
A System for an Accountable Data Analysis Process in R

Jonathan Gelfond,
Department of Epidemiology and Biostatistics, UT Health San Antonio, TX, USA,
gelfondjal@uthscsa.edu

Martin Goros,
Department of Epidemiology and Biostatistics, UT Health San Antonio, TX, USA,
goros@uthscsa.edu

Brian Hernandez, and
Department of Epidemiology and Biostatistics, UT Health San Antonio, TX, USA,
hernandezbs@uthscsa.edu

Alex Bokov
Department of Epidemiology and Biostatistics, UT Health San Antonio, TX, USA,
bokov@uthscsa.edu

Abstract

Efficiently producing transparent analyses may be difficult for beginners or tedious for the

experienced. This implies a need for computing systems and environments that can efficiently

satisfy reproducibility and accountability standards. To this end, we have developed a system, R

package, and R Shiny application called adapr (Accountable Data Analysis Process in R) that is

built on the principle of accountable units. An accountable unit is a data file (statistic, table or

graphic) that can be associated with a provenance, meaning how it was created, when it was

created and who created it, and this is similar to the ‘verifiable computational results’ (VCR)

concept proposed by Gavish and Donoho. Both accountable units and VCRs are version

controlled, sharable, and can be incorporated into a collaborative project. However, accountable

units use file hashes and do not involve watermarking or public repositories like VCRs.

Reproducing collaborative work may be highly complex, requiring repeating computations on

multiple systems from multiple authors; however, determining the provenance of each unit is

simpler, requiring only a search using file hashes and version control systems.

Introduction

Reproducibility, accountability and transparency are increasingly accepted as core principles

of science and statistics. While some of the impetus for the interest in reproducibility has

come from high-profile incidents that reached the sphere of the general public (Carroll,

2017), there is a consensus that reproducibility is fundamental to scientific communication

and to the acceleration of the scientific process (Wilkinson et al., 2016). Furthermore,

transparency and reproducibility are deemed necessary by the American Statistical

Association’s Ethical Guidelines for Statistical Practice (American Statistical Association,

2016). There have been significant strides in improving the set of available tools for

constructing reproducible analyses such as the concept and implementation of literate

HHS Public Access
Author manuscript
R J. Author manuscript; available in PMC 2018 November 28.

Published in final edited form as:
R J. 2018 July ; 10(1): 6–21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://CRAN.R-project.org/packages/adapr

computing, version control systems, and mandates by journals and sponsors that create

standards for submitting data, code, and systems for reproducibility. Also, interest in data

science has expanded the number of researchers and students who are undertaking data

analyses, which underlies the need for tools manageable for a broad range of user expertise.

While there is commercial software such as SAS (SAS, Cary, NC) and Stata (StataCrop,

College Station, TX, USA) and open-source tools that have systems for reproducible

computations, these may have significant challenges. Both open-source and commercial

tools could encounter a number of barriers such as 1) the tool is focused on one dimension

of the reproducibility problem rather than offering a complete system, 2) the tool may be

hard to identify, 3) they may have subtle differences in capabilities, making it hard for users

to select among them, 4) documentation or support are in short supply, and 5) they require

degrees of sophistication that beginners lack.

Before the introduction of R, Becker and Chambers (1988) proposed a framework for

auditing data analyses that could replicate and verify calculations called the AUDIT S-plus

(Becker et al., 1988) system. Their auditing system would not only extract the computing

steps required to produce the analysis, but also would identify the patterns of the creation

and use of particular objects within the directed acyclic graph of computations. Currently,

many R packages facilitate reproducible analyses with literate programing or by tracking

computational results. Some of these are listed within the CRAN Task View: Reproducible

Research (Zeileis, 2005). The knitr (Xie, 2015) and rmarkdown (Allaire et al., 2017; Baumer

et al., 2014) packages are widely used and enable literate programing by weaving R code

and results into the same document in many formats. Tracking computational results with

the cacher packgage (Peng, 2008) can be useful for efficient storage and reproducibility, and

the rctrack package (Liu and Pounds, 2014) tracks computations including random seeds in

a read-only format without modifications of existing R code. The package RDataTracker
(Lerner and Boose) provides a very granular level of tracking R objects within a script with

minimal overhead on the user, and the recordr (Slaughter et al., 2015) package tracks

dependencies within an R script and does not require the modification of the code, but this

facility is limited to specific read/write methods (e.g.

read.csv,write.csv,ggsave,readLines,writeLines, etc.). The remake (Fitzjohn

et al., 2015) package proposes a different model for managing the complexity of analyses.

Rather than instrumenting arbitrary or minimally modified R code for tracking, remake
provides a structured approach for projects in which dependencies are documented

explicitly. An interesting addition is the archivist package (Biecek and Kosinski, 2017) that

can store R code and R objects, handle multiple versions thereof, and has many features that

enhance sharing and browsing results.

Besides R, other open source programming languages and computing environments are

developing reproducibility tools such as Python’s Sumatra (Davison et al., 2014) which

stores computations for simulation or analysis as an electronic lab notebook. These

notebooks represent a type of dynamic document (Becker, 2014) that combines data, code,

and results within the same object. Dynamic documents enable a very high level of

transparency, and while technically challenging to implement, are becoming an increasingly

prevalent means of producing and sharing results. The tool Jupyter (Ragan-Kelley et al.,

Gelfond et al. Page 2

R J. Author manuscript; available in PMC 2018 November 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://CRAN.R-project.org/views=ReproducibleResearch
https://CRAN.R-project.org/views=ReproducibleResearch
https://CRAN.R-project.org/package=knitr
https://CRAN.R-project.org/package=rmarkdown
https://CRAN.R-project.org/packages=cacher
https://CRAN.R-project.org/packages=recordr
https://CRAN.R-project.org/package=archivist

2014), originally developed to be polyglot including languages such as Python, is a web-

based electronic notebook built for literate programming which is extendable to multiple

languages, recently including R. The Jupyter system has many features such as interactivity,

ability to share notebooks, graphical user interfaces, and the potential for high performance

computing. Other systems such as Traverna (Wolstencroft et al., 2013) and Galaxy (Afgan et

al., 2016) are geared toward workflow development and allow multiple programing

languages, web-based sharing and integrate high performance computing. The development

of compendia is also important to reproducibility, Gentleman and Temple Lang (2007)

introduced the concept of a compendium that is comprised of data, code, and the

computational results that also allows the distribution of the software tools. This goes

beyond reproducibility by distributing a large set of general tools thereby enabling other

researchers to use and assess these methodologies in different contexts.

