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Abstract

In risk evaluation, the effect of mixtures of environmental chemicals on a common adverse 

outcome is of interest. However, due to the high dimensionality and inherent correlations among 

chemicals that occur together, the traditional methods (e.g. ordinary or logistic regression) suffer 

from collinearity and variance inflation, and shrinkage methods have limitations in selecting 

among correlated components. We propose a weighted quantile sum (WQS) approach to 

estimating a body burden index, which identifies “bad actors” in a set of highly correlated 

environmental chemicals. We evaluate and characterize the accuracy of WQS regression in 

variable selection through extensive simulation studies through sensitivity and specificity (i.e., 

ability of the WQS method to select the bad actors correctly and not incorrect ones). We 

demonstrate the improvement in accuracy this method provides over traditional ordinary 

regression and shrinkage methods (lasso, adaptive lasso, and elastic net). Results from simulations 

demonstrate that WQS regression is accurate under some environmentally relevant conditions, but 

its accuracy decreases for a fixed correlation pattern as the association with a response variable 

diminishes. Nonzero weights (i.e., weights exceeding a selection threshold parameter) may be 

used to identify bad actors; however, components within a cluster of highly correlated active 

components tend to have lower weights, with the sum of their weights representative of the set.
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1. INTRODUCTION

Several recent reviews have described the conceptual and analytical challenges involved in 

assessing the health effects of exposures to mixtures of chemical contaminants (Billionnet et 

al. 2012; Dominici et al. 2010; Vedal and Kaufman 2011). Complex mixtures are considered 

to be part of the “exposome” (Wild 2005, 2012; Rappaport and Smith 2010), and are of 

current interest, for example, in perinatal (Buck Louis et al. 2013) and air pollution 

(Brunekreef 2013) epidemiology. Conceptually, cumulative exposure to multiple 

compounds, each with concentrations below a set regulatory dose, may be associated with 

health endpoints, even though associations are not found at permissible levels of individual 

mixture components. A study of the food supply in New York State (Schecter et al. 2013) 

found that individual phthalate concentrations were all below the EPA regulatory dose, yet 

cumulative exposure was substantially higher.

Difficulties arise in the analysis of health effects of chemical mixtures when high 

correlations occur either between different chemicals within a class of contaminants (e.g. 

phthalates), between classes of contaminants (e.g. phthalates and phenols), and/or between 

contaminant metabolite concentrations measured in urine. For example, Fig. 1 presents a 

heat map of the complex observed correlation pattern among urinary phthalate monoesters 

as measured in the National Health and Nutrition Examination Survey (2005–2008), with 

estimates ranging between near 0 to near perfect (0.98). These correlations likely derive 

from shared exposure routes or sources (e.g. diet), as well as shared metabolic processes.

The task of identifying the key etiologically relevant compounds and/or mixtures associated 

with adverse health outcomes challenges standard regression-based analytical techniques, 

due to the strong correlation structure of the exposures as well as the hypothesized 

correlation between individual exposures and outcomes. Regularization methods, including 

ridge regression, lasso, adaptive lasso, and elastic net, have been proposed for conducting 

regression with a correlated set of predictors. The methods generally reduce regression 

coefficient variance at a cost of increased bias. In ridge regression, an L2 penalty is imposed 

on the regression coefficients that can shrink the coefficients, depending on the value of the 

ridge shrinkage parameter, to decrease the variance of the p coefficient estimates (e.g., Hoerl 

and Kennard 1970):

βridge = arg min
β i 1

n
yi β0 j 1

p 1
β jxi j

2
λ

j 1

p
β j

2 .

The lasso imposes an L1 penalty on the regression coefficients that can shrink some 

regression coefficients to exactly zero (Tibshirani 1996):

βlasso = arg min
β i 1

n
yi β0 j 1

p 1
β jxi j

2
λ

j 1

p
|β j| .
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Hence, the lasso performs model selection in addition to the coefficient shrinkage that is 

performed in ridge regression. As a result, lasso can lead to a more parsimonious model that 

is simpler to interpret than a ridge regression model. The adaptive lasso is a weighted lasso 

with data-dependent weights, often chosen to be the inverse absolute maximum likelihood 

estimate of the regression parameter (Zou 2006):

βadaptive lasso = arg min
β i 1

n
yi β0 j 1

p 1
β jxi j

2
λ

j 1

p
w j | β j| .

