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Abstract

We develop a unified continuum modeling framework using the Gibbs free energy as the 

thermodynamic potential. This framework naturally leads to a pressure primitive variable 

formulation for the continuum body, which is well-behaved in both compressible and 

incompressible regimes. Our derivation also provides a rational justification of the isochoric-

volumetric additive split of free energies in nonlinear elasticity. The variational multiscale analysis 

is performed for the continuum model to construct a foundation for numerical discretization. We 

first consider the continuum body instantiated as a hyperelastic material and develop a variational 

multiscale formulation for the hyper-elastodynamic problem. The generalized-α method is applied 

for temporal discretization. A segregated algorithm for the nonlinear solver, based on the original 

idea introduced in [107], is carefully analyzed. Second, we apply the new formulation to construct 

a novel unified formulation for fluid-solid coupled problems. The variational multiscale 

formulation is utilized for spatial discretization in both fluid and solid subdomains. The 

generalized-α method is applied for the whole continuum body, and optimal high-frequency 

dissipation is achieved in both fluid and solid subproblems. A new predictor multi-corrector 

algorithm is developed based on the segregated algorithm. The efficacy of the new formulations is 

examined in several benchmark problems. The results indicate that the proposed modeling and 

numerical methodologies constitute a promising technology for biomedical and engineering 

applications, particularly those necessitating incompressible models.
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1. Introduction

Continued advancement in the variational multiscale (VMS) method for computational fluid 

dynamics (CFD) [5, 59, 131], multiscale boundary conditions to model the distal vasculature 
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[126], numerical optimization methods [84, 129], novel coupling procedures for fluid-

structure integration (FSI) [7, 30, 92], and new solver technologies [90, 91] have led to 

increasingly sophisticated simulation technologies of three-dimensional patient-specific 

cardiovascular problems [83, 85, 117]. These simulation methods have been applied to 

investigate a wide range of cardiovascular problems with increasing clinical utility, such as 

coronary artery disease [100], aneurysms [72], and congenital heart disease [130]. These 

advances have also led to new open problems and a call for new computational technologies 

in biomedical modeling [118]. In particular, there is a pressing need to accurately predict 

transmural stresses for nonlinear, anisotropic, nearly incompressible, viscoelastic materials 

in the setting of FSI. This technology will benefit the investigation of long-term vascular 

growth and remodeling driven by mechanical forces and mechanobiological response. This 

work represents our first step towards developing a robust, stable, accurate, and efficient 

finite element technology to address the aforementioned need. We focus on (1) constructing 

a unified modeling framework for solid and fluid dynamics, (2) developing a new numerical 

formulation to handle both compressible and incompressible isotropic hyperelastic materials 

in a consistent manner, and (3) formulating a new coupling procedure for FSI problems. It is 

worth mentioning that the technology proposed in this work, although motivated by 

biomedical problems, is also applicable to a wide range of more general engineering 

problems. In this section, we will first review traditional methods for nonlinear 

incompressible solid dynamics and then introduce our new formulation based on a new 

continuum basis. After that, we will discuss a new coupling approach for FSI problems. 

Lastly, we will provide an outline of the body of this work.

1.1. Continuum mechanics and numerical methods for solid dynamics

Incompressible solids refer to materials that undergo very small volume changes under 

mechanical loading. This property is ubiquitous in elastic-plastic materials, rubber-like 

materials, and biomaterials. From a numerical point of view, incompressibility poses a strict 

restriction on the choice of suitable methods. The classical treatment of incompressibility 

boils down to the use of a displacement-pressure element pair that satisfies the celebrated 

Ladyzhenskaya-Babuška-Brezzi (LBB) condition [12]. An improper choice of elements may 

lead to mesh locking and spurious pressure modes [48, Chapter 4]. In practical calculations, 

the auxiliary pressure variable in the mixed formulation is not favored due to the additional 

computational cost. The cost-effectiveness of an algorithm was emphasized during the early 

days of finite element method development. Consequently, there has been a strong 

motivation for developing displacement elements that circumvent the volumetric locking 

phenomenon in structural analysis. One possible solution is invoking higher-order finite 

element methods [43]. Nevertheless, low-order elements still enjoy significant popularity in 

nonlinear problems for at least two reasons. First, they are simple to implement and to use in 

conjunction with adaptive mesh generation; second, they are robust in nonlinear dynamic 

analysis. One popular approach for the low-order displacement elements is the B̄ and F̄ 

projection methods [23, 28, 47]. The idea of these projection methods goes back to the 

mean-dilatation approach [93] and the reduced and selective integration method [80]. In the 

B̄ projection method, the dilatational part of the strain is projected onto an appropriate 

function space to alleviate the volumetric constraint. The equivalence of this approach to the 

mixed finite element is now well-understood [46, 80]. The F ̄ projection method is a 
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generalization of the B̄ method for large deformation problems [61, 115]. Without a doubt, 

the Q1/Q0 element, as the low-order quadrilateral/hexahedral element, is the most widely 

used element in structural analysis, with Q1 for the displacement discretization space and Q0 

for the projected dilatational strain space. Interested readers are referred to [48, Chapter 4] 

for a comprehensive review on this topic.

For problems with complex geometries, mesh generation poses an additional constraint on 

the choice of numerical methods. Automated hexahedral mesh generation still poses 

significant challenges for practical problems and remains a labor-intensive and time-

consuming process [111]. On the other hand, the algorithms for tetrahedral mesh generation 

are mature [35, 112] and are routinely used for complex problems [125]. However, the 

aforementioned projection methods cannot be directly applied to low-order simplicial 

elements, since the P1/P0 element does not satisfy the LBB condition and will suffer from 

locking [50]. To overcome the above issues, particularly for problems with incompressible 

materials and complex geometries, it is imperative to enable low-order simplicial elements 

for nearly-incompressible materials. There are several approaches that have claimed success 

in this regard. The F̄ projection method is generalized by projecting the dilatational part of 

the deformation gradient onto a patch-wise constant space with predefined non-overlapping 

element patches [24]. This method requires one to group elements into patches, and hence 

introduces additional complication in mesh generation as well as in the matrix assembly. In 

the mixed-enhanced approach, the compatible strain fields are augmented by an additional 

strain field. In doing so, the volumetric locking can be avoided with linear pressure 

interpolation [119]. This method bears some similarity with the MINI element and the 

stabilized method based on residual-free bubbles. However, those methods seem to be not 

completely satisfactory. It is still common to see that practitioners in the area of soft tissue 

modeling make compromise between the incompressibility material property and the 

geometrical complexity.

Over the years, the stabilized methods have gained tremendous success in handling 

numerical instabilities in the finite element modeling of fluid flows [13, 52]. Later, the VMS 

method was introduced to provide a rationale for the stabilized methods and a framework for 

designing new computational methods [5, 49, 51, 59, 60, 106]. Among the stabilization 

techniques, the instability associated with the LBB condition was resolved by invoking a 

Petrov-Galerkin formulation and adding a perturbation term to the test function [52]. It was 

proven that many implementationally convenient elements, such as the equal-order 

simplicial elements, are convergent for the Stokes problem by employing this stabilized 

formulation. Since the Stokes equations are formally identical to the displacement-pressure 

formulation for the incompressible isotropic elasticity equations, this stabilization technique 

can be directly applied to the incompressible elasticity equations. It is worth noting that the 

Petrov-Galerkin method has also been developed for the stress-displacement formulation of 

nearly-incompressible elasticity based on the classical Hellinger-Reissner principle [17, 33]. 

In [68, 81, 82, 22], the stabilized method was applied to finite elasticity and plasticity by 

introducing a pressure stabilization term in an ad hoc way. In [87], the same static finite 

elasticity model was analyzed in the VMS framework. It should be pointed out that those 

formulations are restricted to static calculations and are not well-suited for dynamic fully-

incompressible problems [107].
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In recent years, there is a growing interest in extending the stabilized and VMS methods to 

solid dynamics with particular interests in nearly incompressible and bending dominated 

scenarios. In [70], the linear momentum equation was augmented by a dynamic equation for 

the deformation gradient to improve the stress accuracy. The authors designed a Petrov-

Galerkin finite element formulation for such system to provide stabilization for nearly 

incompressible materials. In [36], J, the determinant of the deformation gradient, was added 

as one additional independent variable to enhance the performance in the incompressible 

limit. In [11], the authors introduced a computational framework for polyconvex 

hyperelasticity by treating the deformation gradient, its cofactor, and its determinant as 

independent kinematic variables. This framework was numerically investigated in [10, 37] 

by invoking the entropy variables (conjugate stresses) of these kinematic variables. The 

polyconvex hypothesis guarantees the existence of entropy variables and leads to a new 

Hellinger-Reissner type variational principle. In general, this computational framework 

enjoys second-order accuracy for the stress and strain and shows robust performance in 

compressible, nearly incompressible, and fully incompressible regimes. A drawback 

associated with this formulation is that there are nineteen independent variables for 

describing kinematics in three-dimensional problems, which makes the algorithm quite 

noneconomical. In parallel to the aforementioned development, a pressure-rate equation was 

proposed in [107]. It was shown that this rate-type equation for the pressure field 

significantly improves the calculations of nearly incompressible elastodynamic problems. In 

[102], a VMS analysis was performed on this pressure-rate type formulation, and the authors 

coined it as “dynamic variational multiscale method”. This formulation shows robust 

performance in nearly incompressible and bending dominated scenarios and has been 

recently generalized to viscoelasticity [132]. However, due to the usage of J as a variable in 

the model derivation, the authors had to treat the nearly incompressible and the fully 

incompressible cases separately [11, 37, 102, 107]. More importantly, considering several 

different mixed formulations have been proposed in the aforementioned works, we feel the 

role of those equations needs to be elucidated. In our opinion, the pressure rate equation 

[102, 107, 132] or the equation for J [10, 36] is a differential mass equation. Consequently, 

one should judiciously use the classical relation ρJ = ρ0, and, in our opinion, it is redundant 

to solve ρJ = ρ0 together with the differential mass equation in the discrete problem [107, 

132]. This point will be clarified in Section 2.

In traditional approaches, the constitutive relations of finite elasticity are derived based on 

the Helmholtz free energy or the strain energy [45]. In non-equilibrium thermodynamics, 

one can alternatively derive equivalent formulations based on other thermodynamic 

potentials. These thermodynamic potentials are related through Legendre transformations. 

Among all the thermodynamic potentials, the Helmholtz free energy is favored for the 

discussion of constitutive modeling, likely because it is a function of temperature, specific 

volume, and the number of molecules. These variables are easy to measure and control in 

laboratories. For example, it is easy to measure the temperature while it is very hard, if not 

impossible, to measure its conjugate variable, the entropy. However, it should be pointed out 

that there are certain drawbacks of formulations based on the Helmholtz free energy. For 

example, in the incompressible limit, the Helmholtz free energy ceases to serve as a valid 

thermodynamic potential, since one of the state variables, the density, is constrained to be a 
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constant [79]. Therefore, one has to perform a Legendre transformation with respect to the 

specific volume to transform the independent variable to the thermodynamic pressure. The 

resulting thermodynamic potential serves as a proper starting point for the discussion of 

incompressible materials. Deviating from traditional approaches, we propose that one should 

flexibly choose an appropriate thermodynamic potential for the discussion based on the 

particular problem.

In this work, we consider the Gibbs free energy as the thermodynamic potential and derive 

the constitutive relations based on the Coleman-Noll approach [40, 86, 124], with both 

elastic and viscous material responses taken into account. A by-product of this derivation is 

that the isochoric-volumetric additive split of the free energy, which was regarded as a 

postulate based on physical intuition, can be justified with solid arguments. The resulting 

system provides a unified framework for the viscous incompressible Navier-Stokes 

equations, the compressible Navier-Stokes equations, the compressible hyperelasticity, and 

the fully incompressible hyperelasticity. In particular, the resulting compressible Navier-

Stokes equations derived from the Gibbs free energy are written in the pressure primitive 

variables. It is well-known that the Navier-Stokes equations are well-behaved in the pressure 

primitive variables, but not for variable sets where the density is an independent variable 

[42]. This fact partly corroborates our argument that the Helmholtz free energy degenerates 

in the incompressible limit. One attractive feature of a unified theory for fluids and solids is 

that this theory may serve as a bridge for generalizing the VMS method from computational 

fluid dynamics to computational solid dynamics. Indeed, the VMS method was originally 

proposed to provide “a paradigm for computational mechanics” [51]. Yet, over the years, 

progress was made primarily in the area of CFD [6, 59, 60]. We hope that this work will 

spark further research on developing VMS formulations for computational mechanics and 

enable CFD experts to readily bring their expertise to bear on solid mechanics.

1.2. Fluid-structure interaction

Fluid-structure interaction problems refer to the coupling of the fluid and structural 

equations defined on non-overlapping domains with appropriate interface conditions. Over 

the past several decades, tremendous advancement has been made in computational FSI 

problems [6, 14, 66, 78]. In terms of how the fluid-structure interface is treated, the 

numerical methods for FSI problems may be categorized into two major groups: the 

boundary-fitted approach and the immersed boundary approach. In the boundary-fitted 

approach, the fluid problem is typically posed in an arbitrary Lagrangian-Eulerian (ALE) 

coordinate system [55, 108], and the fluid domain is represented by a mesh that is 

deformable with the Lagrangian solid mesh. The boundary-fitted approach enjoys the exact 

coupling conditions on the interface and accurate stress calculations near the interface, with 

the expense of moving the mesh. For problems involving very large deformations, it may be 

necessary to regenerate the mesh to maintain the mesh quality and the solution accuracy, 

which can be quite expensive for three-dimensional calculations [63].

The immersed boundary method was introduced as an alternative approach for FSI 

simulations [97]. This approach releases the requirement of the boundary-fitting condition 

and hence can be quite attractive for problems with very large deformations of the solid 
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boundary, such as the heart valve dynamics [39, 66]. One major shortcoming of the 

immersed boundary approach is the loss of accuracy near the interface. Hence, its 

applicability is limited when the interfacial physics is important. In this work, we adopt the 

boundary-fitted approach for our FSI formulation.

In this work, one critical feature that differs from traditional FSI formulations is that the 

solid problem is written in pressure primitive variables, and its governing equations 

constitute a set of first-order equations, including a differential mass balance equation, a set 

of linear momentum balance equations, and a set of kinematic equations. This formulation 

for the solid problem is formally similar to the ALE formulation of the incompressible 

Navier-Stokes equations, where the kinematic equations are replaced by the equations 

governing the mesh motion. Indeed, one can view our FSI formulation as a unified 

continuum body governed by the mass and linear momentum balance equations, where, in 

the solid subdomain, the deviatoric part of the Cauchy stress is elastic and the problem is 

written in the Lagrangian reference frame; in the fluid subdomain, the deviatoric part of the 

Cauchy stress is viscous and the problem is written in the ALE coordinate system. This 

unified formulation naturally allows one to construct a uniform VMS formulation for spatial 

discretization, and the resulting numerical scheme provides a residual-based turbulence 

model for the fluid subproblem and a VMS scheme for the solid subproblem with the 

purpose of stabilizing the pressure instability arising from equal-order interpolations.

Writing the FSI problem in a unified formulation also allows us to perform time integration 

in a uniform way. The generalized-α method has shown to be an accurate and robust 

temporal scheme for structural dynamics [19], fluid dynamics [62], and FSI problems [6, 26, 

69]. One issue associated with the traditional FSI formulation is that there is a mismatch for 

the choice of the parameters in the generalized-α scheme [9, p. 120]. The structural 

dynamics problem is typically written in the pure displacement formulation and hence 

involves a second-order time derivative. In contrast, the fluid dynamics problem involves 

only a first-order time derivative. To achieve controllable high-frequency dissipation, the 

parameters in the generalized-α method are parametrized by the spectral radius of the 

amplification matrix at an infinitely large time step. This parametrization is different for 

first-order [19] and second-order systems [62]. In traditional FSI formulations, this leads to a 

dilemma for the choice of parameters in the temporal scheme. In [6], the parametrization 

was chosen based on the first-order system to provide optimal dissipation for the fluid 

problem. That choice sacrifices the dissipation for the solid problem. In [69], the optimal 

parametrization was chosen for the fluid and solid subdomains separately. Yet, that leads to a 

kinematic inconsistency on the fluid-solid interface. It has been observed that this kinematic 

inconsistency may lead to failure in FSI simulations, and an interpolation procedure along 

the fluid-solid interface was proposed to address this issue [64]. In this work, since the solid 

dynamics is written as a first-order system, the aforementioned numerical challenge is 

conveniently resolved. The generalized-α method is applied for the unified continuum 

problem using the parametrization for the first-order problem [19]. One can get optimal 

numerical dissipation for both the fluid and solid subproblems.