We present the adapr (Accountable Data Analysis Process in R) package to facilitate

reproducible and accountable computations. The objective is to use a structured, transparent,

and self-contained system that would allow users to quickly and easily generate reports and

manage the complexity of analyses while minimizing overhead. Unlike other tools such as

Jupyter, Traverna and Galaxy, adapr is built in R for R and is geared toward simplicity for

beginning R users with some minimal alterations to standard R coding. adapr is an R

package that uses a R shiny (Chang et al., 2017) graphical user interface to interact with the

directed acyclic graph (DAG) that represents the data analysis. This structured system would

facilitate multiple data analysts in interpreting or collaborating on projects. Although adapr
is capable of literate programming using R Markdown, adapr is designed for producing files

(graphics, tables, etc.) that are distinct from the code that produced them and can be shared

within a scientific collaboration. We call these files accountable units because the system

can provide their providence, meaning the data, code dependencies, date, and authorship.

This functionality is sustained by computing the cryptographic hashes (Rabin et al., 1981) of

the result files and storing these alongside the R code within the version control system Git

(Hamano and Torvalds, 2005). It is important to note that the primary data are not version

tracked, but only the file hashes, this leads to a check of the identity of the data, but does not

allow for reproducing data if modified so that primary data should be stored in another

archive. The reasons for this are that 1) the analysis should not modify the primary data, 2)

the primary datasets should be stored in a secured version system or database, and 3)

tracking versions of the primary data is most efficiently done using a database rather that

system such as Git.

The idea of accountable units is similar to that of verifiable computational results (VCRs)

proposed by Gavish and Donoho (2011). These authors recognized the difficulties and of

ensuring long-term re-execution of source code, and argued the only way of ensuring this is

to virtualize and store the full computing platform. They further argued that the source code,

the inputs, and output are most important to evaluating the reasoning behind published

results rather than strict computational reproduction, which can be time-consuming and

technically challenging. There is a bright distinction between collecting a history of

computations compared to retaining and sharing the ability to reproduce the final results. We

have emphasized elsewhere (Gelfond et al., 2014) that, beyond reproducibility, the analytical

Gelfond et al. Page 3

R J. Author manuscript; available in PMC 2018 November 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://CRAN.R-project.org/package=adapr
https://CRAN.R-project.org/package=shiny

history is essential to accountable data analyses based upon formal theories of accountability

(Jagadeesan et al., 2009). These theories imply that an evaluator (e.g. peer reviewer) cannot

make a valid assessment of a communication (e.g. scientific analysis) unless the evaluator is

aware of a verifiable context and history. Furthermore, the computational time required to

identify a history is that of text search, which most often can be accomplished much more

simply and quickly than attempting to recompute the analysis. We see adapr as fulfilling

and assisting in creating some of the necessary components of VCRs. While adapr is not

intended as a tool for instrumenting arbitrarily structured R code to track computation input/

output, this package is aimed at providing a transparent organizational structure while

establishing provenance and reproducibility assuming the stability of the computing

platform.

Setting up adapr and defining a project

The adapr package is available from CRAN (Comprehensive R Archive network, cran.r-

project.org) with the latest package version available on GitHub (github.com) that can be

installed with adaprUpdate(). In order to initially set up adapr, there is a helper function

defaultAdaprSetup() that will ask a short sequence of questions (default project

directories, preferred username, version control preference, etc.) and will create the first

project ‘ adaprHome’ within the project directory (e.g. by default the computer’s

‘ Document’ directory). This setup function must be executed in ordered for adapr to

function properly. If RStudio (RStudio Team, 2016) is used, this setup function can utilize

the RStudio environment to locate system resources such as pandoc automatically. The setup

function creates a directory at the top level of the user directories called ‘ ProjectPaths’

with two files ‘ projectid_2_directory_adapr.csv’ and ‘ adapr_options.csv’ that

are required to locate projects and configure adapr, respectively. The location of the

ProjectPaths options directory can be changed from the default by setting an option

within the R Profile using the statement

options(adaprHomeDir='myPathToOptions').

An adapr project is a set of analyses based on a given collection of data that is structured as

a directed acyclic graph. The project is contained within a folder (a file directory with the

same name as the project) with all data, R scripts, and results. A new project can be created

with the function initProject that can be invoked as initProject('myProject').

When a new project is initialized, the project is created as a single folder within a file system

(OS X, Linux or Windows) with the following structure:

The fundamental unit of the project is an R script that is linked to three corresponding

elements. The first element is a ‘ Results’ folder with the same name as the R Script that

Gelfond et al. Page 4

R J. Author manuscript; available in PMC 2018 November 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://cran.r-project.org
http://cran.r-project.org
http://github.com

resides within the project’s main ‘ Results’ directory. The second is an R markdown file

with the same name (with file extension ‘ .Rmd’) within the Markdown directory. The third

element is a dependency file with the same name as the script (with the file extension .txt)

within the ‘ Dependency’ directory. The dependency file contains the read/write history of

the R script. When a project is initialized by default, a ‘ read_data.R’ file is created and

executed automatically. This, in turn, creates a results directory ‘ Results/read_data.R’

and an R markdown file ‘ Markdown/read_data.Rmd’ and a corresponding dependency

file ‘ Dependency/read_data.txt’.

In addition to the main project directory, each project is associated with a ‘ Publish’

directory that can be used to share selected results with collaborators. The Publish directory

could be a Dropbox, file server or web server directory.

Initializing projects and adapr R scripts

The function call projectInit('myProject') in the R console will create a new project

that by default contains a single R script ‘ read_data.R’. A side effect of this function is to

automatically set current project to the new project. Lastly, the project’s settings can also be

changed with the function relocateProject by specifying the project and the new

settings. It is also possible to import projects that were already built by a collaborator. For

example,

relocateProject('importedProjectID',project.path='parentDirectory')

imports a new project called ‘ importedProjectID’ that is within a subdirectory of

‘ parentDirectory’.