The elastic net applies a combination of the lasso and ridge regression L1 and L2 penalties 

to the coefficients, where a parameter determines the amount of weight each of the lasso and 

ridge penalties receives (Zou and Hastie 2005):

βelastic net = arg min
β i 1

n
yi β0 j 1

p 1
β jxi j

2
λ

j 1

p
(α | β j| + (1 − α)β j

2) .

Both the adaptive lasso and elastic net can shrink regression coefficients to zero to perform 

model selection.

Shrinkage methods are commonly used for prediction and may be particularly useful in the p 
>> n problem, but they have limitations for use in risk evaluation of environmental chemical 

mixtures. Traditional ridge regression does not reduce the dimensionality of the problem. In 

the presence of high correlations among predictor variables, the lasso method has been 

shown to select an arbitrary member from the group of correlated predictors (Zou and Hastie 

2005). This is particularly problematic for risk evaluation of environmental chemicals, 

where the implication is that those not selected are not associated with the adverse health 

outcome. The elastic net method encourages a “grouping effect” that causes correlated 

predictors to either all be eliminated from the model or all be used in the model (Zou and 

Hastie 2005). The grouping effect is exhibited if the regression coefficients of highly 

correlated variables tend to be equal (Zou and Hastie 2005) and may be applicable in the 

case of genes along a common biological pathway. However, a grouping effect is 

problematic in the risk evaluation of environmental chemicals where correlations among the 

chemicals is due to exposure and/or behavior patterns and is not necessarily associated with 

the health outcome. For example, it may be the case that only one of two highly correlated 

chemicals has a biological association with the health effect and, thus, both chemicals 

should not be either jointly selected in the model or removed from the model. Further, 

simulation studies show that elastic net often outperforms lasso in terms of prediction 

accuracy (Zou and Hastie 2005). When the variables are orthogonal, lasso is consistent in 

variable selection (Zou 2006); however, lasso, adaptive lasso and elastic net have been 

shown in simulation studies to have poor specificity in variable selection with correlated data 

(i.e., select incorrect variables; Table 3 in Zou and Hastie 2005; Table 3 in Zou 2006).

In addition to these shrinkage methods, principal components analysis has been used to 

create synthetic variables to represent mixtures of chemicals (e.g., Mustapha et al. 2011). 
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However, the principal components are constructed based solely on the correlation pattern 

among the predictor variables, without regard to the outcome variable. Thus, the principal 

components do not identify a set of components associated with a selected health effect, as 

the loadings are the same regardless of the health effect. Further, when a principal 

component is significantly associated with a health effect, the components with high 

loadings may not all be associated with the outcome.

Recent articles on complex chemical mixtures and on the potential approaches and general 

issue of analyzing collinear variables have reviewed the various statistical approaches to 

model fitting and variable selection (Billionnet et al. 2012; Hastie et al. 2009). One such 

strategy is the empirical construction of a weighted index, or score of exposure, for use in a 

regression model (Gennings et al. 2010; Christensen et al. 2013). Such an index focuses a 

test for association of the mixture with a health effect to a single degree of freedom test with 

increased power. The index is readily interpretable as an estimation of the mixture effect 

(i.e., the slope associated with the index) where the weights identify the bad actors and “zero 

out” components with no (or negligible) association (Billionnet et al. 2012; Christensen et 

al. 2013). In addition, a weighted index evaluates components in the direction of increased 

risk, thereby averting the focus from the environmental toxins that may be found to have a 

protective effect (Roberts and Martin 2006). It may be the case that some components have 

positive associations and others have negative associations with the selected health outcome; 

however, we propose that focusing in the direction of increased risk improves the 

interpretability of the weighted index. Further, by focusing the inference in a single 

direction, the problem of the reversal paradox, where regression coefficients have opposite 

signs due to the correlation among the predictor variables, is avoided (Tu et al. 2008). The 

weights are constrained to sum to 1 and be between 0 and 1, reducing the dimensionality and 

the issues with collinearity while the weights identify important components, thereby 

making the index interpretable. Interestingly, regularization using a nonnegativity constraint 

(suggested in Breiman 1996) has been shown to “perform as well as, and sometimes better 

than, shrinkage estimators in terms of average prediction error” (Leblanc and Tibshirani 

1993). Our focus herein is on accurate variable selection (instead of prediction error).