Methods for solving the discretized FSI problem can be categorized into two families: 

staggered and monolithic methods. The latter can be further categorized into block-iterative, 
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quasi-direct, and direct strategies [123]. A segregated algorithm for the solid dynamics, 

based on the original idea introduced in [107], naturally leads to a new solution procedure 

for FSI problems. First, one solves the pressure and the velocity for the continuum body in 

the matrix problem. Second, the segregated algorithm for the solid is invoked to obtain the 

displacement field in the solid subdomain. Third, the solid displacement is applied as a 

boundary condition for the mesh motion problem in the fluid subdomain. This coupling 

procedure can be categorized as the quasi-direct solution strategy [9, Chapter 6]. In 

comparison with traditional FSI formulations, the additional cost in this FSI formulation is 

mainly due to the introduction of the pressure variable in the solid problem. Considering the 

number of degrees of freedom in the solid subdomain is typically much smaller than that of 

the fluid subdomain, the new formulation in fact does not significantly increase the cost of 

the solution of the system.

1.3. Structure and content of the paper

The body of this work is organized as follows. In Section 2, a unified continuum model is 

derived by choosing the Gibbs free energy as the thermodynamic potential. In Section 3, we 

perform VMS analysis for the resulting continuum model. In Section 4, we derive a fully 

discrete scheme for hyper-elastodynamics. In Section 5, the algorithm developed for solid 

dynamics is coupled with fluid dynamics and constitutes a novel FSI formulation. The 

coupling procedure and the implementation details for FSI problems are discussed. In 

Section 6, benchmark problems are studied to examine the numerical formulations. We draw 

conclusions in Section 7.

2. Continuum Mechanics

In this section, we begin by presenting the ALE formulation of the balance laws. Following 

that, we derive constitutive relations based on the Gibbs free energy using the Coleman-Noll 

type analysis. An interesting result is that the additive split of free energies can be justified 

in this derivation. We recover several familiar models within our modeling framework. In the 

last part, for various well-known volumetric energies, their Legendre transformations are 

derived and discussed.

2.1. Continuum mechanics on moving domains

In this section, we discuss the kinematics of a deformable body and present the balance 

equations defined in an ALE frame of reference. Let ΩX, Ωx, and Ωχ be bounded open sets in 

ℝnd, where nd represents the number of space dimensions. They represent the domain 

occupied by the continuum body in the material (Lagrangian), the current (Eulerian), and the 

referential frames, respectively. The Lagrangian-to-Eulerian map at time t is a 

diffeomorphism defined as

φ( · , t):ΩX Ωx = φ(ΩX, t), ∀t ≥ 0,
X x = φ(X, t), ∀X ∈ ΩX .
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This map satisfies that φ(X, 0) = X, which implies that x is the current location of a material 

particle whose initial location is X. The displacement and the velocity of the material 

particle are given by

u: = φ(X, t) − φ(X, 0) = φ(X, t) − X,

v: = ∂φ
∂t X

= ∂u
∂t X

= du
dt .

In this work, d (·)/dt designates a total time derivative. The deformation gradient and the 

Jacobian determinant are defined as

F: = ∂φ
∂X , J : = det (F) .

The referential-to-Eulerian map at time t is a diffeomorphism defined as

φ( · , t):Ω χ Ωx = φ(Ω χ , t), ∀t ≥ 0,
χ x = φ( χ , t), ∀ χ ∈ Ω χ ,

and satisfies φ̂(χ, 0) = χ. The mesh displacement and the mesh velocity are defined as

u: = φ( χ , t) − φ( χ , 0) = φ( χ , t) − χ , (2.1)

v : = ∂φ
∂t χ

= ∂u
∂t χ

. (2.2)

The mesh deformation gradient and the mesh Jacobian determinant are defined as

F: = ∂φ
∂ χ , J : = det (F) .

It also proves convenient to introduce the Lagrangian-to-referential mapping at time t as

φ∼( · , t):ΩX Ω χ
t = φ∼(ΩX, t) ∀t ≥ 0,

X χ = φ∼(X, t), ∀X ∈ ΩX .
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One can analogously define the displacement, velocity, and deformation gradient for the 

motion of the referential frame relative to the Lagrangian reference frame [105]. The three 

mappings introduced above are related through an operator composition

φ = φ ∘ φ∼ . (2.3)

This operator composition is illustrated in Figure 1. Let ρ = ρ(x, t) denote the density. The 

conservation of mass represented on the referential domain Ωχ is

0 = ∫
Ω χ

∂(J ρ)
∂t χ

+ ∇ χ · J F−1ρ(v − v) dΩ χ . (2.4)

Let σ denote the Cauchy stress, and let b denote the body force per unit mass. The linear 

momentum balance equation on the referential domain Ωχ is

0 = ∫
Ω χ

∂(J ρv)
∂t χ

+ ∇ χ · (ρv ⊗ (v − v) − σ) J F−T − J ρbdΩ χ . (2.5)

The balance of angular momentum is given by

0 = ∫
Ω χ

∂(J x × ρv)
∂t χ

+ ∇ χ · ((x × ρv) ⊗ (v − v) − x × σ) J F−T − J x × ρbdΩ χ . (2.6)

It can be shown that (2.6) is equivalent to the symmetry of the Cauchy stress,

σ = σT . (2.7)

Let E:= ι + v · v/2 denote the total energy per unit mass, where ι is the internal energy per 

unit mass; let q denote the heat flux; let r denote the heat source per unit mass. The balance 

of total energy is

0 = ∫
Ω χ

∂(J ρE)
∂t χ

+ ∇ χ · J F−1 (ρE (v − v) − σTv + q) − J ρ (b · v + r) dΩ χ . (2.8)

The second law of thermodynamics can be stated as
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0 ≤ ∫
Ω χ

∂(J ρs)
∂t χ

+ ∇ χ · J F−1 ρs (v − v) + q
θ − J ρ r

θ dΩ χ , (2.9)

Using the Piola identity and the localization argument, one can derive the advective form of 

the balance equations and the second law of thermodynamics as follows,

0 = ∂ρ
∂t χ

+ (v − v) · ∇xρ + ρ∇x · v, (2.10)

0 = ρ∂v
∂t χ

+ ρ (∇xv) (v − v) − ∇x · σ − ρb, (2.11)

σ = σT, (2.12)

0 = ρ∂ι
∂t χ

+ ρ (v − v) · ∇xι − σ : ∇xv + ∇x · q − ρr, (2.13)

0 ≤ ρ∂s
∂t χ

+ ρ(v − v) · ∇xs + ∇x · q
θ − ρ r

θ . (2.14)

Moreover, the displacement-velocity kinematic relation

du
dt = v

can be written in the advective form as

∂u
∂t χ

+ (∇xu) (v − v) = v . (2.15)

Details of the derivation of (2.10)–(2.14) can be found in [108].

Remark 1—ρJ = ρ0 is a widely used algebraic mass balance equation. However, we posit 
this is really a special case due to the Lagrangian description. In the general scenario, such 
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as the ALE description, one has to adopt the differential equation (2.10) to describe mass 
conservation [77].

2.2. Constitutive relations

There are multiple concepts of pressure in the literature. The mechanical pressure is defined 

as the dilatational (i.e., hydrostatic) part of the Cauchy stress. The thermodynamic pressure 

is an intensive state variable. Its negative value conjugates to the specific volume [15]. 

Sometimes, mathematicians introduce pressure as a Lagrangian multiplier to enforce the 

incompressibility constraint. In this work, we adopt the thermodynamic definition for the 

pressure, and the derivation will reveal how these three concepts are related. In continuum 

mechanics, the Helmholtz free energy (or the strain energy) is often used as the 

thermodynamic potential to derive and describe the constitutive relations. Such a derivation 

often follows the classical Coleman-Noll approach [21, 45, 76]. Among these relations, the 

thermodynamic pressure is often expressed as a function of the density and the temperature. 

However, this relation only remains valid for compressible materials. In the incompressible 

limit, the pressure-density curve becomes a vertical line of infinite slope since the density is 

constrained as a constant. We believe this pathological behavior of the pressure-density 

curve near the incompressible limit is the bane of incompressible solid solvers. A similar 

argument was made in [40, p. 319] based on a thought experiment, with the conclusion that 

“it would seem unreasonable to allow a constitutive relation for an incompressible elastic 

body to involve the pressure.”

To remedy this degeneracy, one can derive the constitutive relations based on the Gibbs free 

energy [79]. The Gibbs free energy and the Helmholtz free energy are related by a Legendre 

transformation [15]. For compressible materials, both the free energies are valid; for 

incompressible materials, the Helmholtz free energy degenerates, and the Gibbs free energy 

remains valid. In this section, we will derive the system of equations for a continuum 

mechanics model based on the Coleman-Noll approach. For simplicity, we take the 

referential frame of reference to be identical to the material frame of reference within this 

section. Then we directly have

d ( · )
dt : = ∂ ( · )

∂t X
= ∂ ( · )

∂t χ
, v = v .

Consequently, the advective form of the balance equations and the second law of 

thermodynamics can be written as

dρ
dt + ρ∇x · v = 0, (2.16)

ρdv
dt = ∇x · σ + ρb, (2.17)
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σ = σT, (2.18)

ρdι
dt = σ : ∇xv − ∇x · q + ρr, (2.19)

𝒟: = ρds
dt + ∇x · q

θ − ρr
θ ≥ 0. (2.20)

In the above,  represents the dissipation. The specific Gibbs free energy per unit mass is 

defined as

G: = ι − θs + p
ρ . (2.21)

Taking material time derivatives on both sides of (2.21) results in

ρdG
dt + ρsdθ

dt − dp
dt = ρdι

dt − ρθ ds
dt − p

ρ
dρ
dt .

Substituting the internal energy balance equation (2.19), the second law of thermodyanmics 

(2.20), and the mass balance equation (2.16) into the above relation, one obtains

ρdG
dt = σ : ∇xv − q · ∇xθ + p∇x · v − θ𝒟 − ρsdθ

dt + dp
dt . (2.22)

To facilitate our discussion, we introduce the following notations.

1. The right Cauchy-Green tensor C is defined as C:= FTF.

2. The deformation gradient F can be multiplicatively decomposed into dilatational 

and distortional parts [31] as

F = J
1
3 I F∼ = J

1
3 F∼ . (2.23)

In the above relation, I represents the second-order identity tensor, J
1
3 I

represents the volume-changing (dilatational) part of the deformation, and 
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F∼ = J
− 1

3 F is the volume-preserving (distortional) part of the deformation. 

Correspondingly, the right Cauchy-Green tensor can be decomposed as

C = J

2
3 I C

∼ = J

2
3 C

∼ .

3. We can obtain the following differentiation relation

∂C
∼

∂C = J
− 2

3ℙT , ℙ = 𝕀 − 1
3C−1 ⊗ C,

wherein  is the fourth-order identity tensor

𝕀IJKL = 1
2 (δIKδJL + δILδJK),

and δIJ is the Kronecker delta. It is straightforward to show that ℙℙ = ℙ, which 

implies that ℙ is a projection.

4. The Cauchy stress σ can be additively split into deviatoric and hydrostatic parts,

σ = dev[σ] + 1
3 (tr[σ]) I .

The second Piola-Kirchhoff stress S is defined by S:= JF−1σF−T, and one can 

show that dev[σ] = J−1F (ℙ: S)FT.

5. The spatial velocity gradient can be additively split into the rate of deformation 

tensor d and the spin tensor w as

∇xv = d + w, d: = 1
2 ∇xv + ∇xvT , w: = 1

2 ∇xv − ∇xvT .

Furthermore, we split d into deviatoric and hydrostatic parts as

d = dev[d] + 1
3 ∇x · vI .

The inner product of σ and ∇xv can be written as

σ : ∇xv = σ : d = dev[σ]:dev[d] + 1
3tr[σ]∇x · v . (2.24)

6. Algebraic manipulations can show that the time rate of C can be expressed in 

terms of d in the following relation
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d
dt C = 2FTdF .

The time rate of C̃ can be derived as

d
dt C

∼ = d
dt J

− 2
3 C = J

− 2
3 d

dt C − 2
3J

− 5
3 C d

dt J = 2J
− 2

3 FTdev[d] F .

Hence, we have

dev[d] = 1
2J

2
3 F−T d

dt C
∼

F−1,

and

dev[σ]:dev[d] = 1
2J

2
3 F−1dev[σ] F−T : d

dt C
∼ . (2.25)

Using (2.24) and (2.25), the relation (2.22) can be rewritten as

ρdG
dt = dev[σ]:dev[d] + 1

3tr [σ] + ρ ∇x · v − q · ∇xθ − ρsdθ
dt + dp

dt − θ𝒟

= 1
2J

2
3 F−1dev[σ] F−T : d

dt C
∼ + 1

3tr [σ] + p ∇x · v − q · ∇xθ − ρsdθ
dt + dp

dt − θ𝒟 .

(2.26)

In the above relation, the time rate of G is on the left-hand side, and the time rates of C̃, θ, 

and p appear on the right-hand side. Invoking Truesdell’s principle of equipresence [124], 

we demand that the Gibbs free energy is a function of C̃, p, and θ:

G = G C
∼, p, θ .

Taking material time derivatives on both sides, we obtain the relation

dG
dt = 1

2S
∼: d

dt C
∼ + ∂G

∂ p
dp
dt + ∂G

∂θ
dθ
dt , (2.27)

wherein
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S
∼: = 2 ∂G

∂C
∼ .

Substituting (2.27) into (2.26) leads to

θ𝒟 = 1
2J

2
3 F−1dev[σ] F−T − ρ

2 S
∼ : d

dt C
∼ + 1

3tr [σ] + p ∇x · v − q · ∇xθ − ρs + ρ∂G
∂θ

dθ
dt

+ 1 − ρ∂G
∂ p

dp
dt .

(2.28)

We make the following choices for the Cauchy stress, the heat flux, the entropy, and the 

density.

dev [σ] = ρF∼ ℙ:S
∼

F∼T + 2μdev[d], (2.29)

1
3tr [σ] = − p + 2

3 μ + λ ∇x · v, (2.30)

q = − κ ∇xθ, (2.31)

s = − ∂G
∂θ , (2.32)

ρ = ∂G
∂ρ

−1
. (2.33)

In (2.29), μ̄ is the dynamic shear viscosity; in (2.30), λ̄ is the second viscosity coefficient, 

and 2
3 μ + λ is the bulk viscosity; in (2.31), κ̄ is the termal conductivity. Combining the 

constitutive relations (2.29) and (2.30), one obtains the Cauchy stress as
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σ = ρF∼ ℙ:S
∼

F∼T − pI + 2μdev[d] + 2
3 μ + λ ∇x · vI

= J−1F∼ ℙ:2
∂ρ0G

∂C
∼ F∼T − pI + 2μdev[d] + 2

3 μ + λ ∇x · vI .

(2.34)

The first term in (2.34) represents the isochoric elastic stress [45], the second term is the 

pressure, the third term gives the viscous shear stress, and the last term gives the bulk 

viscous stress. Observing that σ is symmetric, the angular momentum balance law (2.12) is 

automatically satisfied. The constitutive relation for the heat flux (2.31) is the Fourier’s law. 

The constitutive relation for the entropy density s (2.32) and the density ρ (2.33) coincides 

with the classical thermodynamic definitions [15]. Invoking (2.21), (2.32), and (2.33), one 

can get the constitutive relation for the internal energy per unit mass as

ι = G + sθ − p
ρ = G − ∂G

∂θ θ − ∂G
∂ p p .

Proposition 1—Given the constitutive relations (2.29)–(2.33), the dissipation  defined in 
(2.20) takes the form

𝒟 = 2μ
θ dev[d]:dev[d] + 1

θ
2
3 μ + λ (∇x · v)2 + κ

θ ∣ ∇xθ ∣2 . (2.35)

Proof: The constitutive relations (2.32) and (2.33) make the last two terms in (2.28) vanish. 

Therefore, one has

θ𝒟 = 1
2J

2
3 F−1dev[σ] F−T − ρ

2 S
∼ : d

dt C
∼ + 1

3tr [σ] + p ∇x · v − q · ∇xθ . (2.36)

The constitutive relation for the heat flux (2.31) leads to

−q · ∇xθ = κ ∇xθ · ∇xθ = κ ∣ ∇xθ ∣2 .

The constitutive relation (2.30) leads to

1
3tr [σ] + p ∇x · v = 2

3 μ + λ (∇x · v)2 .