The adapr package contains a sample project called ‘ adaprTest’ that can be loaded into

the users file system with the command loadAdaprTest(). To create another R script

within that project, one can execute the following console commands:

>loadAdaprTest()

>setProject('adaprTest')

>makeScript(r='postProcess.R',description='mixed model analysis',

 project.id=getProject())

The setProject function specifies the project and the getProject function retrieves the

project ID in other functions by default so that the user does not have to respecify the

project. The makeScript function will, by default, automatically open the corresponding

script with the default R file browser. Each script (e.g. ‘ postProcess.R’) is given a text

string description (e.g. "mixed model analysis"), and also, every file that is read or written

within a project has an associated text string description. Timely descriptions are an

important part of tracking because they facilitate the gradual accumulation of metadata that

promotes efficient transparency rather than an automated code instrumentation, which may

Gelfond et al. Page 5

R J. Author manuscript; available in PMC 2018 November 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

not easily generate precise, correct, or human-interpretable metadata tags. When a program

is created with makeScript, the program is executed, creating a script-specific directory

within the parent ‘ Results’ directory, R markdown file, and the dependency file. The

adapr R scripts have a structured header that identifies the project and the script, and a

footer that writes the read/write dependencies into a file corresponding to the R script within

the ‘ Program/Dependency’ directory. The header and footer that are automatically

created by makeScript and are shown below.

rm(list=ls()) #Clears R workspace

set.seed(2011) # Sets random seed

library('adapr')

source.file <-'read_data.R' #Name of file matching filename /Programs

directory name

project.id <- 'project_name' # Name of project

source_info <- create_source_file_dir(source.description='reads data')

Source description will be linked to R script

Library statements here (e.g.\, Library('ggplot2'))

Begin program body here

End Program Body

dependency.out <- finalize_dependency()

Within the adapr script, the key step within the header is the create_source_file_dir

function that creates the source_info object of type ‘ list’. The source_info object is

stored within the R options and can be retrieved using getSourceInfo(). This is used to

collect the read/write information within the body of the R script by wrapping the read/write

commands within three R commands. The first is the Read function:

Read(file.name = 'data.csv', description = 'Data file',

 read.fcn = guess.read.fcn(file.name), …)

This command returns the file object read by the function read.fcn and tracks the

description and the file hash with "…" passed as additional arguments to the read function

read.fcn. Note that in the usage example below, it is transparent and parsimonious,

especially given that the Read function defaults to reading from the project’s data directory:

Dataset <- Read('datafile.csv','my first dataset')

The argument read.fcn could be any function that given a file, returns an R object, and so,

Read is not limited to flat files. To facilitate the identification of a project’s data files, the

listDatafiles() function call produces a list of files within the data directory.

The second command is the Write function:

Gelfond et al. Page 6

R J. Author manuscript; available in PMC 2018 November 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Write(obj = NULL, file.name = 'data.csv', description = 'Result file',

 write.fcn = guess.write.fcn(file.name), date = FALSE, …)

This example writes object ’cars’ into the Results directory as a comma separated value

(CSV) file

Write(cars,'cars.csv','speed and distance')

and this example writes object ’cars’ into the Results directory as a R data object.

Write(cars,'cars.rda','speed and distance')

This command writes the R object obj using the function write.fcn and tracks the

description and the file hash with "…" passed as additional arguments to write.fcn. If the

file.name argument has a .rda extension then the R object is written to the results

directory as an R data object. The third function used by adapr creates graphics files:

Graph(file.name = 'ouput.png', description = 'Result file',

 write.fcn = guess.write.fcn(file.name), date = FALSE, …)

This command opens a graphics device for plotting using the function write.fcn and

tracks the description and the file hash with "…" passed as additional arguments to

write.fcn. The function guess.write.fcn uses the file suffix to determine the type of

file to write (e.g. pdf, png, etc). The date variable is a logical that determines whether a date

is added to the filename. This function is followed by graphics command set and closed by a

dev.off() or graphics.off() statement. Below is an example.

Graph('histogram.png','hist of random normals')

 hist(rnorm(100))

graphics.off()

This code snippet creates a file in the results directory of the R script called

‘ histogram.png’ with a histogram of 100 standard normal variables.

Another key function is loadFlex invoked as the following:

LoadedObject <- loadFlex('process_data.R/intermediate_result.rda')

The loadFlex function reads and returns an R data object with the .rda file extension

written by another R script within the project. The loadFlex function could also read any

Gelfond et al. Page 7

R J. Author manuscript; available in PMC 2018 November 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

intermediate result file type if the argument read.fcn is specified. This function is critical

because it allows the R scripts within a project to build on the results of other R scripts in a

transparent and structured manner. This function searches through all results for a file name

that matches the argument string to identify the R object to load, and returns the

corresponding R object (assigned to LoadedObject in the example). This function must

follow the call Write(intermediate,'intermediate_result.rda','normalized

data') within another R script (process_data.R in the example) to pass preprocessed

data from one R script to another or to collect key results from multiple R scripts. It is

important to note that loadFlex requires prior use of a Write function because adapr does

not, by default, collect the entire workspace of each R script. The convenience function call

listBranches() returns a data frame of all intermediate results available for loading along

with their descriptions.

By transferring and tracking objects from one script to the next, adapr promotes the idea of

modularity. In this manner, the scripts can have a specific function rather than one script

being burdened with all analytical tasks. Modularity promotes transparency by allowing a

collaborator or reviewer to quickly identify which scripts are responsible for which analytic

tasks, and allowing a collaborator to isolate their contribution to a particular task within a

script that is linked to scripts created by others. Lastly, modularizing scripts to perform

specific tasks facilitates transforming scripts into functions themselves. Modularization

makes clear what the inputs (arguments to loadFlex) and outputs (arguments to Write) of

a particular script are. R functions that are specific to a project are stored within the

‘ Programs/support_functions’ directory. Any R script within this directory will be

sourced and loaded within the create_source_file_dir function within the adapr
script header. A function can be created within this directory by using the function call

makeFunction('mySpecialPlot') in the R console that will create a file ‘ Programs/

support_funcionts/mySpecialPlot.R’ and by default will open the function’s file for

editing.

The adapr footer contains the critical function call finalize_dependency() that

transforms the R script’s file input/output (I/O) stored within the object getSourceInfo()

and writes this data to the project’s ‘ Dependency’ directory in the form of a tab-delimited

file with the same prefix as the R script. The dependency data within the file includes the R

script name, R script description, R script hash, R script file modification time, R script run

time, the project ID, the target file that is read/written, the direction of dependency (read or

write), the target file description, target file hash, and the target file modification time. The

script header function create_source_file_dir and footer function

finalize_dependency execute many side effects that are necessary for tracking and these

are listed in Table 1.