In this paper, we extend earlier work (Christensen et al. 2013; Gennings et al. 2010) using a 

weighted index by adding a bootstrap step to estimate the weights and naming the approach 

weighted quantile sum (WQS) regression. In the next section, we describe WQS regression, 

followed by a motivating example. Section 4 includes simulation studies to demonstrate the 

benefit of adding bootstrapping in WQS regression, and for comparing the performance of 

WQS regression to that of shrinkage methods in terms of accurate variable selection. The 

simulation studies are based on environmentally relevant correlation patterns among the 

components. We summarize the ability of the methods to correctly classify chemicals as bad 

actors in the simulation studies.

2. METHODS: WQS REGRESSION

Consider data with c correlated components that are reasonable to combine into an index 

(e.g., environmental contaminants with a potential common adverse health effect). Let the 

values for the c components be scored into quantiles, denoted qi (e.g., for quartiles, qi = 0, 1, 
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2, or 3 for values in the 1st, 2nd, 3rd, or 4th quartile, respectively) for i = 1 to c. The basic 

weighted index model (Christensen et al. 2013) is

g(μ) = β0 + β1
i 1

c
wiqi + z′ϕ, (1)

where wi is the unknown weight for the ith component, β0 is the intercept, β1 the regression 

coefficient for the weighted quantile sum (constraining its association with the mean to be 

either nonpositive or nonnegative), z is a vector of covariates (risk factors and confounders) 

determined prior to estimating the weights, ϕ is a vector of regression coefficients for the 

covariates, and g represents any monotonic, differentiable link function as in a generalized 

linear model, which links the mean, μ, to the predictor variables. The term i 1
c wiqi

represents the weighted index for the set of c chemicals of interest. The weights are 

constrained to sum to 1, i 1
c wi = 1, and are constrained by the limit 0 ≤ wi ≤ 1.

Following Christensen et al. (2013), the data (size N) may be split into a training (NT) and a 

validation dataset (NV) to estimate the WQS index weights in the training set, and then test 

the effect of the index for statistical significance in the validation set. In order to empirically 

and simultaneously estimate the weights and the parameters using the training data, we 

employ optimization algorithms that maximize a continuous nonlinear function subject to 

the constraints on the weights. We use the trust region method optimization algorithm for 

estimation because it allows for a linear constraint on a nonlinear objective function. A 

description of this optimization strategy is given in Nocedal and Wright (2006). The NLP 

procedure in SAS 9.2 treats the constrained optimization in the Lagrange format under the 

Kuhn-Tucker Conditions (SAS Institute Inc 2008).

In the spirit of recent work on stability selection (Meinshausen and Buhlmann 2010), we 

propose adding a bootstrap step to the WQS regression estimation to increase sensitivity in 

detecting important predictors through perturbing the data. A fixed number (B) of bootstrap 

samples of size NT are generated from the training dataset (typically B = 100 or 1,000) and 

are used to estimate the unknown weights that maximize the likelihood for the model. That 

is, the unknown parameters θ = (β0, β1, w1, … , wc, ϕ) are estimated in the nonlinear model 

given in equation (1) using maximum likelihood estimation for each bootstrap sample, b = 1, 

… , B, where the weights are constrained to the unit interval and to sum to one within each 

bootstrap sample. The set of estimated weights are tested for significance in each bootstrap 

sample through the significance of β1. The weights are used to estimate the weighted 

quantile sum index, given by:

WQS =
j 1

c
w jq j (2)
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where w j = 1
B∑b = 1

B w j b f β1 b  and f β1 b  is a pre-specified “signal function” 

(constrained to sum to 1) of the estimated slope parameter associated with WQS from the bth 

bootstrap sample, i.e., a measure of the signal strength. The signal function is defined such 

that samples with higher signal have higher relative weight in creating WQS. For example, 

the signal function may be defined by the relative test statistic associated with β1: i.e., define 

Sb as the test statistic from the bth bootstrap sample; then, the signal function is Sb / ∑ (Sb). 

Alternatively, the signal function may be based on an indicator of whether β1 is significant 

in the bth bootstrap sample.

Ideally, the significance of the WQS index is determined using the validation data and the 

model

g(μ) = β0 + β1WQS + z′ϕ . (3)

The index in equation (2) is defined using average weights across the bootstrap samples. 

When the dataset is large enough to split into training and validation sets, this test for 

significance of β1 is based on independent data. Otherwise, the model in equation (3) can be 

based on the full dataset. Considerations of whether the sample is large enough to split may 

be based on whether the results are robust to the random splitting of the data.