Using the constitutive relation (2.29), the first term in (2.36) can be simplified as
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1
2J

2
3 F−1dev[σ] F−T − ρ

2 S
∼ : d

dt C
∼ = 2μdev[d]:dev[d] .

In summary, one has

θ𝒟 = 2μdev[d]:dev[d] + 2
3 μ + λ (∇x · v)2 + κ ∣ ∇xθ ∣2,

which completes the proof.

The relation (2.35) suggests that the dissipation  is guaranteed to be non-negative if the 

dynamic shear viscosity, the bulk viscosity, and the thermal conductivity are non-negative.

Proposition 2—The constitutive relations (2.29)–(2.33) satisfy the principle of material 
frame indifference.

Proof: One only needs to verify that (2.29) is material frame indifferent. Considering a 

proper orthogonal tensor Q, one has det(QF) = det(Q)det(F) = det(F) = J. Therefore, 

QF = QF∼. It is known that under the rigid-body motion described by Q, dev[d] transforms to 

Qdev[d]QT. Consequently, the right-hand side of (2.29) transforms to

ρQF∼ ℙ:S
∼

F∼TQT + 2μQdev[d]QT = Qdev[σ]QT .

Proposition 3—The Gibbs free energy takes the following additive decoupled form,

G C
∼, p, θ = Giso C

∼, θ + Gvol (p, θ) . (2.37)

Proof: The density ρ is independent of C̃ since C̃ is volume-preserving (det(C̃) = 1). 

Consequently, the constitutive relation (2.33) leads to

∂G C
∼, p, θ
∂ p = ρ−1(p, θ) .

Integrating the above partial derivative gives (2.37), where Gvol(p, θ) = ∫ ρ−1dp.

It is worth pointing out that the free energy adopted in the above discussion is the specific 
free energy, which means that it is the energy per unit mass. It is sometimes useful to 

introduce the free energy per unit volume in the material configuration [40, 45], which is 

denoted as GR. The two energies are linked by the relation GR = ρ0G. Correspondingly, we 
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denote Giso
R : = ρ0Giso and Gvol

R : = ρ0Gvol. Let HR denote the Helmholtz free energy per unit 

volume in the material configuration. It can be obtained through a Legendre transformation 

of −GR with respect to p, namely,

HR(C∼, J, θ): = sup
p

− pJ + GR(C∼, p, θ) .

Invoking the additive split of the Gibbs free energy (2.37), one has

HR(C∼, J, θ) = Giso
R C

∼, θ + sup
p

− pJ + Gvol
R (p, θ) .

This relation can be summarized as the following proposition.

Proposition 4—The Helmholtz free energy HR admits the additive decoupled form

HR(C∼, J, θ) = Hiso
R (C∼, θ) + Hvol

R (J, θ), (2.38)

wherein

Hiso
R (C∼, θ) = Giso

R (C∼, θ), Hvol
R (J, θ) = sup

p
− pJ + Gvol

R (p, θ) .

Remark 2—The additive split of the Helmholtz free energy was introduced as a postulate 
based on the multiplicative decomposition of the deformation gradient [31]. Above, we have 
given a justification of the additive split (2.38) for hyperelastic materials. Extension of the 
arguments to inelastic materials is under assessment.

With the energy split (2.37), the constitutive relations (2.33) and (2.34) can be rewritten as

ρ = ρ(p, θ) =
∂Gvol(p, θ)

∂ p

−1
, (2.39)

σ = J−1 F∼ ℙ:2
∂Giso

R

∂C
∼ F∼T − pI + 2μdev[d] + 2

3 μ + λ ∇x · vI . (2.40)

Here, we introduce the isobaric thermal expansion coefficient αp and the isothermal 

compressibility coefficient βθ [15]. They are defined as
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αp: = − 1
ρ

∂ρ
∂θ , βθ: = 1

ρ
∂ρ
∂ p .

Making use of the constitutive relation (2.39), they can be expressed explicitly as

αp =
∂2Gvol
∂ p∂θ /

∂Gvol
∂ p , βθ = −

∂2Gvol

∂ p2 /
∂Gvol

∂ p . (2.41)

2.3. Examples of closed systems of equations

Before proceeding further, we notice that the time derivative of ρ can be expanded as

∂ρ
∂t χ

= − αpρ∂θ
∂t χ

+ βθρ∂ p
∂t χ

.

Hence, the governing equations in the ALE frame of reference become

0 = ∂u
∂t χ

+ (v − v) · ∇xu − v, (2.42)

0 = − αpρ∂θ
∂t χ

+ βθρ∂ p
∂t χ

+ (v − v) · ∇xρ + ρ∇x · v, (2.43)

0 = ρ∂v
∂t χ

+ ρ(∇xv) (v − v) − ∇x · σ − ρb, (2.44)

0 = ρ∂ι
∂t χ

+ ρ(v − v) · ∇xι − σ : ∇xv + ∇x · q − ρr . (2.45)

Ideal gas model: The Gibbs free energy for the ideal gas is

Gpg(C∼, p, θ) = Rθ ln
pθref
θpref

− Cvθ ln θ
θref

+ (Cv + R) θ,
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wherein R is the specific gas constant, Cv is the specific heat at constant volume, pref and 

θref are the reference values of the pressure and temperature. With this choice, the 

constitutive relations are

σ = − pI + μ (∇xv + ∇xvT) + λ ∇x · vI, ρ = p
Rθ ,

s = − R ln
pθref
θpref

+ Cv ln θ
θref

, ι = Cvθ .

The balance equations (2.43)–(2.45) together with the above constitutive equations 

constitute the pressure primitive variable formulation for the compressible Navier-Stokes 

equations [42]. It was shown that the set of pressure primitive variables is among the sets of 

variables that are well-behaved for both compressible and incompressible flows [41, 42, 53, 

75]; on the contrary, any set of variables involving density (e.g. conservation variables or 

density primitive variables) becomes ill-defined in the incompressible limit [41]. That 

observation, in part, justifies our motivation of deriving a continuum mechanics model based 

on the Gibbs free energy.

Incompressible viscous flow: We introduce the Gibbs free energy for incompressible 

viscous fluid flow as

Gi f (C∼, p, θ) = Giso
i f (θ) + p

ρ0
.

With this choice, the constitutive relations are

σ = − pI + μ (∇xv + ∇xvT) + λ ∇x · vI, ρ = ρ0,

s = −
∂Giso

i f

∂θ , ι = Giso
i f − θ

∂Giso
i f

∂θ .

Compressible hyperelastic model: The Gibbs free energy for compressible hyperelastic 

materials takes the following general form.

Gch(C∼, p, θ) = Giso
ch (C∼, θ) + Gvol

ch (p, θ) .

If we ignore the viscous effect, the constitutive relations are

Liu and Marsden Page 20

Comput Methods Appl Mech Eng. Author manuscript; available in PMC 2019 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



σ = J−1 F∼ ℙ:2ρ0
∂Giso

ch

∂C
∼ F∼T − pI, ρ =

∂Gvol
ch

∂ p

−1
,

s = − ∂Gch

∂θ , ι = Gch − θ ∂Gch

∂θ − p
∂Gvol

ch

∂ p .

Incompressible hyperelastic model: Noticing that incompressibility implies C̃ = C, the 

Gibbs free energy for incompressible hyperelastic materials takes the following form.

Gih(C∼, p, θ) = Gih(C, p, θ) = Giso
ih (C, θ) + p

ρ0
.

Ignoring the viscous effect, the constitutive relations can be written as

σ = J−1 F∼ ℙ:2ρ0
∂Giso

ih

∂C F∼T − pI, ρ = ρ0,

s = −
∂Giso

h

∂θ , ι = Giso
ih − θ

∂Giso
ih

∂θ .

Remark 3—It is worth pointing out that the displacement-velocity relation (2.15) is not the 
unique choice for describing kinematics. The deformation gradient transport relation [108, p. 
24],

d
dt F = ∇xvF,

can be utilized to calculate the strain and stress as well [27, 109]. In fact, this strategy is 
expected to give second-order spatial accuracy in the calculation of the strain and the stress 

with linear elements. A trade-off is that nd
2 additional differential equations for F need to be 

solved. Based on the polyconvexity hypothesis, it seems natural to introduce kinematic 
relations for F, JF−T, and J [10, 11, 36]. In that approach, the kinematic equations involve 

2nd
2 + 1 degrees of freedom. In this work, we choose to solve the simple displacement-

velocity equation(2.15). Its simple structure leads to an additional benefit in the design of the 
algorithm.

2.4. Legendre transformation of volumetric energies

Here, we want to point out that, in the literature, there exist derivations of constitutive 

relations based on a different Gibbs free energy [99, 116]. In those works, the Gibbs free 

energy is taken as a function of the stress, which implicitly requires the Helmholtz free 
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energy to be convex with respect to the strain. Convexity is a strong requirement and rules 

out many important nonlinear materials. This is a key difference with the present work, 

which does not impose the requirement. Most hyperelastic materials are postulated to be 

polyconvex [4, 86]. A direct consequence of polyconvexity is that, with the isochoric-

volumetric split shown in Proposition 4, the volumetric energy is convex. Thus, it is indeed 

legitimate to perform a Legendre transformation on the volumetric part of the energy. The 

derivations in [99, 116] correspond to the Hellinger-Reissner variational principle; while our 

derivation corresponds to the Herrmann variational principle [44, 67]. In the following, we 

present a few examples of the Lengendre transformations for several classical volumetric 

energies, and we use κ to denote the bulk modulus.

Quadratic volumetric energy: The first example is the quadratic energy

Hvol
R (J) = κ

2(J − 1)2 . (2.46)

The corresponding specific energy is

Hvol(v): = 1
ρ0

Hvol
R (ρ0v) = κ

2ρ0
(ρ0v − 1)2 .

The conjugate function of the above Hvol(v) is

Gvol(p): = sup
v

(pv + Hvol(v)) = p
ρ0

− p2
2κρ0

.

According to (2.39) and (2.41), we have

ρ =
ρ0

1 − p
κ

, βθ = 1
κ − p .

ST91 volumetric energy: The quadratic volumetric energy (2.46) has been under criticism 

because it approaches a finite value as the volume goes to zero. This may lead to numerical 

instabilities [113]. To circumvent this issue, the following volumetric energy was proposed 

in [114] and is now widely used.

Hvol
R (J) = κ

4 J2 − 1 − 2 ln (J) . (2.47)
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The specific energy is

Hvol(v): = 1
ρ0

Hvol
R (ρ0v) = κ

4ρ0
ρ0

2v2 − 1 − 2 ln (ρ0v) .

The conjugate function to Hvol(v) is

Gvol(p): = sup
v

(pv + Hvol(v)) = − p2 + p p2 + κ2
2κρ0

− κ
2ρ0

ln p2 + κ2 − p
κ .

The Taylor expansion of the above Gvol is

Gvol(p) = p
ρ0

− p2
2ρ0κ + p3

6ρ0κ2 − 1
40

p5

ρ0κ4 + 𝒪( 1
κ5) .

Clearly, the Gvol(p) for the ST91 volumetric energy (2.47) can be viewed as a high-order 

modification of the one associated with the quadratic energy. From the formula of Gvol(p), 

one obtains

ρ =
ρ0
κ p2 + κ2 + ρ , βθ = 1

p2 + κ2 .

M94 volumetric energy: The volumetric free energy proposed in [89] and its corresponding 

specific free energy are

Hvol
R (J) = κ (J − ln (J) − 1),

Hvol(v): = 1
ρ0

Hvol
R (ρ0v) = κ

ρ0
(ρ0v − ln (ρ0v) − 1) .

(2.48)

The conjugate function to Hvol(v) is

Gvol(p): = sup
v

(pv + Hvol(v)) = − κ
ρ0

ln κ
p + κ .

Its Taylor expansion is
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Gvol(p) = p
ρ0

− p2
2ρ0κ + p3

3ρ0κ2 − p4

4ρ0κ3 + p5

5ρ0κ4 + 𝒪( 1
κ5) .

Based on the above formula, one arrives at

ρ = ρ0 1 + p
κ , βθ = 1

p + κ .

Here, the constitutive relation for the density is the linear barotropic relation, which is 

usually used to describe small density variations near a reference value [38].

L94 volumetric energy: The volumetric free energy proposed in [73] and the corresponding 

specific free energy are

Hvol
R (J) = κ (J ln (J) − J + 1), (2.49)

Hvol(v): = 1
ρ0

Hvol
R (ρ0v) = κ

ρ0
(ρ0v ln (ρ0v) − ρ0v + 1) . (2.50)

The conjugate function to Hvol(v) is

Gvol(p) = κ
ρ0

1 − e
− p

κ .

Its Taylor expansion is

Gvol(p) = p
ρ0

− p2
2κρ0

+ p3

6κ2ρ0
− p4

24κ3ρ0
+ p5

120ρ0κ4 + 𝒪 1
κ5 .

and

ρ = ρ0e

p
κ , βθ = 1

κ .

Interestingly, this volumetric free energy gives a constant isothermal compressibility 

coefficient.
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Remark 4—For compressible materials, one can derive pressure by taking derivative of the 

volumetric energy with respect to J as

p = −
dHvol

R

dJ . (2.51)

It can be verified that (2.51) is compatible with the constitutive equation (2.39). At this 
stage, one can clearly see that the equation (2.51) is an equation of state, just like p = ρRθ 
for the ideal gas model. In CFD, it is very rare to see one put p = ρRθ into a weak form and 
solve it by finite element or finite volume methods. By analogy, we feel it is worth raising a 
question on the validity of using (2.51) in the mixed formulation for finite elasticity, 
although such an approach is regarded as well-established [22, 45, 68, 82].

Remark 5—In [107], it has been observed that, even for small-strain elasticity, it is not 
advisable to use 0 = p/κ + ∇x · u in the VMS formulation for transient analysis. This fact 
confirms our doubts about using (2.51) in the VMS formulation for finite elastodynamics.

Remark 6—In the incompressible limit, the bulk modulus approaches infinity, and we have 
Gvol(p) → p/ρ0, ρ → ρ0, βθ → 0. Therefore, the above constitutive relations are well-
defined in both compressible and incompressible regimes. In contrast, the constitutive 

relation (2.51) based on the Helmholtz free energy Hvol
R  will blow up in the incompressible 

limit.

Remark 7—It is interesting to notice that, although the volumetric energies Hvol
R  are 

different, their conjugate counterparts Gvol are very similar. The first two terms of their 
Taylor expansions are identical. Notice that, besides the convexity condition, physical 

intuition also suggests that the volumetric energy Hvol
R  achieve its minimum value at J = 1 

and blows up to infinity as J → 0 and J → ∞. We feel that these conditions may imply 
some mathematical properties for Gvol. These properties may help design constitutive 
relations directly based on Gvol. We believe future work in this area will be useful both 
theoretically and practically.

3. Variational Multiscale Analysis

The variational multiscale method was introduced as a general framework for subgrid-scale 

modeling in computational mechanics [49, 51]. As a generalization of the stabilized 

methods, it improves the stability bound for singularly perturbed problems and overcomes 

the inf-sup condition for saddle-point problems. Interested readers are referred to [1, 20, 59] 

for comprehensive reviews. In this section, we invoke the residual-based VMS method [5, 

95] to construct a formulation for the continuum problem derived in Section 2. Here, and in 

what follows, we restrict our discussion to the isothermal condition1. The system of 

equations (2.42)–(2.45) 2 are simplified as
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0 = ∂u
∂t χ

+ (∇xu) (v − v) − v, (3.1)

0 = βθ
∂ p
∂t χ

+ βθ (v − v) · ∇x p + ∇x · v, (3.2)

0 = ρ∂v
∂t χ

+ ρ (∇xv) (v − v) − ∇x · σ − ρb . (3.3)

The constitutive relations for the density ρ and the isothermal compressibility βθ can be 

simplified as univariate functions of the pressure:

ρ = ρ(p) =
dGvol(p)

dp

−1
, βθ = βθ(p) = −

d2Gvol(p)
dp2 /

dGvol(p)
dp . (3.4)

In this section, we consider the strong-form problem endowed with proper initial conditions 

and periodic boundary conditions. To simplify the notation, we choose V to denote both the 

trial and the test function spaces, which are assumed to be identical in this section. Let (·, 

·)Ωx denote the ℒ2 inner product over the domain Ωx. The variational formulation for the 

equations (3.1)–(3.3) can be stated as follows. Find y = {u, p, v}T ∈ V such that for ∀ w = 

{wu, wp, wv}T ∈ V,

1Strictly speaking, the isothermal condition is another constraint condition in thermodynamics. The Gibbs free energy degenerates 
since the relation (2.32) becomes invalid for a fixed temperature. One may choose the enthalpy as the thermodynamic potential to 
derive a complete theory for an isothermal system [15]. However, it can be shown that that the mechanical part of that system is 
identical to (3.1)–(3.3). Hence we do not provide that derivation for a tautological system in this work.
2In this work, we choose to discuss the VMS formulation based on the advective form (2.10)–(2.15) to simplify the derivation. 
However, for some cases, it is convenient to start with a conservative form [5, 131].