For some critical analyses or data objects, it may be useful to store a version history. This

means storing more than one version of the object itself, not just the code to reproduce the

object. This can be done using the archivist package that has been incorporated into adapr
by creating an archivist archive for each adapr script in the R script’s ‘ Result’ directory.

Using the function call arcWrite(myRobj,"my object description") in the R script

Gelfond et al. Page 8

R J. Author manuscript; available in PMC 2018 November 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

file stores the object within an archivist archive. If the R script that wrote the object was

‘ myRscript.R’, this may be loaded into another R Script by using the statement

myObject <-arcRead('myRscript.R','my object description') that assigns the

value of that object to myObject.

Literate programing using R Markdown

An R Markdown file is created automatically within the ‘ Programs/Markdown’ directory

when an adapr R script is first created and executed. This file has the ‘ .Rmd’ suffix and is

rendered when the R script is executed as a side-effect of the footer

finalize_dependency() function within the corresponding R script. Additional R

markdown files can be created using the createMarkdown function and rendered within the

‘ Results’ directory with the ‘ renderRmd’ function. Executing the R script will pass its

workspace to the markdown file R commands and render these markdown files. By pairing

each R script with a markdown file, adapr allows the R script to perform transformations

and analytical tasks that can be more easily summarized, formatted, and displayed within the

R markdown file.

The ‘ .Rmd’ file can also be executed by using the "knit" button in RStudio if the file header

has the header line scriptLoader(project.id,R Script) executed (this is commented

out by default). Additionally, file input/output can be tracked using the line

if(checkRmdMode())){dependency.out <-finalize_dependency()} as the final

line in the markdown file. These lines are automatically included in the R markdown files,

but are commented out. The RStudio "knit" button can facilitate exploring and debugging;

however, it does not direct the rendered markdown into the results directory, and the

rendered markdown file would go to the ‘ Markdown’ directory.

Managing R packages

By default, projects share a common R library that is specified at setup. Sometimes users

may prefer that project has a project-specific library, instead of the default R library. This

may be useful for improving consistency in computations, although the larger libraries can

use substantial drive storage. The user may specify library preferences at initialization by

setting the following argument within the projectInit function:

initProject('myProject',project.libraryTF=libOption). The

project.libraryTF parameter libOption may be set to one of 3 values ("TRUE",

"FALSE", or "packrat"). The default value FALSE implies the use of the default library.

The value TRUE will use the project specific library located in the Programs/Support/

Library directory, and the value "packrat" will imply the packrat (Ushey et al., 2016) to

manage R packages. The packrat package allows the isolation of the package dependencies

for R projects and has many features including isolation of the computing environment,

cross-platform compatibility and cleaning out unused packages. adapr does set up or

operate packrat, and this responsibility is left to the user. We have found that the RStudio

IDE is helpful for the initialization of packrat rather than R console commands.

Gelfond et al. Page 9

R J. Author manuscript; available in PMC 2018 November 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://CRAN.R-project.org/package=packrat

adapr facilitates loading and tracking R packages using the Library function and by

tracking the loaded libraries within the R session information. R packages needed for each R

script can be loaded with the Library function within the R script header. This function

will install and/or load the package if it is not installed or loaded. A use case would be

Library('ggplot2','cran') or Library('limma','bioc'). At the end of the

program body, the finalize_dependency function writes the R session information to a

file. The getLibrary() statement will read all of these session information files for a

project and collect all of the packages and their versions. This information can be useful for

reproducibility, and these packages can be installed using the installLibrary() function

call. The installLibrary function has an argument to install the specific versions, and the

packages are installed from CRAN, MRAN (Microsoft R Application Network, https://

mran.microsoft.com), Bioconductor (Huber et al., 2015), or GitHub. Currently, only the

latest compatible version of Biocondunctor packages will be installed. If the packrat
package is used for a project, then it is recommended to use packrat functions and the

RStudio IDE for managing package versions. An example of how to use these functions is

shown below: The following series of console commands loads the example project stored

within the adapr R package.

>loadAdaprTest()

This sets the project.

>setProject('adaprTest')

This returns the directory containing the project library.

>getProjectLibrary()

This returns the project library’s package information.

>getLibrary()

This installs project library.

>installLibrary()

There are many technical intricacies of tracking R package use within a project, and there

has been significant effort build stable solutions for package reproducibility such as packrat
and switchr (Becker et al., 2017). These difficulties are not currently completely handled by

adapr and is an area of active development.

Summarizing and visualizing projects

The reportProject function and the app can summarize all programs and results within a

single HTML document with descriptions, dependency information, and links to programs

and results. The app can be launched with within the R console with the function

adaprApp(). The report information can be obtained within the Report tab of the app in

Figure 1. After clicking the "Report" button, the HTML project summary is written to the

‘ Results/Tree_controller’.R/ directory. The Report tab shown in figure also is

capable of launching project R Shiny apps that access project data or Results.

Gelfond et al. Page 10

R J. Author manuscript; available in PMC 2018 November 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://mran.microsoft.com
https://mran.microsoft.com
https://CRAN.R-project.org/package=switchr

Synchronizing and version control

Two critical parts of accountability and reproducibility are addressed by the syncProject

and commitProject functions as well as within the Synchronize tab of the app. The

syncProject function can be called in the R console with syncProject() after a

setProject('myProject') call. It will synchronize data, scripts, and results for a

project. The project is synchronized if two criteria are met: 1) the file modification times

stored within the R scripts dependency files are the same as the modification times within

the file system, and 2) if the cryptographic hash (data fingerprint) of the file hash of each file

within the project is consistent with all of the dependency files. The syncProject function

called by syncProject() detects lack of synchrony and can execute the corresponding R

scripts that are needed to achieve synchrony. It is possible that the DAG has structures

("forks") that allow the R scripts to be run in parallel because they are not dependent on one

another. We have added experimental functions parallelSync and

monitorParallelSync that allow parallel execution of the DAG by different cores. Note

that monitorParallelSync should be executed in a separate R session and will indicate

which cores are working on which part of the project DAG. For larger projects, an

alternative to synchronizing the whole project is to only synchronize the results of a

particular R script. This involves only synchronizing the parts of the DAG that that R script

depends upon. This can be done with the syncTrunk('myscript.R','myProject')

function call. This is illustrated in the code snippet below, and Figure 2 shows the results of

the last graphProject() statement.