The proposed weighted index model in equation (1) can be written in the Lagrangian format. 

Without loss of generality, for g(μ) = μ with the form of the model in equation (1) in least 

squares optimization,

θWQS = arg min
θ j 1

n
yi β0 β1

i 1

c
wiqi z ϕ

2
+ λ

i 1

c
wi 1 (4)

or, equivalently for large samples, the maximum likelihood form is

θWQS = arg max
θ

ln L θ; y + λ
i 1

c
wi 1 . (5)

Under this form of the equation, for each bootstrap sample, the log-likelihood for the model 

in equation (5) is optimized subject to the constraint on the weights. A further constraint due 

to the structure of the model is that the association between the weighted quantile sum and 

the mean is either nonnegative or nonpositive, which constrains the correlation between the 

response and all the components to be of the same sign.

Interpretation of the estimated WQS regression model follows in two steps. First, a test for 

significance of β1 determines whether there is an association between the index and the 

outcome variable. The significance of the regression coefficient associated with the WQS 

index permits the further interpretation of the weights. Second, the important components in 
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the index are identified by comparing the “average” (across the bootstrap samples) weight 

for each component in equation (2) to a selection threshold parameter, τ, chosen a priori. For 

the analyses and simulation study conducted herein, with 11 components, we used τ = 0.05.

3. MOTIVATING EXAMPLE

Phthalates are chemicals used extensively in consumer products including soft toys, flooring, 

medical equipment, paints, plastic bags, cosmetics, and air fresheners (Wormuth et al. 2006). 

Because of their ubiquitous exposure, phthalates are commonly detected in human samples 

(Kim et al. 2014). Epidemiologic research has found associations between exposure to 

phthalates and various adverse health outcomes, including altered male reproductive 

development and function, altered thyroid function, increased waist circumference and 

insulin resistance, decreased gestational age or increased risk of premature birth, and 

respiratory symptoms and asthma (Ferguson et al. 2011). In a cross-sectional study, 

Ferguson et al (2011; NHANES, 1999–2006) reported an association between several 

phthalate monoester metabolites with increased serum markers of inflammation and 

oxidative stress; and also inverse associations between these markers and several oxidized 

phthalate metabolites. As these monoesters have a complex correlation pattern (Fig. 1), we 

were interested in using both WQS regression and shrinkage methods to determine which 

phthalates were jointly associated with oxidative stress as measured by gamma 

glutamyltransferase (GGT).

Using data from NHANES (2005–2008), we evaluated the association between 

concentrations of 11 urinary phthalate monoesters (i.e., metabolites defined in Table 1; 

natural log scale transformed), associated with 8 parent diesters (i.e., parent compounds), 

and oxidative stress as measured by log(GGT) in young and middle aged adults (18–50 

years; N = 1,439), adjusting for age, gender, smoking status, urinary creatinine (logscale), 

and BMI. In univariable analyses, only MBP and MIB were significant (p = 0.001 and p = 

0.005, respectively; Table 1) with positive slopes. We used three shrinkage methods (lasso, 

adaptive lasso, and elastic net) for model building. Analyses were conducted in R (R 

Development Core Team 2008) using glmnet (Friedman et al. 2010). The five adjustment 

covariates were forced to remain in the models. The weights in adaptive lasso were set to the 

inverse of the absolute least squares estimates for the regression coefficients. The lambda 

parameter was chosen through cross-validation as the largest value of lambda such that the 

prediction error was within one standard error of the minimum (i.e., 1-SE rule). The alpha 

parameter in elastic net was selected over a grid of values where both parameters minimized 

prediction error within one standard error of the minimum. The entire dataset (with 

nonmissing values) was used for the shrinkage methods.

Nine of the 11 phthalates were selected in the model using either lasso or elastic net (Table 

1): five had positive coefficients (ECP, MBP, MHH, MHP, and MIB) and four had negative 

coefficients (CNP, COP, MNM, and MOH); only ECP, MBP, MHH, and MOH were 

significant. Using adaptive lasso, only MHH (positive and significant) and MOH (negative 

and significant) were selected.
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Discrepancies between the univariable analyses and the shrinkage regression models 

include: (1) MIB was significant in the univariable analysis but was not included in the full 

model; (2) ECP, MHH, and MOH were not significant in the univariable analyses but were 

in the full model and were significant; and (3) lasso and elastic net included nine phthalate 

variables, while adaptive lasso selected only two of the 11.