Liu and Marsden Page 26

Comput Methods Appl Mech Eng. Author manuscript; available in PMC 2019 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



B (w, y) = F (w),

B (w, y) = wu, ∂u
∂t χ

+ (∇xu) (v − v) − v
Ωx

+ wp, βθ
∂ p
∂t χ

+ βθ (v − v) · ∇x p + ∇x · v
Ωx

+ wv · ρ∂v
∂t χ

+ ρ (∇xv) (v − v)
Ωx

+ (∇xwv, σdev)Ωx
− (∇x · wv, p)Ωx

,

F (w) = (wv, ρb)Ωx
.

(3.5)

Now we introduce a projection operator P : V → V̄, wherein V̄ is a computable finite-

dimensional subspace of V. With the aid of the projection operator, we have a well-defined 

direct-sum decomposition of the function space V as

V = V ⊕ V′, V = PV, V′ = (I − P)V,

where I is the identity operator. Here, V′ represents the unresolved fine scales. With this 

space decomposition, we can decompose the trial solution y and the test function w as

y = y + y′, y = Py, y′ = (I − P) y,
w = w + w′, w = Pw, w′ = (I − P) w .

With the decomposition of w and by virtue of the linear dependency of the variational 

formulation B(w, y) in w, we can decompose the original variational formulation into a 

coupled system as

B (w, y + y′) = F (w), (3.6)

B (w′, y + y′) = F (w′) . (3.7)

The above two equations are usually referred to as the coarse-scale and the fine-scale 

equations [5]. We assume that B is Fréchet differentiable with respect to y ∈ V up to the n-th 

derivative. Using the Taylor’s Formula in the Banach space [2], the left-hand side of (3.7) 

can be expanded as
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B (w′, y + y′) = B (w′, y) + DyB (w′, y) [y′] + ⋯ + 1
n!Dy

n(w′, y)[y′, …, y′
n copies

] + o (‖y′‖V
n ) .

In the above, Dy
kB represents the k-th derivative of B in terms of the second argument y. It is 

a k-linear functional on V′ × ··· × V′. Moving B(w′, ȳ) to the right-hand side, we have

DyB (w′, y) [y′] + ⋯ + 1
n!Dy

n(w′, y) [y′, ⋯, y′] + o (‖y′‖V
n ) = F (w′) − B (w′, y) . (3.8)

One can represent the right-hand side of (3.8) as Res (ȳ) [w′], wherein Res (ȳ) is, formally, 

the residual of the coarse-scale lifted to V′*, the dual of V′. Based on (3.8), one may 

observe that y′ depends on Res (ȳ) and ȳ. Hence, y′ can be represented by an abstract 

mapping ℱ′,

y′ = ℱ′ (y, Res (y)) . (3.9)

Inserting (3.9) into (3.6), a closed, finite-dimensional system can be obtained for ȳ,

B (w, y + ℱ′ (y, Res (y))) = F (w′) . (3.10)

Given the analytic form of the mapping ℱ′, one may obtain ȳ from (3.10) and y′ from 

(3.9). The resulting y = ȳ + y′ is the exact solution of the original problem (3.5). However, 

obtaining an analytic form for ℱ′ is as hard as solving the original problem analytically, if 

not harder. A practical approach is to systematically design an approximated mapping ℱ̃′. 

Replacing ℱ′ in (3.9)–(3.10) by the approximated mapping, one may obtain a suite of 

computable formulations for the fine- and coarse-scale components.

Similar to the residual-based VMS modeling approach for turbulence [5], we introduce a 

perturbation series to represent y′ and derive a detailed pathway to construct ℱ̃′. The 

difference between our approach and the one adopted in [5] is that, in addition to the 

approximation of the fine-scale Green’s operator and the truncation of the perturbation 

series, we introduce one additional approximation procedure, i.e. the truncation of the Taylor 

expansion formula in (3.8). This additional step is due to the general nonlinear term that may 

appear in finite elasticity. Since the derivation of the fine-scale approximation goes deeper 

into functional analysis, we give the detailed derivation in Appendix A. In our model, the 

fine-scale component is approximated as

y′ ≈ ℱ∼′ (y, Res (y)) = − τRes (y), (3.11)
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wherein

τ =

τK 0 0
0 τC 0
0 0 τM

, Res(y) =

rK(y)

rC(y)

rM(y)
,

rK(y∼) = ∂u∼
∂t χ

+ (∇xu) (v − v) − v,

rC(yy) = β
∼

θ
∂ p
∂t χ

+ βθ (v − v) · ∇x p + ∇x · v,

rM(yy) = ρ∂v
∂t χ

+ ρ(∇xv) (v − v) + ∇x p − ∇x · σdev − ρb .

In the above, the choice τ = diag(τK, τC, τM) implies that the fine-scales are postulated to be 

decoupled. The precise formulas for the stabilization parameters τK, τC, and τM depend on 

the specific problem considered. For simple linear problems, τ can be computed as a local 

mean-value of the fine-scale Green’s function [49, 58]; sometimes, error estimates provide a 

guidance for the design of τ [32, 54]; for complex problems, scaling arguments are usually 

made for the design of τ [121]. The detailed formula of τ for solid and fluid dynamics will 

be given in the subsequent sections. With (3.11), we can complete our VMS formulation as 

follows,

B (w, y − τRes (w)) = F(w) . (3.12)

This formulation provides a basis for our finite element formulations in the subsequent 

sections.

4. Formulation for solid dynamics

In this section, we restrict our discussion to hyper-elastodynamics. Within the general VMS 

framework developed in Section 3, the problem is spatially discretized using the VMS 

formulation. The generalized-α method is utilized for temporal discretization. As is shown 

in [107], a block decomposition of the tangent matrix reveals that the problem can be solved 

in a segregated manner without loosing consistency in the nonlinear solver. Lastly, we 

discuss the choice of the stabilization parameters.

4.1. Initial-boundary value problem

We consider the hyper-elastodynamic problem written in the Lagrangian reference frame,
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0 = du
dt − v, in Ωx, (4.1)

0 = βθ(p)dp
dt + ∇x · v in Ωx, (4.2)

0 = ρ(p)dv
dt − ∇x · σdev + ∇x p − ρ(p)b, in Ωx . (4.3)

The time interval of interest is denoted as (0, T), with T > 0. The boundary Γx = ∂Ωx can be 

partitioned into two non-overlapping subdivisions: Γx = Γx
g ∪ Γx

h, wherein, Γx
g represents the 

Dirichlet part of the boundary, and Γx
h represents the Neumann part of the boundary. 

Boundary conditions for this problem are imposed as

u = g, on Γx
g, (4.4)

v = dg
dt , on Γx

g, (4.5)

(σdev − pI)n = h, on Γx
h . (4.6)

Given the initial data u0, p0, and v0, the initial conditions for the strong-form problem (4.1)–

(4.3) can be stated as

u(x, 0) = u0(x), p(x, 0) = p0(x), v(x, 0) = v0(x) . (4.7)

Here we only consider hyperelastic materials, and the deviatoric part of the Cauchy stress 

takes the following specific form

σdev = J−1F∼ ℙ:S
∼

F∼T , S
∼ = 2

∂Giso
R (C∼)

∂C
∼ .
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The constitutive relations ρ = ρ(p) and βθ = βθ(p) are given by the relations (3.4). To 

simplify our subsequent discussion, we introduce the first Piola-Kirchhoff stress P := JσF−T, 

and P̂ := JσdevF−T.

Remark 8—Although upon first glance, the mass equation (4.2) may look similar to the 
pressure rate equation with artificial compressibility proposed by A.J. Chorin in [18], the 
concept is different. The isothermal compressibility coefficient βθ here is a real physical 
quantity, not a numerical artifact. It is zero for fully incompressible materials.

4.2. Variational multiscale formulation

Based on the VMS formulation derived in Section 3, the formulation for the strong-form 

problem (4.1)–(4.3) can be constructed conveniently. Consider a discretization of the current 

domain into finite elements. The union of element interiors is denoted by Ωx′ . Let us denote 

the finite dimensional trial solution spaces for the solid displacement, pressure, and velocity 

in the current domain as uh, ph, and vh, respectively. We assume that functions in the 

trial spaces satisfy the Dirichlet boundary conditions (4.4)–(4.5) on Γx
g. Let uh, ph, and 

vh denote the corresponding test function spaces. The VMS formulation can be stated as 

follows. Find yh(t) := {uh(t), ph(t), vh(t)}T ∈ uh × ph × vh such that for t ∈ [0, T),

0 = Bk (wuh
; y.h, yh): = ∫

Ωx
wuh

·
duh
dt − vh dΩx, (4.8)

0 = Bp (wph
; y.h, yh): = ∫

Ωx
wph

βθ(ph)
dph
dt + wph

∇x · vhdΩx − ∫
Ωx′

∇xwph
· v′dΩx, (4.9)

0 = Bm (wvh
; y.h, yh): = ∫

Ωx
wvh

· ρ(ph)
dvh
dt + ∇xwvh

:σdev(uh) − ∇x · wvh
ph − wvh

· ρ(ph

)bdΩx − ∫
Γx

hwvh
· hdΓx − ∫

Ωx′
∇x · wvh

p′dΩx,

(4.10)

v′: = − τM ρ(ph)
dvh
dt − ∇x · σdev(uh) + ∇x ph − ρ(ph)b , (4.11)
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p′: = − τC βθ(ph)
dph
dt + ∇x · vh , (4.12)

for ∀{wuh, wph, wvh} ∈ uh × ph × vh, with yh(0) = {uh0, ph0, vh0}T. Here uh0, ph0, and 

vh0 are the ℒ2 projections of the initial data onto the finite dimensional spaces uh, ph, 

and vh, respectively. The subscript h denotes a mesh parameter. In the above and 

henceforth, the formulations for the kinematic equations, the mass equation, and the linear 

momentum equations are indicated by the subscripts k, p and m, respectively.

Remark 9—The VMS formulation (4.8)–(4.12) is derived directly from (3.12) by adopting 
the finite dimensional trial solution spaces as V̄ and taking the following assumptions,

1. (wuh, v′)Ωx = 0;

2. (wuh, du′/dt)Ωx = (wph, βθ(ph + p′)dp′/dt)Ωx = (wvh, ρ(ph + p′)dv′/dt)Ωx = 0;

3. u′ = v′ = 0 on the boundary;

4. (wph, βθ(ph + p′)dp̄/dt)Ωx = (wph, βθ(ph)dph/dt)Ωx;

5. (wvh, ρ(ph + p′)dvh/dt)Ωx = (wvh, ρ(ph)dvh/dt)Ωx;

6. (∇xwvh, σdev (uh + u′))Ωx = (∇xwvh, σdev (uh))Ωx.

The assumptions are adopted to simplify the numerical model. Similar assumptions have 
been made in the residual-based VMS modeling for turbulence [5].

The VMS formulation (4.8)–(4.12) can be pulled back to the material frame of reference. To 

obtain that, we define the test functions defined in the material frame of reference as WUh(X, 

t) := wuh(φ(X, t), t), WPh(X, t) := wph(φ(X, t), t), WVh(X, t) := wvh(φ(X, t), t), and we define

Uh(X, t): = uh(φ(X, t), t), Ph(X, t): = ph(φ(X, t), t), Vh(X, t): = vh(φ(X, t), t),
B(X, t): = b(φ(X, t), t), H(X, t): = h(φ(X, t), t), G(X, t): = g(φ(X, t), t) .

The corresponding trial solution spaces on ΩX are denoted as Uh, Ph, and Vh; the 

corresponding test function spaces are denoted as Uh, Ph, and Vh. The VMS 

formulation in the material frame of reference can be stated as follows. Find Yh(t) := {Uh(t), 
Ph(t), Vh(t)}T ∈ Uh × Ph × Vh, such that for t ∈ [0, T),

0 = Bk WUh
; Y

.
h, Yh : = ∫

ΩX
JhWUh

·
dUh
dt − Vh dΩX, (4.13)
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0 = Bp WPh
; Y

.
h, Yh : = ∫

ΩX
JhWPh

βθ(Ph)dP
dt + WPh

∇XVh: (JhFh
−T) dΩX

+ ∫
ΩX′

(∇XWPh
Fh

−1) · τM Jhρ(Ph)
dVh
dt − ∇X · P(Uh) + (JhFh

−T)∇XPh − Jhρ(Ph)B dΩX,

(4.14)

0 = Bm WVh
; Y

.
h, Yh

: = ∫
ΩX

WVh
· Jhρ(Ph)

dVh
dt + ∇XWVh

:P(Uh) − ∇XWVh
: (JhFh

−T) Ph − WVh
· (Jhρ(Ph)B) dΩX

− ∫
ΓX

HWVh
· HdΓX + ∫

ΩX′
(∇XWVh

:Fh
−T) τC Jhβθ(Ph)

dPh
dt + ∇XVh: JhFh

−T

dΩX,

(4.15)

for ∀{WUh, WPh, WVh} ∈ Uh × Ph × Vh, with Jh = det(Fh), Fh = ∇XUh + Ind, Ind being 

the nd × nd identity matrix, Ẏh(t) := {dUh/dt, dPh/dt, dVh/dt}T, and Yh(0) = {Uh0, Ph0, Vh0}T. 

Here Uh0, Ph0, and Vh0 are the ℒ2 projections of the initial data onto the finite dimensional 

spaces Uh, Ph, and Vh, respectively.

Remark 10—If piecewise linear elements are used for the spatial discretization, the term,

∫Ωx′
∇xwph

· τm∇x · σdev(uh)dΩx,

in (4.9) and the term

∫ΩX′
(∇XWPh

Fh
−1) · τm ∇X · P(Uh) dΩX,

in (4.14) vanish.
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4.3. Temporal discretization

A desirable time integration algorithm for structural dynamics should satisfy at least three 

requirements: unconditional stability, second-order accuracy, and dissipation on high-

frequency modes. The generalized-α method is one type of time integration schemes that 

satisfy these requirements [19, 62, 65]. For this reason, we adopt this method for time 

integration in this work. The time interval [0, T) is divided into a set of nts subintervals of 

size Δtn := tn+1 − tn delimited by a discrete time vector tn n = 0
nts . The solution vector and its 

first-order time derivative evaluated at the time step tn are denoted as Yn and Ẏn; the basis 

function for the discrete function spaces is denoted as N̂
A. With those, the residual vectors 

can be represented as

Rk Y
.
n, Yn : = Bk NAei; Y

.
n, Yn ,

Rp Y
.
n, Yn : = Bp NA; Y

.
n, Yn ,

Rm Y
.
n, Yn : = Bm NAei; Y

.
n, Yn .

The fully discrete problem can be stated as follows. At time step tn, given Ẏn, Yn, the time 

step Δtn, and the parameters αm, αf, and γ, find Ẏn+1 and Yn+1 such that

Rk(Y
.
n + αm

, Yn + α f
) = 0, (4.16)

Rp(Y
.
n + αm

, Yn + α f
) = 0, (4.17)

Rm(Y
.
n + αm

, Yn + α f
) = 0, (4.18)

Yn + 1 = Yn + ΔtnY
.
n, γΔtn Y

.
n + 1 − Y

.
n , (4.19)

Y
.
n + αm

= Y
.
n + αm Y

.
n + 1 − Y

.
n , (4.20)

Yn + α f
= Yn + α f (Yn + 1 − Yn) . (4.21)
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The parameters αm, αf, and γ define the time integration scheme. It has been shown in [62] 

that, for linear problems, second-order accuracy in time can be achieved, provided

γ = 1
2 + αm − α f ,

and unconditional stability can be attained if

αm ≥ α f ≥ 1
2 .

The generalized-α method allows one to control the damping effect on the high frequency 

modes while maintain the accuracy of the temporal scheme. This desired property is 

achieved for first-order linear equations by choosing the parameters as

αm = 1
2

3 − ϱ∞
1 + ϱ∞

, α f = 1
1 + ϱ∞

, γ = 1
1 + ϱ∞

, (4.22)

wherein ϱ∞ denotes the spectral radius of the amplification matrix at the highest mode [19, 

62]. In long-time nonlinear calculations, it is advisable to choose ϱ∞ strictly less than one to 

avoid detrimental effects from the high frequency modes [6, 62, 74]. Unless otherwise 

specified, we choose ϱ∞ = 0.5 in this work.