>loadAdaprTest() # Loads the project stored within the adapr R package

>setProject('adaprTest') # Sets the project

>syncProject() # Synchronizes the project

>openScript('read_data.R') # Open R script

We could make some minor change in ‘ read_data.R’ and then execute the following to

synchronize the project.

>graphProject() # Shows project DAG with synchronization status

>runScript('read_data.R') # Executes the script in a clean R environment

>syncTrunk('graph_cardata.R') # Executes scripts needed to synchronize

 results from 'graph_cardata.R'

>graphProject() # Shows project DAG with synchronization status

adapr optionally uses the Git version control system, which can be operated with the

commitProject() function and the Synchonize tab. The Synchronize tab is shown in

Figure 3. Git must be installed for this feature to work. There are platform independent and

free Git clients available for download (https://git-scm.com/downloads/guis). While adapr
handles Git tracking and snapshots, it does not currently revert the current version of the

project back to a previous snapshot. We recommend that reversions be performed using Git

Gelfond et al. Page 11

R J. Author manuscript; available in PMC 2018 November 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://git-scm.com/downloads/guis

directly or through a Git client, which have more features and visualization capabilities. The

function commitProject() and button within the app takes a project snapshot of all R

scripts and adds the synchronization status (synchronized or not) to the commit message.

Because the file names and file hashes/fingerprints are stored within dependency files that

are tracked by the version control system, any data, R script, or result file can be matched by

its hash/fingerprint within the version control history to determine its provenance. The

adapr function Digest is a wrapper for functions in the digest (Eddelbuettel et al., 2017)

package and is used the compute the cryptographic hash (not serialized) of a file, and this

file hash can be identified by a Git history search to determine its provenance within a

project. adapr uses Git operating functions that were adapted from those within the devtools

(Wickham and Chang, 2015) and git2r (Widgren and others, 2017). If Git is used, adapr
will automatically perform a commit after syncProject. This allows the user to capture all

result file hashes and to identify which results were obtained in a synchronized state. It is

important to note that adapr automatically adds all R script files into the project’s Git

repository, but it does not automatically use formal version control for data or results files

because these files may be too large for the version control system to efficiently track the

changes. If the user would like to store multiple versions of a result, then we recommend

using the arcWrite function. However, by default, the file hash is computed and stored

within the ‘ Dependency’ directory for all files that are read or written within the project so

that all relevant files and their provenances can be identified if a commit was made when the

file was read/written. File histories can be identified within the Run Report tab that executes

a file hash search and returns the Git commit associated with the file including the date,

author, and file description. The Git history of a file is also obtained with the

gitProvenance function with arguments project.id and filepath that opens a file

selection window and runs a Git search for the hash of the file within the project.

There is an interactive project map feature within the "Synchronize" tab. The "Examine

Program Graph" button displays the DAG of all the project’s R scripts colored by their

synchronization states. These scripts can be executed by clicking on the colored point, and

their file I/O can be examined by selecting or "brushing" over the colored point. This reveals

the file I/O graphic in an adjacent panel. These files are labeled by their descriptions and can

be opened by clicking on the file or their file directories may be browsed by selecting or

"brushing" over the colored file labels. The graph may alternatively be displayed using the

graphProject() function. A limitation is that very large DAGs or very large input/output

lists for an R script can overwhelm the visual space of these graphics. Future versions will

address this issue.

Sharing results

Specified result files from the project can be copied to a shared ‘ Publish’ directory using

the publishProject('myProject') function. This allows users to share or update a list

a selected results with one command. The publishProject function reads a file within the

‘ Programs/Support_functions’ directory that contains a list of files that are selected

for publication (i.e. copied to the project publication directory, which may be a shared server

folder, a web server, or cloud server such as Dropbox). Publishing can be automated by

Gelfond et al. Page 12

R J. Author manuscript; available in PMC 2018 November 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://CRAN.R-project.org/package=digest
https://CRAN.R-project.org/package=devtools
https://CRAN.R-project.org/package=git2r

including the publishProject function within an adapr R script. The file that contains

paths to the results that will be published can be opened for editing with the

browsePubFiles('myProject') function.

Configuration

The adapr package can be updated and configured within the setAdaprOptions and

getAdaprOptions functions. An option can be set with the syntax

setAdaprOptions("optionName", "optionValue"). The key options are

summarized in Table 2. For example, the use of Git can be activated by

setAdaprOptions('git','TRUE'). Git itself can be configured using Git commands or

within R using the adapr function call gitConfigure(username, email).

Convenience functions

We have found that certain project oriented functionality can save time and effort, and we

have compiled a list of functions that we have found useful in Table 3. These can be used

without specifying the project argument after the setProject('myProject') function.

The two pages of the function summary "cheat sheet" that is opened with the

adaprSheet() function call is shown in Figures 4 and 5.

Conclusion

Becker and Chambers (1988) have written that "the complexity of the structure that

represents a realistically large analysis makes a thorough interactive investigation very

challenging. New statistical, computational, and graphical techniques will be needed." Since

then, there have been many strides towards that goal. The adapr package is a demonstration

of how scientific reproducibility and accountability can be accelerated by automatically

structuring, tracking, and implementing analyses. Beginning R programmers may benefit

from this approach by not having to create their own system, and while more experienced

analysts have likely created their own methods for structuring analyses, it is possible that

there are certain features of adapr that they could integrate into their systems. These

features include adding a standard structure to project directories, checking the

synchronization status of the project, selectively synchronizing part of the DAG, linking

short text descriptions to data and results files, creating a HTML summary of the full

project, interactive project maps, and version control integration with file hash search

capability for results and programs. This integrated version control feature tracks file hashes

of data, programs, and results and can capture the evolution of the analysis, not just the final

results. This points to an important challenge: the analyses in many scientific articles are

extremely intricate and necessarily become more complex as the data are inevitably

explored. This makes version control system indispensable for unraveling the history of

analysis.