We next conducted a WQS regression analysis, after splitting the sample size into a training 

(N = 593) and validation (N = 846) dataset using a 40:60% split leaving more in the 

validation dataset for increased power for the significance of the WQS index. Using B = 100 

bootstrap samples, the weighted (based on relative signal of the test statistic for the WQS 

slope in each bootstrap sample) average weights for each monoester (Table 1) were used to 

construct the WQS index for the phthalates. The corresponding slope was positive and 

significant (p = 0.036) in the validation dataset. Ninety-three percent (93 %) of the weight 

was on MBP, MEP MIB, ECP, and MZP; and weights between 0.01 and 0.02 corresponded 

to 5 other phthalates. For comparison, when the bootstrap step was omitted, the weights in 

the training dataset included 0 weights on 7 of the 11 monoesters with a weight of 0.66 on 

MBP, 0.22 on MEP, 0.07 on MIB, and 0.05 on ECP. The slope associated with this index 

was also positive and borderline significant (p = 0.060) in the validation dataset. Thus, the 

bootstrap step provided a stronger signal due to the inclusion of additional monoesters in the 

index—a point further evaluated through simulation studies in the next section.

4. SIMULATION STUDIES

4.1. SIMULATING FOUR CASES BASED ON OBSERVED GGT AND PHTHALATE DATA

We evaluated WQS regression and other regularization methods through simulation studies 

based on (i) enhanced values (3 or 5 times) of the observed correlations between the 

outcome variable and the phthalates in NHANES (2005–2008) (Table 1); and (ii) the 

observed or diminished correlation pattern among the components (Fig. 1). Specifically, the 

simulation is based on the observed correlation pattern among the 11 phthalates 

concentrations and the residuals (Y) from the covariates only model (adjusting for BMI, 

smoking status, gender, age, and urinary creatinine (log scale)). Details of simulating 

multivariate normal data from a correlation matrix are provided in the Appendix. In short, 

the response variable (Y) and predictor variables (X) are simultaneously generated, as 

multivariate normal data, from an assumed form of their correlation matrix. We assumed 

CNP, ECP, MEP, MHP, MNM, and MZP were not associated with Y and the other five 

monoesters have the absolute observed correlation as given in Table 1, ranging between 0.02 

and 0.05, in the following cases:

1. Three times the assumed correlation between Y and the specified five 

components (ranging between 0.06 and 0.15) and the observed correlation 

pattern among the phthalates (Fig. 1);

2. Three times the assumed correlation between Y and the specified five 

components and half the observed correlation pattern among the phthalates (i.e., 

off-diagonal values multiplied by 0.5);
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3. Five times the assumed correlation between Y and the specified five components 

(ranging between 0.10 and 0.25) and observed correlation pattern among the 

phthalates; and

4. Five times the assumed correlation between Y and the specified five components 

and half the observed correlation pattern among the phthalates.

These scenarios provide a range of anticipated difficulty in correctly classifying predictors: a 

difficult scenario with weak association with Y but highly correlated components (Case 1); a 

less difficult scenario with weak association with Y and less correlated components (Case 

2); a scenario with stronger association with Y and highly correlated components (Case 3); 

and an easier scenario with stronger signal and weaker correlation among the components 

(Case 4). Further, shrinkage methods (lasso, adaptive lasso, and elastic net) were evaluated 

using the predictor variables as continuous random variables and as scored variables using 

quartiles (q = 0, 1, 2, or 3). WQS regression was evaluated (i) without a bootstrap step; (ii) 

with a signal function defined by the relative test statistic for β1; and (iii) with a signal 

function defined as a binary function of whether β1 was significant (value of 1) or not (value 

of 0).

One hundred (100) simulated studies were generated with a total sample size of 500, a study 

size considered more practical for cohort studies than that observed in the motivating 

example. The full sample size was used in the univariable analyses and the shrinkage 

methods. For WQS regression, the sample was randomly divided into a training dataset (N = 

250) and a validation dataset (N = 250); a selection threshold parameter of 0.05 was used to 

determine whether or not a component was selected. Finally, a range of selection threshold 

parameters were evaluated graphically based on the (median) number of correctly selected 

and incorrectly selected variables across the 100 simulated studies.