Remark 11—Using the generalized-α method for the first-order structural dynamic 
problem has recently been shown to enjoy improved numerical properties in comparison 
with the generalized-α method applied for the second-order structural dynamic systems 
[65].

4.4. A segregated algorithm

It can be shown that the fully discrete kinematic equation (4.16) is equivalent to

Rk(Y
.
n + αm

, Yn + α f
): = U

.
n + αm

− Vn + α f
= 0 . (4.23)

Invoking the relations (4.19)–(4.21), the left-hand side of above equation can be written 

explicitly as

Rk(Y
.
n + αm

, Yn + α f
) =

αm
γΔtn

(Un + 1 − Un) + 1 −
αm
γ U

.
n − α f Vn + 1 − (1 − α f )Vn .

Liu and Marsden Page 35

Comput Methods Appl Mech Eng. Author manuscript; available in PMC 2019 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Equations (4.17), (4.18), and (4.23) constitute a system of nonlinear algebraic equations and 

can be solved by the Newton-Raphson method. The solution vector Yn+1 at the time step tn+1 

with n = 0, ···, nts −1 is solved iteratively by means of a predictor multi-corrector scheme. 

We define

Yn + 1, (i): = Un + 1, (i), Pn + 1, (i), Vn + 1, (i)
T

as the solution vector at the Newton-Raphson iteration step i = 0, ···, imax. We denote that the 

residual vectors evaluated at the iteration stage i as

R(i): = Rk, (i), Rp, (i), Rm, (i)
T, (4.24)

Rk, (i): = Rk Y
.
n + αm, (i), Yn + α f , (i) , (4.25)

Rp, (i): = Rp Y
.
n + αm, (i), Yn + α f , (i) , (4.26)

Rm, (i): = Rm Y
.
n + αm, (i), Yn + α f , (i) . (4.27)

The tangent matrix of the above nonlinear system is denoted as

K(i) =

K
k, (i), U

. K
k, (i), P

. K
k, (i), V

.

K
p, (i), U

. K
p, (i), P

. K
p, (i), V

.

K
m, (i), U

. K
m, (i), P

. K
m, (i), V

.
,

wherein

Kk, (i), U
. : = αm

∂Rk, (i) Y
.
n + αm, (i), Yn + α f , (i)

∂U
.

n + αm

= αmI, (4.28)
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Kk, (i), P
. : = 0, (4.29)

Kk, (i), V
. : = α f γΔtn

∂Rk, (i) Y
.
n + αm, (i), Yn + α f , (i)

∂Vn + α f

= − α f γΔtnI, (4.30)

Kp, (i), U
. : = α f γΔtn

∂Rp, (i) Y
.
n + αm, (i), Yn + α f , (i)

∂Un + α f

, (4.31)

Kp, (i), P
. : = αm

∂Rp, (i) Y
.
n + αm, (i), Yn + α f , (i)

∂P
.
n + αm

+ α f γΔtn
∂Rp, (i) Y

.
n + αm, (i), Yn + α f , (i)

∂Pn + α f

,

(4.32)

Kp, (i), V
. : = αm

∂Rp, (i) Y
.
n + αm, (i), Yn + α f , (i)

∂V
.
n + αm

+ α f γΔtn
∂Rp, (i) Y

.
n + αm, (i), Yn + α f , (i)

∂Vn + α f

,

(4.33)

Km, (i), U
. : = α f γΔtn

∂Rm, (i) Y
.
n + αm, (i), Yn + α f , (i)

∂Un + α f

, (4.34)
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Km, (i), P
. : = αm

∂Rm, (i) Y
.
n + αm, (i), Yn + α f , (i)

∂P
.
n + αm

+ α f γΔtn
∂Rm, (i) Y

.
n + αm, (i), Yn + α f , (i)

∂Pn + α f

,

(4.35)

Km, (i), V
. : = αm

∂Rm, (i) Y
.
n + αm, (i), Yn + α f , (i)

∂V
.
n + αm

+ α f γΔtn
∂Rm, (i) Y

.
n + αm, (i), Yn + α f , (i)

∂Vn + α f

,

(4.36)

Notice that (4.28) and (4.30) are diagonal matrices. This special structure of the two sub-

matrices can be exploited to perform a block decomposition of the tangent matrix K:

K(i) =

I 0 0
1

αm
K

p, (i), U
. K

p, (i), P
. K

p, (i), V
. +

α f γΔtn
αm

K
p, (i), U

.

1
αm

K
m, (i), U

. K
m, (i), P

. K
m, (i), V

. +
α f γΔtn

αm
K

m, (i), U
.

αmI 0 −α f γΔtnI
0 I 0
0 0 I

.

With the above decomposition, the original linear system of equations for the Newton-

Raphson iteration,

K(i)ΔY
.
n + 1, (i) = − R(i) .

can be solved in a two-stage segregated algorithm. In stage one, the following linear system 

of equations are solved to obtain the intermediate unknowns 

ΔU
.
n + 1, (i)
∗ , ΔP

.
n + 1, (i)
∗ , ΔV

.
n + 1, (i)
∗ T

.

I 0 0
1

αm
Kp, (i), U

. Kp, (i), P
. Kp, (i), V

. +
α f γΔtn

αm
Kp, (i), U

.

1
αm

Km, (i), U
. Km, (i), P

. Km, (i), V
. +

α f γΔtn
αm

Km, (i), U
.

ΔU
.
n + 1, (i)
∗

ΔP
.
n + 1, (i)
∗

ΔV
.
n + 1, (i)
∗

= −
Rk, (i)
Rp, (i)
Rm, (i)

. (4.37)
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In stage two, one solves the upper triangular matrix problem

αmI 0 −α f γΔtnI
0 I 0
0 0 I

ΔU
.

n + 1, (i)

ΔP
.
n + 1, (i)

ΔV
.
n + 1, (i)

=

ΔU
.
n + 1, (i)
∗

ΔP
.
n + 1, (i)
∗

ΔV
.
n + 1, (i)
∗

(4.38)

to get the increments [ΔU̇
n+1,(i),ΔṖn+1,(i),ΔV̇

n+1,(i)]T for the iteration step i. From (4.37) and 

(4.38), we have the following observations,

αmΔU
.
n + 1, (i) − α f γΔtnΔV

.
n + 1, (i) = ΔU

.
n + 1, (i)
∗ = − R(i)

k ,

ΔP
.
n + 1, (i) = ΔP

.
n + 1, (i)
∗ ,

ΔV
.
n + 1, (i) = ΔV

.
n + 1, (i)
∗ .

With the above relations, the linear system (4.37) can be reduced to a smaller problem,

Kp, (i), P
. Kp, (i), V

. +
α f γΔtn

αm
Kp, (i), U

.

Km, (i), P
. Km, (i), V

. +
α f γΔtn

αm
Km, (i), U

.

ΔP
.
n + 1, (i)

ΔV
.
n + 1, (i)

= −
Rp, (i) − 1

αm
Kp, (i), U

. Rk, (i)

Rm, (i) − 1
αm

Km, (i), U
. Rk, (i)

. (4.39)

The linear system (4.38) can be reduced to the relation

ΔU
.

n + 1, (i) =
α f γΔtn

αm
ΔV

.
n + 1, (i) − 1

αm
R(i)

k . (4.40)

Therefore, the solution procedure can be consistently rewritten into two smaller problems. 

One first solves the equation (4.39) to obtain [ΔṖn+1,(i),ΔV̇
n+1,(i)]T. Then the displacement 

increment ΔU̇
n+1,(i) can be obtained through the relation (4.40). We can summarize the 

above discussion as the following segregated predictor multi-corrector algorithm.

Predictor stage—Set:

Yn + 1, (0) = Yn,

Y
.
n + 1, (0) = γ − 1

γ Y
.
n .

Multi-corrector stage—Repeat the following steps i = 1, …, imax:
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1. Evaluate the solution vectors at the intermediate stages:

Y
.
n + αm, (i) = Y

.
n + αm Y

.
n + 1, (i − 1) − Y

.
n ,

Yn + α f , (i) = Yn + α f Yn + 1, (i − 1) − Yn .

2. Assemble the residual vectors R(i) based on (4.24)–(4.27) using the solution 

evaluated at the intermediate stages.

3. Let ||R(i)||l2 denote the l2-norm of the residual vector. If either one of the 

following stopping criteria

‖R(i)‖l2
‖R(0)‖l2

≤ tolR, ‖R(i)‖l2
≤ tolA,

is satisfied for prescribed tolerances tolR, tolA, set the solution vector at time step 

tn+1 as Ẏn+1 = Ẏn+1,(i−1) and Yn+1 = Yn+1,(i−1), and exit the multi-corrector stage; 

otherwise, continue to step 4.

4. Assemble the tangent matrices (4.31)–(4.36).

5. Solve the linear system of equations (4.39) for ΔṖn+1,(i) and ΔV̇
n+1,(i).

6. Obtain ΔU̇
n+1,(i) from the solution ΔV̇

n+1,(i) according to the relation (4.40).

7. Update the solution vectors as

Y
.
n + 1, (i) = Y

.
n + 1, (i) + ΔY

.
n + 1, (i),

Yn + 1, (i) = Yn + 1, (i) + γΔtnΔY
.
n + 1, (i) .

and return to step 1.

Since the kinematic equation is linear, it is reasonable to expect that this equation can be 

solved in one Newton-Raphson iteration. Indeed, we have the following proposition.

Proposition 5—In the above algorithm, R̄
k,(i) = 0 for i ≥ 2.

The proof of this proposition is given in Appendix B. Due to this fact, the right-hand side of 

(4.39) becomes −[Rp,(i),Rm,(i)]T, and the relation (4.40) reduces to

ΔU
.
n + 1, (i) =

α f γΔtn
αm

ΔV
.
n + 1, (i), for i ≥ 2.

Remark 12—In general, R(1)
k ≠ 0. In the algorithm we presented, the same-Y predictor [62] 

is adopted, and it is straightforward to show that, with this predictor,
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R(1)
k =

αm
γΔtn

(Un + 1, (0) − Un) + 1 −
αm
γ U

.
n − α f Vn + 1, (0) − (1 − α f )Vn

= 1 −
αm
γ U

.
n − Vn .

If the time-stepping parameters are αm = αf = γ = 1 and the predictors are chosen as

Un + 1, (0) = Un, Vn + 1, (0) = 0,

one can get R(1)
k = 0. Setting αm = αf = γ = 1 corresponds to the backward Euler method. In 

[102], a non-traditional predictor is chosen to enforce R(1)
k = 0.

Remark 13—This segregated algorithm based on block decomposition was first proposed 
by G. Scovazzi and co-authors in [107]. This solution procedure (4.39)–(4.40) significantly 
reduces the size of the linear system for the implicit solver. In comparison with the second-
order pure-displacement formulation, writing the system into a first-order system does not 
lead to a significant increase in computational cost. As will be revealed in Section 5.4, the 
first-order formulation is very appealing for FSI problems.

4.5. Stabilization parameters

The design of the stabilization parameter is of critical importance for the behavior of the 

stabilized finite element formulation. In this work, a practical setting of the stabilization 

parameters is

τM = τMInd
, τM = cm

Δx
cρ , τC = cccΔxρ,

wherein Δx is the diameter of the circumscribing sphere of the tetrahedral element, cm and cc 

are two non-dimensional parameters, c is the maximum wave speed in the solid body. In this 

work, the formula for c is chosen based on a small-strain isotropic linear elastic material [54, 

107]. For compressible materials, c is given by the bulk wave speed

c = λ + 2μ
ρ0

,

and for incompressible materials, c is given by the shear wave speed

c = μ
ρ0

.
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Remark 14

The stabilization parameter is the crux of the design of the VMS formulation. In [54], the 
authors proposed two choices of the stabilization parameter for the small-strain 
elastodynamic problem: 0.5Δx/c and 0.5Δt. In [37, 70], the stabilization parameter is 
designed based on Δt. In [107], the authors proposed a set of stabilization parameters as 
cs15Δt/2cCFL or cs15Δx/2c, wherein cs15 is a non-dimensional parameter, and cCFL is the 
global CFL number. In [102], the stabilization parameter for compressible materials is 
designed as

1
2 max Δx

100c , min Δt, Δx
c ,

and

cr16
2 max Δx

100c , min Δt, Δx
c

for incompressible materials, with cr16 in the range [0.01, 0.03]. The purpose of this design 
is to enhance the robustness of the algorithm when the time step Δt is too large or too small. 
We favor the design based on Δx/c to make the solution independent of the time step size.

Remark 15—In the current design, the elastic wave speed c is based on the small-strain 
elastic theory. By exploiting the eigenvalue structure of the large deformation problem, one 
can obtain the elastic wave speed for nonlinear materials [10, 36]. This will surely lead to a 
better design of the stabilization parameters.

5. Formulation for fluid dynamics and fluid-structure interaction

In this section, we present a new framework for FSI problems based on the unified 

continuum model derived in Section 2. The formulation for solid dynamics is directly 

adopted from the one developed in Section 4; the formulation for fluid dynamics is 

constructed based on the general VMS formulation given in Section 3. The finite element 

formulation, time integration, and a new solution procedure are discussed in this section. In 

all discussions related to FSI problems, we use a superscript f to indicate quantities related 

to fluids, a superscript m to indicate quantities related to the mesh motion in the fluid 

subdomain, and a superscript s to indicate quantities related to solids.

5.1. Initial-boundary value problem

—In this section, we present the initial-boundary value problem for the FSI problem. The 

time interval of interest is denoted as (0, T), with T > 0. The domain occupied by the 

continuum body in the referential frame Ωχ admits the decomposition
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Ω χ = Ω χ
f ∪ Ω χ

s , ∅ = Ω χ
f ∩ Ω χ

s .

Ω χ
f  and Ω χ

s  are the two subdomains occupied by the fluid and solid respectively. The fluid-

solid interface is a ℝnd−1-dimensional manifold and is denoted as Γ χ
I . The current domain 

Ωχ can be decomposed correspondingly as

Ωx = Ωx
f ∪ Ωx

s , ∅ = Ωx
f ∩ Ωx

s .

The boundary Γχ = ∂Ωχ can be partitioned into four non-overlapping subdivisions:

Γx = Γx
gs ∪ Γx

g f ∪ Γx
hs ∪ Γx

h f .

In the above decomposition, Γx
gs represents the Dirichlet part of the solid boundary; Γx

g f

represents the Dirichlet part of the fluid boundary; Γx
hs represents the Neumann part of the 

solid boundary; Γx
h f  represents the Neumann part of the fluid boundary. The unit outward 

normal vector to Γχ is denoted as n. The fluid-solid interface in the current configuration is 

denoted as Γx
I ; ns and nf represent the unit outward normal vector to Ωx

s  and Ωx
f  on the 

interface Γx
I , respectively. The configurations and the boundary decomposition are illustrated 

in Figure 2. The referential configuration can be defined by the Lagrangian-to-referential 

map χ = φ̃(X, t). We define the map φ̃ in the solid subdomain ΩX
s  as the identity map

χ = φ∼(X, t) = X, for X ∈ ΩX
s and t ≥ 0. (5.1)

Due to the composition relation (2.3), one has φ = φ ∘ id
ΩX

s . This implies that the material 

description is adopted in the solid subdomain. In the fluid subdomain, the referential 

configuration can be determined by the referential-to-Eulerian map φ̂. Typically, one 

determines ûm in Ω χ
f  first, and the referential-to-Eulerian map in the fluid subdomain is 

given by the definition (2.1). The motion of the referential domain needs to maintain the 

regularity for functions defined on Ωχ [94]. Oftentimes, the construction of this mapping is 

tailored to specific problems. In this work, we consider two options: the harmonic extension 

algorithm and the pseudo-linear-elasticity algorithm.
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The harmonic extension algorithm: One simple and effective way of constructing the map 

φ̂ is by solving for ûm as a harmonic extension of the trace of Us on Γ χ
I  [131], viz.

− ∇ χ · (∇ χ um) = 0, in Ω χ
f , (5.2)

um = Us, on Γ χ
I . (5.3)

Once ûm is obtained, the mesh velocity v̂m in the fluid subdomain can be calculated as

vm = ∂φ
∂t χ

= ∂um

∂t χ
in Ω χ

f . (5.4)

In all, we define the mesh displacement û and the mesh velocity v̂ as

u =
Us in Ω χ

s = ΩX
s

um in Ω χ
f

, v =
Vs in Ω χ

s = ΩX
s

vm in Ω χ
f

.