Limitations

The limitations of adapr include the inability to directly track changes in external databases,

file hash computation can be slow for files that are multiple gigabytes, the requirements for

Gelfond et al. Page 13

R J. Author manuscript; available in PMC 2018 November 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

the user to use adapr read/write functions for tracking, and the package management system

is less capable than packages such as packrat and switchr. Currently, adapr can be used

with external database input functions, but these would not be tracked as inputs with the

Read function because they are not within the file system. We are considering options for

tracking external database input for future adapr versions. One workaround for this is to

have an R script within the project that downloads the relevant database queries and writes

these objects to the file system with a Write function, and these query results can be read

into another R script and tracked as a dependency using the loadFlex function. The adapr
package is also limited by its dependency on other R packages and by the fact that running

the Shiny app while programming would require two R sessions. We have found that using

project oriented functions

(makeScript,syncProject,commitProject,initProject,setProject, etc.)

within the console makes for a more fluid experience, but this requires that the user have an

idea of which functions to utilize, which is why we created the adaprSheet() function to

give a quick overview. Also, beginning R users may be just learning the art of programming,

which could make using a structured programming system like adapr difficult if that

structure is violated. There are some safeguards built into adapr, but violating the header/

footer structure can result in errors. We have used adapr in a class with first-time

programmers, and this has greatly informed our development. For example, the function

makeScript originally only created the script within the file system, but now, it also opens

the script with the default R program so that the students do not have to search for it. The

students use a single function Library function instead of two functions

install.packages and library. Also, we have found that the runScript function is

very useful for teaching reproducibility as it lets the students run the script in a clean

environment. Students can also be introduced to R through the R scripts, and after a few

classes, can be introduced to R markdown. This allows time to get familiar with R, before

adding the additional complexity of R markdown syntax. Because each adapr script is

paired with and passes its environment to an R markdown file, the students can see how R

markdown can nicely format the objects that they have previously created. While a

limitation of this work is that the adapr user base is small, one of the key aspects of the

system is that it has been tested on a variety of projects. The adapr package and earlier

versions have been tested in over 160 projects. These projects were conducted by five

statisticians in an academic health center (AHC). The projects included clinical trials,

genomic analyses, experimental data from basic sciences, as well as projects created

specifically to test adapr. Figure 6 represents the directed acyclic graphs with structures

related to the complexity of the projects.

Other potential benefits

Additional goals of adapr include efficiency and transparency. The AHC environment

creates a high demand for statistical analyses as well as significant pressure to reduce the

time-to-completion. We have studied process of statistical consulting in some detail

(Schmidt et al., 2016), and the use of the system has not led to any significant increase in

lead times, but it has subjectively improved the ease of collaboration among analysts. The

use of any structured system like adapr can be highly beneficial when a long dormant

Gelfond et al. Page 14

R J. Author manuscript; available in PMC 2018 November 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

project becomes active again or a project is passed from one analyst to another. Another

advantage of the system is that reports and interactive maps allow users who are not familiar

with R the opportunity to browse the analysis, which promotes transparency. These maps

also help the users, regardless of experience level, to orient themselves to large or complex

analyses. Structuring projects in directories that are systematically scanned for activity (e.g.

every 30 minutes) allows automated tracking of the work patterns within projects (e.g. file

modification times of R scripts or markdown files within the projects directory). This

facilitates the objective estimation of work-hours that are useful for reporting, billing, or

resource allocation.

Lastly, given that accountability has been recently added as a requirement for authorship by

the International Committee of Medical Journal Editors (Resnik et al., 2015; International

Committee of Medical Journal Editors, 2016), scientific reviewers or readers may benefit

from knowing that an adapr data analysis had a high degree of accountability or

reproducibility. Hence, we suggest adding the statement "The data analysis was conducted

using an accountable process." to the ’Statistical methods’ or ’Data analysis’ section of an

article that used adapr. This designates that: 1) a documented system was used for the

version-controlled analytic history, 2) the provenance of results can be checked, and 3) that

the analyses and results have descriptions, a documented structure, and a means of

reproduction. Note that version control systems such as Git store the author’s name and

email associated with commits so that these naturally document contributions.

Acknowledgments

The authors thank Emily Burnett for her contribution to early versions of the user interface. The authors would like
to thank the editor and two anonymous reviewers for substantial improvement of this work. The project described
was supported by the National Cancer Institute and the National Center for Advancing Translational Sciences,
National Institutes of Health, through the grants GM070335, NIA Shock Center P30AG013319, NIA Pepper Center
P30AG044271, CTRC P30 Cancer Center Support Grant CA054174 and the Clinical and Translational Science
Award (CTSA) UL1 TR001120. The content is solely the responsibility of the authors and does not necessarily
represent the official views of the NIH.

Bibliography

Afgan E, Baker D, van den Beek M, Blankenberg D, Bouvier D, Čech M, Chilton J, Clements D,
Coraor N, Eberhard C. , et al. The galaxy platform for accessible, reproducible and collaborative
biomedical analyses: 2016 update; Nucleic Acids Research. 2016. 1https://doi.org/10.1093/nar/
gkw343URL

Allaire J, Cheng J, Xie Y, McPherson J, Chang W, Allen J, Wickham H, Atkins A, Hyndman R, Arslan
R. rmarkdown: Dynamic Documents for R. R package version 1.6. 2017. URL https://CRAN.R-
project.org/package=rmarkdown

A. American Statistical Association. [Accessed: 2017-11-20] ASA Ethical Guidelines ethical
guidelines for statistical practice. 2016. http://www.amstat.org/asa/files/pdfs/EthicalGuidelines.pdf

Baumer B, Cetinkaya-Rundel M, Bray A, Loi L, Horton NJ. R markdown: Integrating a reproducible
analysis tool into introductory statistics. arXiv preprint arXiv:1402.1894. 2014. https://doi.org/
10.1063/pt.5.028530URL

Becker G. Dynamic Documents for Data Analytic Science. University of California, Davis: 2014.