4.2. EVALUATION OF WQS REGRESSION AND ACCURATE VARIABLE SELECTION

As stated previously, construction of the WQS index is based on a weighted average of the 

empirical weights across the bootstrap samples. In the bootstrap samples where the signal of 

an association between the index and outcome variable (i.e., as measured by the signal-to-

noise ratio associated with the regression parameter for the index) from the data is strong, 

the estimated weights are more informative compared to when the regression parameter is 

near zero. Two signal functions were used to construct the index—i.e., a weighted average 

across the bootstrap samples defines the weight for each component: (1) relative test statistic 

(S) for β1, i.e., Sb/∑(Sb); and (2) whether the regression parameter in the bth bootstrap 

sample was significant or not. For comparison, the case where the signal function was set to 

1 was also evaluated. The number of correctly and incorrectly selected variables using these 

signal functions was similar (Table 2); thus, a simple (unweighted) average across the 

bootstrap distributions had similar accuracy in variable selection as more complicated signal 

functions.

The nonlinear model in equation (1) was estimated for each of the simulated datasets with 

and without a bootstrap step. Results (Table 2) show that without the bootstrap step, the 

median number of variables correctly selected (from 5) was 2 (with IQR = (1,2)) in the most 

difficult case (Case 1), and was 3 in Cases 2 and 4. This is compared to a median of 4 
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variables correctly selected with the bootstrap step in Cases 1, 2, and 4 and a median of 3 in 

Case 3, with negligible difference observed between the two signal functions for Cases 2, 3 

and 4. The relative signal function was somewhat less sensitive than using the indicator 

function in Case 1—a median of 3 compared to 4. Specificity improved for WQS as the 

signal increased (comparing Cases 1 and 2 to Cases 3 and 4).

These results are based on the a priori chosen selection threshold parameter, here 0.05. The 

sensitivity and specificity of WQS regression depends on this parameter. Figure 2 presents 

the median number of correctly and incorrectly selected variables for the 4 cases. A 

selection threshold that is too low results in an increase in the incorrect selection of 

variables; whereas a selection threshold that is too high results in a decrease in the correct 

selection of variables—something available for review in a simulation study but not for data 

analysis.

For each simulation study in WQS regression, the training dataset was the base for the 

bootstrap samples, which were used to determine the WQS index. The validation data were 

used to test for the significance of the constructed index. The power was low in cases 1 and 

2, i.e., 37 % and 48 %, respectively; the power was high in cases 3 and 4, 93 % and 98 %, 

respectively.

4.3. COMPARISON WITH ORDINARY AND SHRINKAGE REGRESSION

For comparison to WQS regression, we conducted a univariable analysis in each simulation 

study across the four cases. Using median counts, of the six variables that should not have 

been selected, none were significant in these models (Table 2). The median number of 

correctly selected variables was 2 for cases 1 and 2. But when the signal increased (5 times 

the observed correlation) the median number of significant variables was 4. This indicates 

the signal in the data is quite low in two of the four cases.

We also looked at three shrinkage methods for comparison: lasso, adaptive lasso, and elastic 

net (Table 2). In each analysis, we counted the number of nonzero regression parameters. In 

Case 1, the median number of correctly selected variables was 2 for lasso and adaptive lasso, 

with between 1 and 2 incorrectly selected. Elastic net was greedier with 3 (median) correctly 

selected but 3 were also incorrectly selected. All three shrinkage methods failed to detect a 

signal in case 2, generally, 75 % of the time. Further, the reversal paradox seems to have 

played a role in Case 3 when the signal was increased but the correlation pattern among the 

components was complex. The median number ranged between 3 and 6 for those variables 

that should not have been selected and were generally negative (data not shown). When the 

correlation pattern diminished and the signal was strong (case 4), specificity improved for 

the shrinkage methods, but these methods were not as sensitive as WQS.

In summary, these studies indicate a loss of information when the shrinkage methods are 

conducted on quartiles of the concentration variables (Table 2). We make this comparison 

because WQS is based on quartiles and results indicate that differences in accurate variable 

selection observed for WQS compared with the shrinkage methods are not due to the use of 

quartiles. For the shrinkage methods, variables that are incorrectly selected often 

(incorrectly) have a negative regression coefficient, perhaps, as a result of the reversal 
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paradox (data not shown). In cases where the shrinkage methods have high sensitivity, the 

specificity is often low. For WQS regression, the bootstrap step improves sensitivity in all 

four cases with impact on specificity only in the low signal cases. The signal functions were 

similar in terms of accurate variable selection. WQS performed better when there was a 

stronger signal, in contrast to all three shrinkage methods, which had low specificity in Case 

3. Finally, WQS has higher specificity compared to shrinkage methods in Case 3 and 

comparable specificity in Case 4.