The pseudo-linear-elasticity algorithm: One may also model the motion of the fluid 

subdomain by solving a succession of pesudo-linear-elastostatic equations [63, 131]. We 

consider a time instant t̃ < t such that t̃ is close to t. In numerical computations, t̃ is often 

conveniently chosen as the previous time step. The mesh displacement at time t̃ < t is given 

by û(χ, t̃):= x̃−χ = φ̂(χ, t̃)−χ. Consequently, one has the following identity,

φ ( χ , t) = φ ( χ , t∼) + u ( χ , t) − u ( χ , t∼) .

Freezing the time instants t̃ and t, we define ũm(x̃) as ũm ∘ φ̂(χ, t̃):= û(χ, t) − û(χ, t̃). Given 

the fictitious Lamé parameters λm and μm, ûm is determined by solving the following linear 

elastostatic equations:

∇x∼ · μm ∇x∼u∼m + (∇x∼u∼m)T + λm∇x∼ · u∼mI = 0, in Ωx∼
f , (5.5)

u∼m(x∼) = ut
s − u t∼

s ∘ φ−1 (x∼, t∼), on Γx∼
I . (5.6)
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In the above, ut
s and u t∼

s  are the solid displacements in the current configurations at time t and 

t̃, respectively. In our implementation, the fictitious Lamé parameters are divided by the 

Jacobian determinant of the element mapping [63]. This effectively increases the robustness 

of the mesh moving algorithm.

The fluid-solid body can be viewed as a single continuum body governed by the following 

balance equations.

0 = βθ(p)∂ p
∂t χ

+ βθ(p) (v − v) · ∇x p + ∇x · v, in Ωx, (5.7)

0 = ρ(p)∂v
∂t χ

+ ρ(p) (∇xv) (v − v) − ∇x · σdev + ∇x p − ρ(p)b, in Ωx . (5.8)

In the fluid subdomain, we consider viscous incompressible fluid flow, with the constitutive 

relations given in Section 2.3. Due to the fact that βθ
f (p) = 0, the strong-form problem (5.7)–

(5.8) in the fluid subdomain can be further simplified as

0 = ∇x · v f , in Ωx
f , (5.9)

0 = ρ0
f ∂v f

∂t χ
+ ρ0

f (∇xv f ) (v f − v) − ∇x · σdev
f + ∇x p f − ρ0

f b, in Ωx
f . (5.10)

In the solid subdomain, we have v̂ = v due to the Lagrangian description (5.1) adopted in the 

solid subproblem. Consequently, the strong-form problem (5.7)–(5.8) for the solid can be 

explicitly written as

0 = dus

dt − vs, in Ωx
s , (5.11)

0 = βθ
s(ps)dps

dt + ∇x · vs in Ωx
s , (5.12)
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0 = ρs(ps)dvs

dt − ∇x · σdev
s + ∇x ps − ρs(ps)b, in Ωx

s . (5.13)

Given the Dirichlet data gs and gf and the boundary tractions hs and hf, the boundary 

conditions can be stated as

us = gs, on Γx
gs,

vs = dgs

dt , on Γx
gs,

v f = g f , on Γx
g f ,

(σdev
s − psI)n = hs, on Γx

hs,

(σdev
f − p f I)n = h f , on Γx

h f .

In the fluid subdomain, the initial conditions are given by a divergence-free velocity field v0
f ,

v f (x, 0) = v0
f (x) . (5.14)

In the solid subdomain, the initial conditions are specified as

us (x, 0) = u0
s (x), ps (x, 0) = p0

s (x), vs (x, 0) = v0
s (x) . (5.15)

5.2. Variational multiscale formulation

In this section, we apply the VMS formulation developed for the general continuum problem 

in Section 3 to the FSI problem. The VMS formulation for the solid problem has been 

derived in Section 4.2. For completeness of the FSI formulation, it is stated as follows. Let 

𝒮uh
s , 𝒮ph

s , and 𝒮vh
s  denote the finite dimensional trial solution spaces for the solid 

displacement, pressure, and velocity in the current domain, and let 𝒱uh
s , 𝒱ph

s , and 𝒱vh
s

denote the corresponding test function spaces. We assume that the Dirichlet boundary 

conditions are built into the definitions of the trial solution spaces. The variational multiscale 

formulation is stated as follows. Find yh
s (t): = {uh

s (t), ph
s (t), vh

s (t)}T ∈ 𝒮uh
s × 𝒮ph

s × 𝒮vh
s  such 

that
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Bk
s (wuh

s ; y.h
s , yh

s) = 0, ∀wuh
s ∈ 𝒱uh

s , (5.16)

Bp
s (wph

s ; y.h
s , yh

s) = 0, ∀wph
s ∈ 𝒱ph

s , (5.17)

Bm
s (wvh

s ; y.h
s , yh

s) = 0, ∀wvh
s ∈ 𝒱vh

s , (5.18)

where

Bk
s (wu

s ; y.h
s , yh

s): = ∫
Ωx

s wuh
s ·

duh
s

dt − vh
s dΩx, (5.19)

Bp
s (w

ps
s ; y.h

s , yh
s): = ∫

Ωx
s wph

s βθ
s (ph

s)
dph

s

dt + ∇x · vh
s dΩx

+ ∫
Ωx

s ′
∇xwph

s · τM
s ρs(ph

s)
dvh

s

dt − ∇x · σdev
s (uh

s) + ∇x ph
s − ρs(ph

s)b dΩx,

(5.20)

Bm
s (wv

s; y.h
s , yh

s): = ∫
Ωx

s wvh
s · ρs(ph

s)
dvh

s

dt + ∇xwvh
s :σdev

s (uh
s) − ∇x · wvh

s ph
s − wvh

s · ρs(ph
s)bdΩx

− ∫
Γx

hs
wvh

s · hsdΓx + ∫
Ωx

s ′
∇x · wvh

s τC
s βθ

s(ph
s)

dph
s

dt + ∇x · vh
s dΩx .

(5.21)

In the above formulation, Ωx
s ′ represents the union of solid element interiors. The above 

formulation can be conveniently pulled back to the material frame of reference, as was done 

in Section 4.2.

Next, we give the formulation for the motion of the fluid subdomain. We only present the 

variational formulation for the harmonic extension algorithm. The formulation based on the 
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pseudo-linear-elastic algorithm can be similarly constructed. Let 𝒮uh
m  denote the trial 

solution space of the mesh displacement uh
m, and let 𝒱uh

m  denote the corresponding test 

function space. The kinematic boundary condition uh
m = Uh

s  on Γ χ
I  are built into the definition 

of the space 𝒮uh
m . Find uh

m ∈ 𝒮uh
m  such that

Bm (wh
m; uh

m) = 0, ∀wh
m ∈ 𝒱uh

m , (5.22)

where

Bm (wh
m; uh

m): = ∫
Ω χ

f ∇ χ wh
m · ∇ χ uh

mdΩ χ . (5.23)

With uh
m, the mesh velocity in the fluid subdomain can be obtained as

vh
m: =

∂uh
m

∂t
χ

.

Lastly, we present the VMS formulation for the fluid problem. Let 𝒮ph
f  and 𝒮vh

f  denote the 

trial solution space of the fluid pressure and velocity, and let 𝒱ph
f  and 𝒱vh

f  denote the test 

function spaces. We assume that functions in the space 𝒮vh
f  satisfy the Dirichlet boundary 

condition on Γx
g f . The VMS formulation is stated as follows. Find 

yh
f (t): = ph

f (t), vh
f (t) ∈ 𝒮ph

f × 𝒮vh
f  such that

Bp
f wph

f ; y.h
f , yh

f = 0, ∀wph
f ∈ 𝒱ph

f , (5.24)

Bm
f wvh

f ; y.h
f , yh

f = 0, ∀wvh
f ∈ 𝒱vh

f , (5.25)

where
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Bp
f wp

f ; y.h
f , yh

f : = ∫
Ωx

f wph
f ∇x · vh

f dΩx − ∫
Ωx

f ∇xwph
f · v f ′dΩx, (5.26)

Bm
f wv

f ; y.h
f , yh

f ; vh : = ∫
Ωx

f wvh
f · ρ0

f ∂vh
f

∂t
χ

+ ρ0
f ∇xvh

f vh
f − vh

m dΩx

− ∫
Ωx

f ∇x · wv
f ph

f dΩx + ∫
Ωx

f ∇xwvh
f :σdev

f (vh
f )dΩx − ∫

Ωx
f wvh

f · ρ0
f bdΩx − ∫

Γx
h f

wvh
f · h f dΓx

− ∫
Ωx

f ′
∇xwvh

f : ρ0
f v f ′ ⊗ vh

f − vh
m dΩx − ∫

Ωx
f ′

∇xwvh
f : ρ0

f vh
f ⊗ v f ′ dΩx

− ∫
Ωx

f ′
∇xwvh

f : ρ0
f v f ′ ⊗ v f ′ dΩx − ∫

Ωx
f ′

∇x · wvh
f p f ′dΩx,

(5.27)

v f ′: = − τM
f ρ0

f ∂vh
f

∂t
χ

+ ρ0
f ∇xvh

f vh
f − vh

m + ∇x ph
f − ∇x · σdev

f (vh
f ) − ρ0

f b . (5.28)

p f ′: = − τC
f ∇x · vh

f , (5.29)

τM
f : = τM

f Ind
, (5.30)

τM
f : = 1

ρ0
f

CT

Δt2
+ vh

f − vh
m · G vh

f − vh
m + CI

μ
ρ0

f

2
G:G

− 1
2
, (5.31)

τC
f : =

ρ0
f

τMg · g , (5.32)
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Gi j: = ∑
k = 1

nd ∂ξk
∂xi

∂ξk
∂x j

, (5.33)

G:G: = ∑
i, j = 1

nd
Gi jGi j, (5.34)

gi: = ∑
j = 1

nd ∂ξ j
∂xi

, (5.35)

g · g: = ∑
i = 1

nd
gigi . (5.36)

In the above, ξ = {ξi}i = 1
nd  are the coordinates of an element in the parent domain, and CI is a 

positive constant derived from an element-wise inverse estimate [32]. Unless otherwise 

specified, the value of CT is taken to be 4. The value of CI is independent of the mesh size 

but relies on the polynomial order of the interpolation basis functions. For linear 

interpolations, CI is suggested to be 36 [29, p. 65].

5.3. Formulation for the coupled problem

Based on the individual subproblems given in the previous section, the semi-discrete FSI 

problem can be stated as follows. Find 

yh
s(t): = {uh

s(t), ph
s(t), vh

s(t)} ∈ 𝒮uh
s × 𝒮ph

s × 𝒮vh
s , uh

m ∈ 𝒮uh
m , and 

yh
f (t): = ph

f (t), vh
f (t) ∈ 𝒮ph

f × 𝒮vh
f  such that

Bk
s (wuh

s ; y.h
s , yh

s) + Bp
s (wph

s ; y.h
s , yh

s) + Bm
s (wvh

s ; y.h
s , yh

s) + Bm (wh
m; uh

m)

+ Bp
f wph

f ; y.h
f , yh

f + Bm
f wvh

f ; y.h
f , yh

f + BStab
f wvh

f ; y.h
f , yh

f = 0,

(5.37)

wherein the last term is an additional stabilization term defined as
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BStab
f wvh

f ; y.h
f , yh

f : = ∫
Ωx

f (∇xwvh
f v f ′) · τ(∇xv f v f ′),

τ : = ρ0
f (v f ′ · Gv f ′)

− 1
2 .

(5.38)

This stabilization term (5.38) provides additional stabilization to control oscillations [56, 57, 

110]. Due to the choice of τ̄, the term (5.38) is proportional to the residual, and therefore the 

consistency of the semi-discrete formulation (5.37) is maintained. In this work, the whole 

fluid-solid domain is treated as a single continuum body and is discretized by a single set of 

mesh with continuous basis functions across the fluid-solid interface. This mesh choice and 

equal-order interpolations directly imply the satisfaction of the following kinematic 

constraint relations on the interface,

uh
s = uh

m, ph
s = ph

f , vh
s = vh

f . (5.39)

It also implies the following relations for the test functions,

wph
s = wph

f , wvh
s = wvh

f . (5.40)

Invoking standard variational arguments [6], the relations (5.40) lead to the weak continuity 

of the traction across the fluid-solid interface, viz.

∫Γx
I wvh

f · (σdev
s − psI) ns + σdev

f − p f I n f dΓx = 0.

The above relation, together with (5.39), ensures the correct coupling between the fluid and 

the solid sub-systems.

5.4. Temporal discretization

In this section, we apply the generalized-α method to the semi-discrete formulation (5.37) to 

construct the fully discrete scheme. The time interval [0, T) is divided into a set of nts 

subintervals of size Δtn:= tn+1−tn delimited by a discrete time vector tn n = 0
nts . Let 

yn
s : = un

s , pn
s , vn

s  and y.n
s : = u.n

s , p.n
s , v.n

s  denote the solution vector and its first-order time 

derivative of the solid displacement, pressure, and velocity evaluated at time tn; let 

yn
f : = un

m, pn
f , vn

f  and y.n
f : = vn

m, p.n
f , v.n

f  denote the solution vector and its first-order time 

derivative of the mesh displacement in the fluid subdomain, fluid pressure, and fluid velocity 
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evaluated at time tn. Let NA denote the basis function on the current configuration and let 

N̂
A denote the corresponding basis function defined on the reference configuration. They are 

related by the mapping φ̂ as NA = N̂
A ∘ φ̂−1. We denote the residual vectors as

Rm (y.n, yn): = Bm N
.
Aei; un, un

s ,

Rp
f (y.n, yn): = {Bp

f (NAei; y.n
s , yn

s )},

Rm
f (y.n, yn): = {Bm

f (NAei; y.n
s , yn

s )},

Rk
s (y.n, yn): = {Bk

s (NAei; y.n
s , yn

s )},

Rp
s (y.n, yn): = {Bp

s (NAei; y.n
s , yn

s )},

Rm
s (y.n, yn): = {Bm

s (NAei; y.n
s , yn

s )} .

The fully discrete scheme can be stated as follows. At time step tn, given ẏn and yn, find ẏn

+1 and yn+1 such that

Rm (y.n + αm
, yn + α f

) = 0, (5.41)

Rp
f (y.n + αm

, yn + α f
) = 0, (5.42)

Rm
f (y.n + αm

, yn + α f
) = 0, (5.43)

Rk
s (y.n + αm

, yn + α f
) = 0, (5.44)

Rp
s (y.n + αm

, yn + α f
) = 0, (5.45)

Rm
s (y.n + αm

, yn + α f
) = 0, (5.46)

yn + 1 = yn + Δtny.n + γΔtn (y.n + 1 − y.n), (5.47)
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y.n + αm
= y.n + αm (y.n + 1 − y.n), (5.48)

yn + α f
= yn + α f (yn + 1 − yn) . (5.49)

The choice of the parameters αm, αf and γ is given by (4.22).

Remark 16—It is shown in [19] that for second-order ordinary differential equations, the 
parametrization for αm in terms of ϱ∞ takes the form

αm =
2 − ϱ∞
1 + ϱ∞

.

Only when ϱ∞ = 0, the parametrizations of αm for the first-order and the second-order 
system coincide. In FSI simulations, oftentimes one solves the solid problem using the pure 
displacement formulation and solves the fluid problem using the Navier-Stokes equations 
[9]. In staggered FSI solvers, one can choose separate, optimal parameters for the 
generalized-α methods [26]; in monolithic FSI solves, the mismatch of the αm parameter 
engenders a dilemma [9, pp. 119–120]. In [6], the parametrization (4.22) is adopted for the 
whole FSI system since the Navier-Stokes equations are more challenging than the structural 
problems. However, a drawback with that approach is the non-optimal high-frequency 
dissipation in the structural equations. In [69], the optimal choices of αm are applied to the 
fluid and the solid equations separately. That leads to incompatibility of the acceleration at 
the fluid-solid interface and has been observed to engender failure in FSI simulations [64]. 

In our proposed approach, this issue is properly addressed since the solid mechanics 
problem is written as a first-order system by introducing the displacement-velocity 
kinematic equations. This allows one to achieve optimal numerical dissipation in the 
monolithic FSI solver without violating the kinematic compatibility.