Becker G, Barr C, Gentleman R, Lawrence M. Enhancing reproducibility and collaboration via
management of R package cohorts. Journal of Statistical Software. 2017; 82(1):1–17. URL https://
doi.org/10.18637/jss.v082.i01. DOI: 10.18637/jss.v082.i01

Gelfond et al. Page 15

R J. Author manuscript; available in PMC 2018 November 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://doi.org/10.1093/nar/gkw343
https://doi.org/10.1093/nar/gkw343
https://CRAN.R-project.org/package=rmarkdown
https://CRAN.R-project.org/package=rmarkdown
http://www.amstat.org/asa/files/pdfs/EthicalGuidelines.pdf
https://doi.org/10.1063/pt.5.028530
https://doi.org/10.1063/pt.5.028530
https://doi.org/10.18637/jss.v082.i01
https://doi.org/10.18637/jss.v082.i01

Becker RA, Chambers JM. Auditing of data analyses. SIAM Journal on Scientific and Statistical
Computing. 1988; 9(4):747–760. URL . https://doi.org/10.1137/0909049

Becker RA, Chambers JM, Wilks AR. The new s language. Pacific Grove, Ca.: Wadsworth & Brooks;
1988. 1988 . URL

Biecek P, Kosinski M. archivist: An R package for managing, recording and restoring data analysis
results. Journal of Statistical Software. 2017; 82(11):1–28. DOI: 10.18637/jss.v082.i11

Carroll A. Science needs a solution for the temptation of positive results. the upshot. New York Times:
May 29, 2017. URL

Chang W, Cheng J, Allaire J, Xie Y, McPherson J. shiny: Web Application Framework for R. R
package version 1.0.5. 2017. URL https://CRAN.R-project.org/package=shiny

Davison A, Mattioni M, Samarkanov D, Teleczuk B. Sumatra: a toolkit for reproducible research;
Implementing reproducible research. 2014. 57–79. https://doi.org/10.1201/b16868URL

Eddelbuettel D, Lucas A, Tuszynski J, Bengtsson H, Urbanek S, Frasca M, Lewis B, Stokely M,
Muehleisen H, Murdoch D, Hester J, Wu W, Kou Q, Onkelinx T, Lang M, Simko V. digest: Create
Compact Hash Digests of R Objects. R package version 0.6.12. 2017. URL https://CRAN.R-
project.org/package=digest

Fitzjohn R, Falster D, Cornwell. remake: Make-like declarative workflows in r. 2015. URL https://
github.com/richfitz/remake

Gavish M, Donoho D. A universal identifier for computational results. Procedia Computer Science.
2011; 4:637–647. URL . https://doi.org/10.1016/j.procs.2011.04.067

Gelfond JA, Klugman CM, Welty LJ, Heitman E, Louden C, Pollock BH. How to tell the truth with
statistics: The case for accountable data analyses in team-based science. Journal of translational
medicine & epidemiology. 2014; 2(2) URL . https://doi.org/10.1002/sim.4282

Gentleman R, Temple Lang D. Statistical analyses and reproducible research. Journal of
Computational and Graphical Statistics. 2007; 16(1):1–23. URL . https://doi.org/
10.1198/106186007x178663

Hamano J, Torvalds L. Git-fast version control system. 2005

Huber W, Carey VJ, Gentleman R, Anders S, Carlson M, Carvalho BS, Bravo HC, Davis S, Gatto L,
Girke T, Gottardo R, Hahne F, Hansen KD, Irizarry RA, Lawrence M, Love MI, MacDonald J,
Obenchain V, Ole’s AK, Pag‘es H, Reyes A, Shannon P, Smyth GK, Tenenbaum D, Waldron L,
Morgan M. Orchestrating high-throughput genomic analysis with Bioconductor. Nature Methods.
2015; 12(2):115–121. URL . https://doi.org/10.1038/nmeth.3252 [PubMed: 25633503]

I. International Committee of Medical Journal Editors. [Accessed: 2017-12-30] Defining the role of
authors and contributors. 2016. http://www.icmje.org/recommendations/browse/roles-and-
responsibilities/defining-the-role-of-authors-and-contributors.html

Jagadeesan R, Jeffrey A, Pitcher C, Riely J. Computer Security–ESORICS 2009. Springer; 2009.
Towards a theory of accountability and audit; 152–167.

Lerner BS, Boose ER. Collecting provenance in an interactive scripting environment.

Liu Z, Pounds S. An r package that automatically collects and archives details for reproducible
computing. BMC bioinformatics. 2014; 15(1):1. URL . https://doi.org/10.1186/1471-2105-15-138
[PubMed: 24383880]

Peng RD. Caching and distributing statistical analyses in r. Journal of Statistical Software. 2008. URL
https://doi.org/10.18637/jss.v026.i07

Rabin MO, , et al. Fingerprinting by random polynomials. Center for Research in Computing Techn.,
Aiken Computation Laboratory, Univ.; 1981.

Ragan-Kelley M, Perez F, Granger B, Kluyver T, Ivanov P, Frederic J, Bussonier M. The jupyter/
ipython architecture: a unified view of computational research, from interactive exploration to
communication and publication. AGU Fall Meeting Abstracts. 2014; 1:07.

Resnik DB, Tyler AM, Black JR, Kissling G. Authorship policies of scientific journals. Journal of
medical ethics, pages medethics–2015. 2015. https://doi.org/10.1136/medethics-2015-103171URL

RStudio Team. RStudio: Integrated Development Environment for R. RStudio, Inc.; Boston, MA:
2016. URL http://www.rstudio.com/

Gelfond et al. Page 16

R J. Author manuscript; available in PMC 2018 November 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://doi.org/10.1137/0909049
https://CRAN.R-project.org/package=shiny
https://doi.org/10.1201/b16868
https://CRAN.R-project.org/package=digest
https://CRAN.R-project.org/package=digest
https://github.com/richfitz/remake
https://github.com/richfitz/remake
https://doi.org/10.1016/j.procs.2011.04.067
https://doi.org/10.1002/sim.4282
https://doi.org/10.1198/106186007x178663
https://doi.org/10.1198/106186007x178663
https://doi.org/10.1038/nmeth.3252
http://www.icmje.org/recommendations/browse/roles-and-responsibilities/defining-the-role-of-authors-and-contributors.html
http://www.icmje.org/recommendations/browse/roles-and-responsibilities/defining-the-role-of-authors-and-contributors.html
https://doi.org/10.1186/1471-2105-15-138
https://doi.org/10.18637/jss.v026.i07
https://doi.org/10.1136/medethics-2015-103171
http://www.rstudio.com/

Schmidt S, Goros M, Parsons HM, Saygin C, Wan H-D, Shireman PK, Gelfond JA. Improving
initiation and tracking of research projects at an academic health center a case study. Evaluation &
the Health Professions. 2016. https://doi.org/10.1177/01632787166697930163278716669793.
URL

Slaughter P, Jones C, Jones M, Palmer L. recordr: Provenance tracking for r. 2015. URL https://
github.com/NCEAS/recordr

Ushey K, McPherson J, Cheng J, Atkins A, Allaire J. packrat: A Dependency Management System for
Projects and their R Package Dependencies. R package version 0.4.8-1. 2016. URL https://
CRAN.R-project.org/package=packrat