4.4 EVALUATION OF WQS REGRESSION WEIGHTS AND UNDERLYING CORRELATION PATTERN

As stated previously, the estimated weights in the WQS index are used for variable selection 

by comparing the weighted average to the selection threshold value. The weights may also 

be used to interpret the importance of the association between each component and the 

outcome variable. However, the magnitude of the weights also depends on the correlation 

pattern. We investigated this by adjusting the simulation study described in Sect. 4.1 for 

homogeneous association between the active components and Y—i.e., where the correlation 

between the five ‘bad actors’ and Y was either 0.1 (Case A) or 0.2 (Case B). In this scenario, 

the shifts in the distributions among the active chemicals are due to the correlation pattern 

among the components.

Histograms of the estimated WQS weights are provided in Fig. 3, where the (active) 

chemicals set to be truly associated with the outcome are in green and the (nonactive) 

chemicals set to not be associated with the outcome are plotted in red. The heat map in Fig. 

1 provides an indication of Spearman correlation estimates for each chemical (log 

transformed) with the other 10 monoesters. The distributions of the weights associated with 

the active chemicals in Case B are distinctly different from zero and different from the 

“tower-like” distributions of the nonactive chemicals. The distributions for Case A are not as 

distinct as in Case B with the exception of ECP and MHP, where more than 90% of the 

weight is negligible (i.e., bar at 0). The two assumed active chemicals with high correlations 

with another (above 0.9) are MHH and MOH; both have lower average weights (0.11 for 

both in Case A and 0.13 in Case B) than other active chemicals. The nonactive chemicals, 

generally, have more weight at zero when the correlation with other chemicals is higher 

(e.g., ECP and MEP in Case A). Thus, chemicals with higher pairwise correlations 

compared to others tend to have lower weights. The distinction between inactive and active 

chemicals is improved as the signal increases (Fig. 3 and Table S1).

5. DISCUSSION

In summary, we have proposed the addition of a bootstrap step in the use of WQS regression 

for improved accuracy. Through simulation studies, we have observed an improvement in 

sensitivity with only minor changes in specificity (in the low signal cases) as a result of 

perturbing the data through bootstrapping. We have argued that regularization through 

different constraints than those used in shrinkage methods result in improved specificity 

when using components with a complex correlation pattern, as observed in environmental 

chemical exposures. The strategy is conducted in steps, where the identification of important 
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components, as determined by their estimated weights being above a selection threshold 

value, follows only when the regression parameter for the index is significant.

The strategy is based on the empirical estimation of a weighted quantile sum index as 

associated with an outcome variable of interest. We have proposed to use quantiles (e.g., 

quartiles due to their common usage in epidemiology studies) instead of the continuous 

variables for several reasons. Estimation of weights without bounds on the components 

results in extreme values having influence that grows with the weights. Second, translating 

the variables (here, concentrations) to the same scale allows for correction of different 

potencies for the components. However, a limitation to using quantiles is the loss of the full 

exposure range of the components. Through the simulation study, the use of quartiles in 

shrinkage methods was indeed associated with a loss of information. Additional limitations 

of the current formulation of the WQS regression model are the assumptions that there is no 

interaction among the exposures and that there is a constant change in risk between the 

quantiles. These are current lines of inquiry for our group in extending the WQS regression 

model.

The results from the simulation studies focus on the identification of bad actors when the 

estimated weights exceed a specified cutoff, here 0.05. Figure 2 elucidates the tension 

between a small threshold value, where too many variables are incorrectly selected, and a 

large threshold value, where too many variables are missed. Our experience indicates that 

the cutoff should be smaller as the number of components increases. For example, in an 

analysis of 34 highly correlated PCB congeners, a cutoff of 0.005 is more useful as many of 

the weights fall between 0.01 and 0.05, with the equally weighted average weight of 0.03. 

Unlike in a simulation study, the optimum choice of a selection threshold parameter cannot 

be determined in a real data analysis. However, we propose to use values between 0.01 and 

0.05 inversely related to the number of components. Realistically, with a large number of 

components (say, dozens), estimated weights below a selection threshold of 0.01 (perhaps 

rounded from 0.005) seem negligible. The selection of a threshold parameter is somewhat 

analogous to the choice of the criterion for selecting the tuning parameter from cross 

validation in lasso. The lambda associated with the minimum prediction error may allow too 

few variables in the model, while, somewhat arbitrarily, the one associated with the 1-

standard error rule is considered to impose more regularization.