5.5. A predictor multi-corrector algorithm based on the segregated algorithm

The coupled nonlinear system of equations (5.41)–(5.46) can be solved monolithically using 

the Newton-Raphson method [98]. For FSI problems, a monolithic solver can be 

implemented using the block-iterative [120], quasi-direct [122], or the direct coupling 

techniques [6]. In the quasi-direct coupling approach, the fluid and solid equations are 

treated as a block and the mesh is treated as a block. One solves a block of equations using 

the most recent unknowns from the other block. The quasi-direct coupling approach enjoys a 

good balance of robustness and computational cost and has been recommended for general 

FSI problems [8]. In this work, we invoke the quasi-direct coupling methodology and the 

segregated algorithm for the solid equations developed in Section 4.4. This leads to a novel 

algorithm for the nonlinear solver in FSI problems. This algorithm is stated as follows.
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Predictor stage

1. Set

yn + 1, (0) = yn,

y.n + 1, (0) = γ − 1
γ y.n .

2. Evaluate the solutions at the intermediate stage as

y.n + αm, (1) = y.n + αm (y.n + 1, (0) − y.n),

yn + α f , (1) = yn + α f (yn + 1, (0) − yn) .

Multi-corrector stage—Repeat the following steps i = 1, 2, …, imax:

1. Assemble the residual vectors of the nonlinear system using the above 

intermediate stage solutions:

Rp, (i)
f : = Rp

f (y.n + αm, (i), yn + α f , (i)),

Rm, (i)
f : = Rm

f (y.n + αm, (i), yn + α f , (i)),

Rp, (i)
s : = Rp

s (y.n + αm, (i), yn + α f , (i)),

Rm, (i)
s : = Rm

s (y.n + αm, (i), yn + α f , (i)) .

2. Let ‖ Rp, (i)
f ; Rm, (i)

f , Rp, (i)
s ; Rm, (i)

s ‖
l2

 denote the l2-norm of the residual vector. If 

either one of the stopping criteria

‖ Rp, (i)
f ; Rm, (i)

f , Rp, (i)
s ; Rm, (i)

s ‖
l2

‖ Rp, (0)
f ; Rm, (0)

f , Rp, (0)
s ; Rm, (0)

s ‖
l2

≤ tolR,

‖ Rp, (i)
f ; Rm, (i)

f , Rp, (i)
s ; Rm, (i)

s ‖
l2

≤ tolA

is satisfied for prescribed tolerances tolR, tolA, set the solution vector at time step 

tn+1 as yn+1 = yn+1,(i−1) and exit the multi-corrector stage; otherwise, continue to 

step 3.

3. Assemble the tangent matrices and solve the linear system of equations:

∂Rp
f

∂v.n + 1
f Δv.n + 1, (i)

f +
∂Rp

f

∂ pn + 1
f Δpn + 1, (i)

f = − Rp, (i)
f , (5.50)
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∂Rm
f

∂v.n + 1
f Δv.n + 1, (i)

f +
∂Rm

f

∂ p.n + 1
f Δp.n + 1, (i)

f = − Rm, (i)
f , (5.51)

∂Rp
s

∂v.n + 1
s Δv.n + 1, (i)

s +
∂Rp

s

∂ p.n + 1
s Δp.n + 1, (i)

s = − Rp, (i)
s , (5.52)

∂Rm
s

∂v.n + 1
s Δv.n + 1, (i)

s +
∂Rm

s

∂ p.n + 1
s Δp.n + 1, (i)

s = − Rm, (i)
s . (5.53)

4. Update the iterates as

v.n + 1, (i)
f = v.n + 1, (i − 1)

f + Δv.n + 1, (i)
f ,

vn + 1, (i)
f = vn + 1, (i − 1)

f + γΔtnΔv.n + 1, (i)
f ,

p.n + 1, (i)
f = p.n + 1, (i − 1)

f + Δp.n + 1, (i)
f ,

pn + 1, (i)
f = pn + 1, (i − 1)

f + γΔtnΔp.n + 1, (i)
f ,

v.n + 1, (i)
s = v.n + 1, (i − 1)

s + Δv.n + 1, (i)
s ,

vn + 1, (i)
s = vn + 1, (i − 1)

s + γΔtnΔv.n + 1, (i)
s ,

p.n + 1, (i)
s = p.n + 1, (i − 1)

s + Δp.n + 1, (i)
s ,

pn + 1, (i)
s = pn + 1, (i − 1)

s + γΔtnΔp.n + 1, (i)
s .

5. Obtain Δu.n + 1, (i)
s  from Δv.n + 1, (i)

s  using the relation (4.40).

6. Update the solid displacement as

u.n + 1, (i)
s = u.n + 1, (i − 1)

s + Δu.n + 1, (i)
s ,

un + 1, (i)
s = un + 1, (i − 1)

s + γΔtnΔu.n + 1, (i)
s .

7. Solve the mesh motion equation

Rm (y.n + αm, (i), yn + α f , (i)) = 0. (5.54)

8. Obtain the mesh velocity by

vn + 1, (i)
m =

un + 1, (i)
m − un

m

γΔtn
+ γ − 1

γ vn
m .
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9. Evaluate the solution vectors at the intermediate stage as

y.n + αm, (i + 1) = y.n + αm (y.n + 1, (i) − y.n),

yn + α f , (i + 1) = yn + α f (yn + 1, (i) − yn) .

There are 2nd +1 degrees of freedom associated with each computational node in both 

subdomains; in step 3, nd + 1 degrees of freedom need to be solved by the implicit solver. In 

the implicit solver, the mass and linear momentum equations are discretized by VMS in 

space and the generalized-α method in time. In the assembly routine, one only needs to call 

the proper constitutive relations for the material. In doing so, one can implement the solution 

vector and the tangent matrix problem over the whole continuum body in a unified approach, 

which may simplify the data structure management in the numerical implementation. The 

linear system of equations (5.50)–(5.53) can be solved by means of the Generalized Minimal 

Residual (GMRES) algorithm [103] with an additive Schwarz preconditioner; the linear 

system of equations for the mesh motion (5.54) is symmetric positive definite and hence can 

be solved by means of the conjugate gradient method. The PETSc package [3] is adopted to 

provide an interface for a wide range of solver options.

6. Benchmark computations

In this section, we first use manufactured solutions to assess the convergence behavior of the 

algorithm developed in Section 4 for both compressible and incompressible materials. 

Following that, a classical benchmark problem for incompressible solids is studied, and the 

results for the VMS formulation with P1/P1 and Q1/Q1 elements are compared with the 

results of the F̄-projection method. In the last, two FSI benchmark problems are studied to 

demonstrate the effectiveness of the new FSI formulation proposed in Section 5.

6.1. Manufactured solution for compressible hyperelasticity

In the first example, the displacement field is given in a closed-form formulation

U = 1
T0

2 t2
X cos (β1Z) − Y sin (β1Z) − X

X sin (β1Z) + Y cos (β1Z) − Y

0
(6.1)

for a unit cube (1 cm × 1 cm × 1 cm). In the prescribed displacement field, T0 = 1.0 × 10−3 

s, β1 = 10−3 π rad/cm. This manufactured solution describes rotation of the cube with the 

bottom surface Z = 0 clamped. A static version of this manufactured solution has been used 

in [71] for code verification purposes. The material model is chosen as the Neo-Hookean 

model with the volumetric energy given by (2.47). Its Gibbs free energy is

G C
∼, p = 1

2 μs trC∼ − 3 + p p2 + κ2 − p2
2κρ0

− κ
2ρ0

ln p2 + κ2 − p
κ .
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The material parameters are chosen as μs = 3.70 MPa, κ = 1.11 × 101 MPa, and ρ0 = 1.0 × 

103 kg/m3. The corresponding Poisson’s ratio is 0.35. The displacement and velocity on the 

bottom surface are fixed to be zero, traction boundary conditions are applied on the rest 

surfaces. The analytic form of the traction as well as the forcing terms can be obtained from 

the analytic formulation of the displacement field (6.1). In particular, to corroborate the 

proposed formulation (3.1)–(3.3), the forcing term B is obtained by inserting (6.1) into the 

pure displacement formulation. To obtain a mesh with uniform element size, we generate a 

hexahedral mesh first and decompose each hexahedron into six tetrahedrons with equal size, 

as is shown in Figure 3. The problem is simulated up to T = 5.0 × 10−4 s with a fixed time 

step size Δt = 5.0 × 10−6 s. The stabilization parameters are chosen with cm = 0.1 and cc = 

0.1. The relative errors of the displacement, velocity, pressure, deformation gradient, and the 

deviatoric part of the Cauchy stress in the ℒ2-norm are plotted in Figure 4. Note 

immediately that the ℒ2-norms of the errors in displacement and velocity converge 

quadratically; the asymptotic convergence rate for the pressure is 1.8; the deformation 

gradient and the deviatoric part of the Cauchy stress converge linearly. In [88], a similar sub-

optimal convergence rate for the pressure field has been observed, using a different 

stabilized formulation.

6.2. Manufactured solution for fully incompressible hyperelasticity

In the second example, we consider a fully incompressible Neo-Hookean material model. Its 

Gibbs free energy is

G C
∼, p = 1

2 μs trC∼ − 3 + p
ρ0

= 1
2 μs (trC − 3) + p

ρ0
. (6.2)

The geometrical domain is again a unit cube (1 cm × 1 cm × 1 cm). The shear modulus is 

chosen as 100 KPa; the density ρ0 is chosen to be 1.0 × 103 kg/m3. The analytic forms of the 

displacement and the pressure fields are given as follows.

U =
L0
T0

2 t2
sin (γ2y) sin (γ2z)

0
0

, (6.3)

p =
M0

L0T0
4 t2 sin (β2x) sin (β2y) sin (β2z) . (6.4)

In the above, M0 = 1.0 × 10−3 kg, L0 = 1.0 × 10−2m, T0 = 1.0 × 10−3 s, β2 = 0.2π rad/cm, 

and γ2 = 0.1π rad/cm. The displacement and velocity on the bottom surface are fixed to be 

zero, and traction boundary conditions are applied on the rest surfaces. The analytic form of 

the tractions over the boundaries and the forcing term can be obtained from the given 
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displacement and pressure fields (6.3)–(6.4). Similar to the previous example, the forcing 

term is obtained by inserting (6.3) into the pure displacement formulation. The problems are 

computed up to T = 5.0×10−4 s with a fixed time step size Δt = 2.5×10−6 s. The stabilization 

parameters are chosen as cm = 0.1 and cc = 0.1. The relative errors of the displacement, 

velocity, pressure, deformation gradient, and the deviatoric part of the Cauchy stress in the 

ℒ2-norm are plotted in Figure 5. For the fully incompressible material, the convergence 

rates for the displacement and velocity are of order two; the convergence rates for the 

deformation gradient and the deviatoric part of the Cauchy stress are first-order; the 

convergence rate for the pressure becomes first-order for the fully incompressible material. 

Although there is no convergence proof for this nonlinear problem, the convergence rate of 

the pressure in the ℒ2-norm for linear elasticity is proved to be first-order [34, 52]. 

Therefore, the first-order convergence rate for the pressure field is indeed expected.

6.3. Nearly incompressible block under compression

This example was initially proposed in [101] as a benchmark problem for nearly 

incompressible solids. The original problem was proposed as a quasi-static problem. In this 

work, we pose the problem in the dynamic setting and adopt the Neo-Hookean model 

described by the following Gibbs free energy function.

G C
∼, p = 1

2 μs trC∼ − 3 + p p2 + κ2 − p2

2κρ0
− κ

2ρ0
ln p2 + κ2 − p

κ . (6.5)

Notice that the material model we used here is slightly different from the one used in the 

original paper [101] because we demand that the Gibbs free energy takes the decoupled form 

(2.37) and the isochoric part of the energy is a function of C̃. Following [101], the material 

parameters are chosen as μs = 80.194 MPa, κ = 400889.806 MPa, and ρ0 = 1.0×103 kg/m3. 

The corresponding Poisson’s ratio is 0.4999. The problem setting is illustrated in Figure 6. 

Symmetry boundary conditions are applied on the X = Y = Z = 0 planes. A ‘dead’ surface 

load H is applied on a quarter portion of the top of the block, and the load assumes the 

negative z-direction in the reference configuration. The magnitude of H is measured by |H| = 

ΛH0, and the reference value H0 = 4 MPa. We calculate the compression level of the upper 

center point with Λ = 20, 40, 60, and 80. The load force is gradually increased as a linear 

function of time. The problem is integrated in time with 200 time steps. We performed 

simulations using the F̄-projection method with Q1/Q0 element and the VMS formulation 

with Q1/Q1 element and P1/P1 element. The stabilization parameters are chosen as cm = 0.1 

and cc = 0.1. In Figure 7, the compression levels of the upper center point with mesh 

refinement for different loading ratios and different numerical methods are illustrated. The 

VMS formulation with P1/P1 element tends to give very stiff response with coarse meshes. 

In contrast, the F̄-projection method with Q1/Q0 element and the VMS formulation with 

Q1/Q1 element tend to give very soft response with coarse meshes. With mesh refinement, 

convergent results are obtained for all three different methods.
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6.4. Flow over an elastic cantilever

The two-dimensional flow-induced oscillation of an elastic cantilever attached to a fixed 

square block was initially designed in [127] as a benchmark problem for FSI algorithms. It 

has been used extensively in the literature to assess the quality of FSI algorithms [6, 26, 

128]. In this work, the original two-dimensional problem is extended to a three-dimensional 

problem by extruding the original problem in the third direction [128]. On the inflow 

surface, a uniform flow in the x-direction is imposed with magnitude 51.3 cm/s; on the 

outflow surface, a zero traction boundary condition is applied; on the four lateral boundary 

surfaces, slip boundary conditions (zero normal velocity and zero tangential traction) are 

applied. The geometry and boundary conditions are illustrated in Figure 8. The fluid density 

and dynamic shear viscosity are set to be ρ0
f = 1.18 × 10−3 g/cm3 and μ̄ = 1.82 × 10−4 poise, 

respectively. The solid is modeled as the Neo-Hookean material with the volumetric free 

energy given by (2.48),

G C
∼, p = 1

2 μs trC∼ − 3 − κ
ρ0

ln κ
p + κ .

The solid referential density ρ0
s  is 0.1 g/cm3, the shear modulus μs and the Poisson’s ratio are 

9.2593 × 105 dyn/cm2 and 0.35, respectively.

The fluid subdomain is discretized with 74696 tetrahedral elements, and the solid subdomain 

is discretized with 5369 tetrahedral elements (Figure 9). The mesh motion is governed by 

the pseudo-linear-elasticity algorithm, wherein the mesh Young’s modulus is set to be unity 

and the mesh Poisson’s ratio is set to be 0.3. The mesh is fixed at the inflow and outflow 

boundary surfaces as well as the square block surface. On the lateral surfaces, the mesh is 

only allowed to move in the tangential direction. In the algorithm, the mesh Young’s 

modulus is multiplied with the inverse of the Jacobian determinant of the element mapping 

to provide the Jacobian stiffening. This procedure is found to be necessary for this 

simulation. The problem is simulated with Δt = 1.0 × 10−3 s up to T = 10.0 s. We set cm = cc 

= 0 in the study of this example. In our numerical experiences, for compressible materials, 

setting cm = cc = 0 gives more accurate results. The vertical displacement of the cantilever 

over time is plotted in Figure 10, and the comparison of the obtained results with those in the 

literature is listed in Table 1. The results of the new FSI computational framework are in 

good agreement with the reported results. Snapshots of the simulation results are depicted in 

Figure 11.

6.5. The Greenshields-Weller numerical benchmark

The FSI benchmark example we consider next describes wave propagation in an elastic tube 

[38]. This benchmark example has been adopted to verify several existing cardiovascular 

FSI solvers [7, 96]. The computational domain consists of a right circular hollow cylinder 

representing the elastic tube and an inner right circular cylinder representing the fluid 

domain. The length of the tube is 10 cm, the inner radius for the fluid domain is 1 cm, and 

the outer radius is 1.2 cm. For the elastic material, the reference density ρ0
s = 1 g/cm3, the 

Liu and Marsden Page 59

Comput Methods Appl Mech Eng. Author manuscript; available in PMC 2019 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Young’s modulus Es = 1.0 × 107 dyn/cm2, and the Poisson’s ratio is 0.3. In the original 

benchmark problem [38], a small-strain linear elastic material is used. Apparently, the small-

strain model is not incorporated in our theory. We adopt the Neo-Hookean model with the 

volumetric free energy given by (2.48),

G C
∼, p = 1

2 μs trC∼ − 3 − κ
ρ0

ln κ
p + κ . (6.6)

In doing so, the density is given by ρ = ρ0(1 + p/κ), which is identical to the density-pressure 

relation used in [38]. The fluid is described by the incompressible Navier-Stokes equations 

with fluid density ρ0
f = 1 and dynamic shear viscosity μ̄ = 0.04 poise. The initial conditions 

for all fields are set to be zero. A step change in pressure is imposed on the inlet surface and 

the pressure value pin is set to be 5 kPa. At the fluid outlet surface and the lateral surface of 

the solid, stress-free boundary conditions are applied. The solid velocity in the axial 

direction on the inlet and outlet surfaces are set to be zero. The geometry and the boundary 

conditions are illustrated in Figure 12(a). The solid domain is discretized by structured 

tetrahedral elements. In the fluid domain, a boundary layer mesh is created with thickness 

0.2 cm, and the rest fluid domain is unstructured. The mesh we used is depicted in Figure 

12(b). There are 2.19 × 106 elements and 3.76×105 nodal points in the finite element mesh. 