Wickham H, Chang W. devtools: Tools to Make Developing R Packages Easier. R package version
1.8.0. 2015. URL http://CRAN.R-project.org/package=devtools

Widgren S, , et al. git2r: Provides Access to Git Repositories, 2017. R package version 0.19.0. URL
https://CRAN.R-project.org/package=git2r

Wilkinson MD, Dumontier M, Aalbersberg IJ, Appleton G, Axton M, Baak A, Blomberg N, Boiten J-
W, da Silva Santos LB, Bourne PE, et al. The fair guiding principles for scientific data
management and stewardship. Scientific data. 2016; 3:160018. URL . https://doi.org/10.1038/
sdata.2016.18 [PubMed: 26978244]

Wolstencroft K, Haines R, Fellows D, Williams A, Withers D, Owen S, Soiland-Reyes S, Dunlop I,
Nenadic A, Fisher P. , et al. The taverna workflow suite: designing and executing workflows of
web services on the desktop, web or in the cloud; Nucleic acids research. 2013. gkt328https://
doi.org/10.1093/nar/gkt328URL

Xie Y. Dynamic Documents with R and knitr. Vol. 29. CRC Press; 2015.

Zeileis A. Cran task views. R News. 2005; 5(1):39–40.

Gelfond et al. Page 17

R J. Author manuscript; available in PMC 2018 November 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://doi.org/10.1177/0163278716669793
https://github.com/NCEAS/recordr
https://github.com/NCEAS/recordr
https://CRAN.R-project.org/package=packrat
https://CRAN.R-project.org/package=packrat
http://CRAN.R-project.org/package=devtools
https://CRAN.R-project.org/package=git2r
https://doi.org/10.1038/sdata.2016.18
https://doi.org/10.1038/sdata.2016.18
https://doi.org/10.1093/nar/gkt328
https://doi.org/10.1093/nar/gkt328

Figure 1.
Run report tab. 1. The Create Report button will create an html report listing all R script

input/outputs. 2. RunApp selects and launches App within the project App directory. 3. The

Identify file button initiates a file select dialogue, and the version control history based upon

the file hash is given.

Gelfond et al. Page 18

R J. Author manuscript; available in PMC 2018 November 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 2.
Resulting graph from graphProject() in code snippet. The R Script Graph shows

dependencies of R scripts in the "adaprTest" project with their synchronization status after

syncTrunk(’graph_cardata.R’), which synchronizes results from the R script

‘ graph_cardata.R’.

Gelfond et al. Page 19

R J. Author manuscript; available in PMC 2018 November 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 3.
Synchronize Tab. 1. Examine program graph creates or updates two interactive plots. 2.

Check the synchronization status and synchronize project by running necessary R scripts. 3.

Syncronize project. A pop-up progress bar will open. 4. Commit message with Git version

control snapshot of project. Commit Project button operates Git. 5. R Script Graph shows

dependencies of R scripts. Clicking on button runs the R scripts. Selecting or brushing

button opens panel 6. 6. Displays the inputs and output of the selected R script. Clicking on

the file label opens the file or selecting opens the file folder.

Gelfond et al. Page 20

R J. Author manuscript; available in PMC 2018 November 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 4.
Cheat sheet snapshot. This figure shows first out of two pages of the function summary cheat

sheet. This is opened from the R console using the function call adaprSheet().

Gelfond et al. Page 21

R J. Author manuscript; available in PMC 2018 November 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 5.
Cheat sheet snapshot. This figure shows second out of two pages of the function summary

cheat sheet. This is opened from the R console using the function call adaprSheet().

Gelfond et al. Page 22

R J. Author manuscript; available in PMC 2018 November 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 6.
The directed acyclic graphs of 160 projects that used the adapr package. Each panel is a

project, and points are files (data files, R scripts, and output files) organized by their

dependencies (flowing from top to bottom) within that project.

Gelfond et al. Page 23

R J. Author manuscript; available in PMC 2018 November 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Gelfond et al. Page 24

Table 1

Side effects of header and footer functions

Function Side effects

create_source_file_dir Create directories for Project and Results

Set project id for R session

Initialize the file tracking object source_info

Gather file information on all project files

Initialize Git for project (if using Git)

Add dependencies files to Git

Initialize archivist repo for script

Run all R scripts in ‘ support_function’ directory

Run all R scripts in script specific ‘ support_function/myRscript.R’ directory

Create R markdown file with same file prefix (if not already done)

Create publication file (if not already done)

finalize_dependency Pass workspace to R markdown file and render

Store file modification time and hash for all dependencies

Write dependency information to ‘ Dependency’ directory

Add dependency file and R session information to Git

R J. Author manuscript; available in PMC 2018 November 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Gelfond et al. Page 25

Table 2

List of adapr options

Purpose Option Name Value

Path to system resources PATH Paths separated by system delimiter

Specify use of Git git TRUE or FALSE

Default project path project.path File path

Default publication path publish.path File path

Default R library library File path to default library

Specify use of adapr beta version adaprBeta TRUE or FALSE

R J. Author manuscript; available in PMC 2018 November 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Gelfond et al. Page 26

Table 3

Convenience functions

Purpose Function example

Browse main function cheat sheet for adapr adaprSheet()

Show file usage information for all projects fileInfoProjects()

Open project directory in file browser showProject()

Open project or source results directory in file
browser

showResults()

Open project’s R script or R markdown file
lists R scripts if not specified

openScript()

List intermediate result objects listBranches()

Plot synchronization status of project scripts graphProject()

Execute R script within a project optionally
create a markdown log

runScript('read_data.R', 'adaprTest',logRmd=TRUE)

Search R scripts for string searchScripts('lmer')

Copy data file to project data directory importData()

Return results directory within R script resultsDir()

Return data directory within R script dataDir()

Track file reads without using Read ReadTrack('arraydata.idat', 'read by limma package')

Track file writes without using Write WriteTrack('myFile.docx', 'From ReporteRs package')

R J. Author manuscript; available in PMC 2018 November 28.

	Abstract
	Introduction
	Setting up adapr and defining a project
	Initializing projects and adapr R scripts
	Literate programing using R Markdown
	Managing R packages
	Summarizing and visualizing projects
	Synchronizing and version control
	Sharing results
	Configuration
	Convenience functions
	Conclusion
	Limitations
	Other potential benefits

	References
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Figure 5
	Figure 6
	Table 1
	Table 2
	Table 3

