4.1. Limitations

As with all analyses, the proposed class of models has limitations. As depicted by the two-

dimensional description of the acceptable region (Fig. 2), there are errors in identifying 

subjects as falling into, or out of, the acceptable region due to the shape of the region being a 

square (or hyper-cube in multiple dimensions). If we allowed the region to be a different 

shape, the error rates would be lower, but the complexity of the estimation would increase 

due to the interactions among the components. Second, we use the average estimate of the 

POD values across B bootstrap samples. Perhaps another summary statistic could be used, 

e.g., the 75th percentile. We are currently conducting simulation studies to evaluate these 

decisions. We have considered 11 jointly detected chemicals in the current analyses. We 

leave as future work the effect of considering a dozen or more components simultaneously 

on the quality of the estimated parameters. The SELMA cohort has dozens of other 

chemicals measured in the same samples, which were not included in this analysis. Herein, 

we limited our focus to those chemicals where BE or HBM values have been published, 

which permitted a comparison of empirical estimates from our model to the published 

values. Finally, these data have not been previously published with more complete 

discussion around their interpretation (e.g., the potential for reverse causation, the use of 

using exposure estimates in a single sample with compounds with short half lives, the 

potential from confounding from the other chemicals).

4.2. Summary and conclusions

We introduce a new class of models, called ACR models, that include the regulatory concept 

for non-cancer endpoints where there is an acceptable region of exposure to environmental 

chemicals. The proposed nonlinear models are parameterized to estimate the point of 

departure in terms of biomonitoring data for each chemical from a mixture of chemicals. We 

illustrate the strategy using prenatal concentrations from 11 environmental chemicals and 

two health outcomes: birth weight and language delay. We determine that the published 

HBM values are in most cases orders of magnitude higher than those estimated using human 

data.

The new proposed method complements current risk assessment methods by estimating 

guideline values using human epidemiology biomonitoring data where multiple chemical 

concentrations are measured simultaneously and represents human relevant exposures, i.e., 

complex mixtures. This is in contrast to using surrogate experimental models of single 

chemicals to estimate points of departure in risk assessment. However, causation is proven in 

experimental assays and is more difficult to claim in human studies. Integration of 

information from both models provides further insight into health effects related to 

environmental exposures. When applying this new class of models, the results suggest that 
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chemical-by-chemical approaches underestimate risk by a factor that range from 1 to 100 for 

different chemicals.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Linking Desirability Functions (“low is better” shape) to regulatory guidance values.
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Fig. 2. 
Simulated dose-response data for DEHP and PFOA (standardized log concentrations; μg/L) 

with (A) simulated concentrations; and (B) contours of standardized simulated response. 

The estimated DFs from the simulated data for (C) DEHP and (D) PFOA are used to 

estimate the MDF with histogram given in (D). (F) The estimated join points for DEHP and 

PFOA define the acceptable region (i.e., lower left quadrant).
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Fig. 3. 
Histograms for the MDF associated with (A) reduced birth weight (N =1323), and (B) risk 

of language delay (N = 840); and LOESS plots of (C) birth weight, and (D) risk of language 

delay; adjusted for covariates.
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Table 2:

Model parameter estimates relating MDF and birth weight (centered and scaled) using mixtures of 11 EDCs 

(MEP, MBP, MBzP, DEHP, DINP, BPA, triclosan, PFOA, PFOS, PCBs, and DDT&DDE; N = 1323) with 

1000 bootstrap samples.

Variable Regression coefficient estimate Standard error p value

MDF 0.97 0.23 <0.001

Sex (centered) 0.11 0.02 < 0.001

Creatinine (centered and scaled) −0.01 0.02 0.790

Maternal education
(centered)

0.02 0.02 0.469

Maternal weight (centered and scaled) 0.20 0.02 < 0.001

Maternal smoking
(centered)

−0.01 0.03 0.692

Gestational week at birth
(centered)

0.30 0.01 < 0.001

Parity (centered and scaled) 0.18 0.03 < 0.001

Maternal age (centered and
scaled)

0.01 0.03 0.833

Fish intake (centered and scaled) −0.02 0.02 0.368
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Table 3:

Model parameter estimates relating MDF and language delay using mixtures of 11 EDCs (MEP, MBP, MBzP, 

DEHP, DINP, BPA, triclosan, PFOA, PFOS, PCBs, and DDT&DDE; N = 840) with 1000 bootstrap samples.

Variable Regression coefficient estimate Standard error p value

MDF −2.2 0.87 0.013

Sex (centered) 0.53 0.13 < 0.001

Creatinine (centered and scaled) −0.22 0.14 0.121

Maternal education
(centered)

−0.25 0.13 0.049

Maternal weight (centered and scaled) 0.12 0.12 0.285

Maternal smoking
(centered)

−0.12 0.20 0.548

Gestational week at birth
(centered)

−0.06 0.06 0.327
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