The problem is simulated with a fixed time step Δt = 2.0 × 10−7 s up to T = 8.0 × 10−3 s. 

Since the material is compressible, we set cm = cc = 0 in the study of this example. The mesh 

motion is given by the harmonic extension algorithm. The analytic value of the wave speed 

is 8.77 m/s. To obtain the numerically predicted wave speed, we define the wave front as the 

location where the pressure is 2.5 kPa. Using a linear function to fit the locations of the wave 

front with respect to time, we obtain that the numerical wave speed is 8.49 m/s, which is 3% 

lower than the analytic value and 1% lower than the numerical prediction given in [38] (8.58 

m/s). With the pressure wave at time 8.0 ms, we may obtain the distance between two peaks 

is 2.84 cm, and consequently the frequency of the wave is 298.9 Hz. The analytic values for 

the wave frequency using three different formulas are 269 Hz, 308 Hz, and 336 Hz, 

respectively [38], and the numerical prediction given in [38] is 318 Hz. Our numerical 

predicted wave frequency is 10 % higher, 3% lower, and 12% lower than the analytic values, 

and 6 % lower than the numerical prediction given by [38]. The same problem is also 

simulated with the Young’s modulus Es = 1.0×106 dyn/cm2 and pin = 0.5 kPa. In this case, 

the analytic value of the wave speed 2.77 m/s. Our numerical prediction gives 2.70 m/s, 

which is 3% lower than the theoretical value. These results demonstrate satisfactory 

agreement with published results.

7. Conclusions

We present a comprehensive suite of theoretical and numerical methodologies for solid 

dynamics, fluid dynamics, and FSI problems. We summarize the contributions in detail as 

follows.
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A novel continuum modeling framework is developed. Our derivation differs from 

traditional approaches in three aspects. (1) We start with a dynamic model for the continuum 

body. In the thermodynamic configuration space, a quasi-static process is constrained on an 

equilibrium manifold in a lower dimension, representing a succession of equilibrium states. 

This is really an idealized scenario, since it ignores several critical physical effects, and 

hence does not represent real physics [15, Chapter 4]. (2) We choose the thermodynamic 

potential as the Gibbs free energy instead of the Helmholtz free energy. The two potentials 

both give equivalent descriptions of material behavior for any unconstrained process. 

However, for constrained processes, one should judiciously choose the potential. In our 

discussion, we are particularly interested in the isochoric process, and the Helmholtz free 

energy degenerates in this case. A Legendre transformation is performed to transform the 

independent variable from the specific volume to the pressure. This leads to a theory based 

on the Gibbs free energy and consequently a pressure primitive variable formulation. This 

formulation is known to be well-behaved in both compressible and incompressible regimes. 

(3) Our pressure equation is derived from the mass balance equation instead of the equation 

of state. In the traditional two-field variational principle, the equation for the pressure field is 

often introduced as an algebraic equation of state [25, 45, 81]. We feel that it is unnecessary 

and improper to put an algebraic equation in a weak form and discretize it by the finite 

element method (see Remark 5).

Our numerical formulation is designed based on VMS. We provide a formal derivation of 

the fine-scale model based on the general continuum model. The VMS framework is applied 

to construct a numerical formulation for finite hyper-elastodynamics; the generalized-α 
method is applied for time integration; the segregated algorithm introduced in [107] is 

utilized for the solution procedure. The properties of the new numerical formulation are 

examined using manufactured solutions and the block compression benchmark problem.

The new formulation for hyper-elastodynamics is naturally extended to FSI problems. Due 

to the general continuum framework we developed, the coupling between viscous fluids and 

hyper-elastodynamics can be viewed as a uniform continuum problem, where the body is 

subdivided into subdomains with different material behavior. Over the whole continuum 

domain, VMS is applied for spatial discretization, and the generalized-α method is applied 

for time integration. The uniform treatment of FSI problems enjoys several desirable 

attributes. (1) The formulation is well-behaved in both compressible and incompressible 

regimes for both fluids and solids. (2) The pressure instability arising from the equal-order 

interpolation is handled by the fine-scale modeling in both subdomains. (3) The generalized-

α method is applied for the first-order FSI system and naturally achieves optimal high-

frequency dissipation in both subdomains. (4) The resulting matrix problems in both 

subdomains take similar structure, which simplifies the data structure management in the 

code implementation. Two benchmark problems are simulated to examine the effectiveness 

of the new FSI formulation, and the results are in good agreement with published results.

There are several promising directions for future work. (1) This new computational 

framework will be extended to handle nonlinear anisotropic viscoelastic materials to account 

for more realistic tissue behavior. (2) The FSI computational framework is well-suited to 

patient-specific cardiovascular biomedical modeling with more physically realistic material 
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models and complex geometries. (3) The concept of the immersed finite element method 

[16, 133] can be utilized with the new FSI formulation developed in this work, which may 

open a door to novel approaches for complex FSI problems. In summary, a new 

computational methodology has been established, and it may provide an effective approach 

to handle problems that cannot be addressed with the previously existing methods.
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Appendix A. Fine-scale approximation

Physically sound assumptions [5, 104] suggest that one may represent y′ by a perturbation 

series:

y′ = ∑
m = 1

∞
εmym′ , (A.1)

with ε = ||Res (ȳ)||V′*. Using this expansion, we may rewrite (3.8) as
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∑
k = 1

n 1
k!Dy

kB (w′, y) ∑
m = 1

∞
εmym′ , ⋯, ∑

m = 1

∞
εmym′ + o(‖y′‖V

n ) = εR(y)[w′], (A.2)

wherein

R(y) = Res (y)
‖Res (y)‖

V′∗
.

Here we have to introduce our first assumptions to handle with the residual term o (‖y′‖V
n ) in 

the above formulation. We assume that ||y′||V < 1 such that the residual term o (‖y′‖V
n ) is 

negligible. Grouping the coefficients of the powers of ε leads to a recurrence formula

DyB (w′, y) [y1′ ] = R(y)[w′],

DyB (w′, y) [y2′ ] + 1
2Dy

2B (w′, y) [y1′ , y1′ ] = 0,

DyB (w′, y) [y3′ ] + 1
2Dy

2B (w′, y) [y1′ , y2′ ] + 1
2Dy

2B (w′, y) [y2′ , y1′ ] + 1
6Dy

3B (w′, y) [y1′ , y1′ , y1′ ] = 0,

⋯

The above recurrence formula leads to a sequence of coupled linear variational problems

DyB (w′, y) [y1′ ] = R(y)[w′], (A.3)

DyB (w′, y) [y2′ ] = − 1
2Dy

2B (w′, y) [y1′ , y1′ ], (A.4)

DyB (w′, y) [yk′] = − ∑
l = 2

k
∑

∑s js = l

1
l!Dy

l B (w′, y) [y j1
′ , ⋯, y jl

′
1 copies

] , for 3 ≤ k < n . (A.5)

Solving the above system of equations gives the series expansion of y′. In the above 

equations, the left-hand side is the same bilinear operator DyB(w′, ȳ) [·]. We assume that 

there exists a fine-scale Green’s operator G′: V′* → V′ such that
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DyB (w′, y) [G′ (𝔊)] = 𝔊[w′] for ∀𝔊 ∈ V′∗ .

ith G′ defined, we may formally solve the equations (A.3)–(A.5) as

ym′ = G′ (𝔊m) for 1 ≤ m < n,

wherein

𝔊1: = R(y)[w′],

𝔊2: = − 1
2Dy

2B (w′, y) [y1′ , y1′ ],

𝔊k: = − ∑
l = 2

s
∑

∑s js = l

1
l!Dy

l B (w′, y) [y j1
′ , ⋯, y jl

′

1 copies

] , for 3 ≤ k < n .

Although DyB(w′, ȳ) [·] is a linear operator, it still a challenging task to derive an analytic 

form of the Green’s operator. Therefore, one more approximation needs to be introduced. 

The most simple but effective approach is to approximate G by

G′(𝔊) ≈ G∼′(𝔊) = − τ𝔊, (A.6)

wherein τ ∈ ℝ7×7 [5]. With this formula, we can solve the equations (A.3)–(A.5) and obtain 

the perturbation series ym′ = G′ (𝔊m) ≈ G∼′ (𝔊m) = − τ𝔊m. Therefore, we have 

y′ = ∑m = 1
∞ εmym′ ≈ − τ∑m = 1

∞ εm𝔊m. The infinite series y′ needs to be truncated to 

numerically calculate y′. It was shown that y1′  carries most of the subgrid energy [104]. This 

suggests that one may truncate the perturbation series as y′ ≈ εy1′ . Then the approximation of 

the fine-scale component can be explicitly written as

y′ = ℱ′ (y, Res (y)) ≈ ℱ∼′ (y, Res(y)): = εy1′ − τRes (y) .

In the above, the fine-scale component y′ is systematically approximated. This 

approximation formula is utilized to construct the VMS formulations in this work.
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Appendix B. Proof of Proposition 5

Proof

We first show that R̄k,(2) = 0. Given a pair of predictors Un+1,(0) and Vn+1,(0), we can write 

R ̄
k,(1) explicitly as

Rk, (1) =
αm

γΔtn
(Un + 1, (0) − Un) + 1 −

αm
γ U

.
n − α f Vn + 1, (0) − (1 − α f )Vn .

With ΔV̇
n+1,(1), one can obtain ΔVn+1,(1) by

ΔVn + 1, (1) = γΔtnΔV
.
n + 1, (1),

due to (4.19). Using (4.40) and the above relation, one has

ΔU
.

n + 1, (1) =
α f
αm

ΔVn + 1, (1) − 1
αm

Rk, (1) . (B.1)

Then one has

Rk, (2) =
αm

γΔtn
(Un + 1, (1) − Un) + 1 −

αm
γ U

.
n − α f Vn + 1, (1) − (1 − α f )Vn

=
αm

γΔtn
(Un + 1, (0) − Un) +

αm
γΔtn

ΔUn + 1, (1) + 1 −
αm
γ U

.
n − α f Vn + 1, (1) − (1 − α f )Vn

=
αm

γΔtn
(Un + 1, (0) − Un) + αmΔU

.
n + 1, (1) + 1 −

αm
γ U

.
n − α f Vn + 1, (1) − (1 − α f )Vn

=
αm

γΔtn
(Un + 1, (0) − Un) + α f ΔVn + 1, (1) − Rk, (1) + 1 −

αm
γ U

.
n − α f Vn + 1, (1) − (1 − α f )Vn

= α f ΔVn + 1, (1) + α f Vn + 1, (0) − α f Vn + 1, (1)

= 0 .

Now we just need to show that R̄
k,(i+1) = 0 if R̄

k,(i) = 0. Using R̄
k,(i) = 0, the update formula 

(4.40) can be simplified as

ΔU
.

n + 1, (i) =
α f γΔtn

αm
ΔV

.
n + 1, (i) − 1

αm
Rk, (i) =

α f γΔtn
αm

ΔV
.
n + 1, (i) =

α f
αm

ΔVn + 1, (i) . (B.2)
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Now we can expand R̄
k,(i+1) as

Rk, (i + 1) =
αm

γΔtn
(Un + 1, (i) − Un) + 1 −

αm
γ U

.
n − α f Vn + 1, (i) − (1 − α f )Vn

=
αm

γΔtn
(Un + 1, (i − 1) − Un) + 1 −

αm
γ U

.
n − α f Vn + 1, (i − 1) − (1 − α f )Vn

+
αm

γΔtn
ΔUn + 1, (i) − α f ΔVn + 1, (i)

= R∼k, (i) +
αm

γΔtn
ΔUn + 1, (i) − α f ΔVn + 1, (i)

= αmΔU
.
n + 1, (i) − α f ΔVn + 1, (i)

= 0 .

By mathematical induction, we have R̄
k,(i) = 0 for i ≥ 2.

Remark 17

In the above proof, we do not require ΔV̇
n+1,(1) to be a solution of the linear system (4.39). 

Hence, in practice, one can set R̄
k,(i) = 0 in (4.39) for all i ≥ 1. This leads to inconsistent 

updates of ΔṖn+1,(1) and ΔV̇
n+1,(1) only in the first Newton-Raphson iteration, and 

significantly simplify the implementation. In our numerical experience, this choice does not 
deteriorate the convergence of the predictor multi-corrector algorithm.
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Figure 1. 
Illustration of the diffeomorphisms φ, φ̂, and φ̃.
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Figure 2. 
Illustration of the fluid-structural interaction problem setting.
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Figure 3. 
Decomposition of a unit cube into six tetrahedrons with equal size. The cube is first split 

into two triangular prisms. Each prism is further divided into three tetrahedrons. The 

diameter of the tetrahedrons’ circumscribing sphere is 3 times the edge length of the cube. 

This decomposition allows one to create a structured tetrahedral mesh.
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Figure 4. 
Three-dimensional manufactured solution for compressible hyperelasticity: Spatial 

convergence rates of the displacement, velocity, pressure, deformation gradient, and the 

deviatoric part of the Cauchy stress.
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Figure 5. 
Three-dimensional manufactured solution for incompressible hyperelasticity: Spatial 

convergence rates of the displacement, velocity, pressure, deformation gradient, and the 

deviatoric part of the Cauchy stress.
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Figure 6. 
Three-dimensional compression of a block: geometry of the referential configuration and the 

boundary conditions.
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Figure 7. 
Three-dimensional compression level in % versus the number of elements per side: 

Comparison of results for Λ = 20 (in yellow color), Λ = 40 (in green color), Λ = 60 (in blue 

color), and Λ = 80 (in red color). The solid lines represent solutions from the VMS 

formulation with P1/P1 element; the dashed line represent solutions from the F ̄-projection 

method with Q1/Q0 element; the dotted line represent solutions from the VMS formulation 

with Q1/Q1 element.
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Figure 8. 
Flow over an elastic cantilever: geometry setting and boundary conditions.
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Figure 9. 
The FSI mesh of the flow over an elastic cantilever problem. (a) The mesh employed in the 

computations. The color represents the aspect ratio of the tetrahedral elements. (b) Detailed 

view of the mesh near the cantilever. The solid subdomain is depicted with red color. There 

are two elements through the thickness of the cantilever.
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Figure 10. 
Flow over an elastic cantilever: Vertical displacement of the tip of the cantilever. The tip 

vertical displacement is 1.2 cm. There are 9 periods between 5.70 s and 8.59 s. The average 

period of the oscillation is 0.32 s.
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Figure 11. 
Flow over an elastic cantilever: The fluid pressure and the cantilever displacement 

magnitude are depicted with the centimetre-gram-second units. The fluid streamlines are 

illustrated as well.
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Figure 12. 
The Greenshields-Weller benchmark problem: (a) Geometry setting and boundary 

conditions. H(t) represents the Heaviside step function of time t; (b) FSI mesh on the 

outflow surface. The solid subdomain is depicted with red color and the fluid subdomain is 

depicted with blue color.
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Figure 13. 
The Greenshields-Weller benchmark problem: Contours of the fluid pressure and wall 

displacement magnitude on a radial slice at time t = 2.0, 4.0, 6.0, and 8.0 ms.
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Figure 14. 
The Greenshields-Weller benchmark problem: (a) Pressure along the tube centreline; (b) 

Radial displacement of the outer wall surface.
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Table 1

Comparison of the obtained results with reported results in the literature.

Author Oscillation period (s) Tip displacement (cm)

W.A. Wall [127] 0.31 – 0.36 1.12 – 1.32

W.G. Dettmer and D. Perić [26] 0.32 – 0.34 1.1 – 1.4

Y. Bazilevs, et al. [6] 0.33 1.0 – 1.5

C. Wood, et al. [128] 0.32 – 0.36 1.10 – 1.20

Current work 0.32 1.20
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