Recent work by Meinshausen and Buhlmann (2010) on ‘stability selection’ combines 

subsampling with high dimensional selection algorithms resulting in “markedly improved” 

selection methods. In short, for a given tuning parameter, stability selection is defined as a 

strategy that randomly selects a subsample (of size n/2) drawn without replacement from a 

sample of size n many times and estimates the probability of each variable being in the 

selected set through repeated subsampling. Instead of looking at a single model, the data are 

perturbed (e.g., by subsampling) many times. Variables are selected that occur in a large 

fraction of the resulting selection sets. In fact, although they describe subsampling, the 

authors note “bootstrapping would behave similarly.” Interestingly, Meinshausen and 

Buhlmann (2010) prove that randomized lasso (similar to adaptive lasso where the weights 

are random values) is consistent in variable selection using stability selection with weaker 

conditions on the design than required for regular lasso. Thus, characteristics of variable 
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selection are improved by including a data perturbation step. In WQS regression, variables 

are associated with weights, i.e., a linear combination of the quantile scores, instead of the 

binary case of selection or not selection. In the spirit of stability selection, we propose that 

the bootstrap step improves variable selection. Instead of basing inference on the weights 

from a single model, the data are perturbed through bootstrapping and variables are selected 

with average weights that exceed a selection threshold value.

A standard analysis strategy in epidemiology studies of mixtures of chemical exposures is to 

evaluate each chemical alone while adjusting for covariates/confounders (e.g., Colt et al. 

2005). However, humans are exposed to multiple chemicals that may impact human health. 

Interestingly, the simulation study conducted here demonstrated strong sensitivity and 

specificity in univariable models when the signal was high (Cases 3 and 4 in Table 2). In 

Cases 1 and 2, the univariable regression approach appears to have not only lower sensitivity 

(i.e., less power to detect truly important predictors) but also lower type I error (fewer 

number of false positives) than WQS. In addition, other metrics besides accurate variable 

selection are important in evaluating the impact of exposures to mixtures on human health. 

The univariable regression approach does not account for the full health impact of the 

mixture.

The WQS nonlinear model in equation (1) links the regression coefficient β1 with the 

weighted quantile sum. Components in the sum not associated with the outcome variable 

have low weights that approach zero. In practice, these are often 10−12 or lower. However, 

the sum of the weights is constrained to one; thus, the model as stated does not support the 

case where none of the components have nonzero weights. In practice, we initialize the 

iterative nonlinear estimation algorithm with equal values for the weights (i.e., 1/c for c 

components). When the regression coefficient is close to zero, the signal from these weights 

is masked, leaving the weights near their starting values. The interpretation of the weights 

should follow only when the corresponding regression coefficient demonstrates an 

association with the outcome variable.

We have simulated data by concatenating the correlation matrix among the chemicals with 

the assumed bivariate correlations to the outcome variable and using a Cholesky 

decomposition to generate multivariate normal data (see Appendix). This is in contrast to the 

usual approach of simulating the mean through a vector of assumed regression coefficients 

given the predictor variables. With a specified correlation matrix among the predictors, R, 

the choice is whether to fix the bivariate correlations between the predictors and the response 

variable (i.e., r) or the regression coefficients, β; i.e.,

r = Rβ

β = R−1r .

The two approaches for simulating data are similar when the predictor variables are 

independent (i.e., R is an identity matrix). However, with environmentally relevant 

correlation patterns (e.g., as observed in the phthalate data), the generated bivariate 

correlations with the response differ from the association as generated through the regression 
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parameters. We chose to control the bivariate correlation in the data by specifying those that 

are related to the response and those that are not.

In summary, WQS regression is useful for risk analysis because simulation study results 

suggest it has good specificity and adequate sensitivity for identifying predictors, with 

improvements in performance as the correlation with the outcome increases. When 

interpreting the weights, one should keep in mind both the pairwise correlations among the 

components and the correlation with the outcome variable. If the pairwise correlations are 

high relative to the correlation with the outcome, then this could lead to a breakdown case. 

In that situation, the weights should be considered in conjunction with the pairwise 

correlations that a given component has with other components. If a component has a 

minimal weight (i.e. less than 0.05 or 0.01 if a large number of components or a complex 

correlation structure is present) and is highly correlated with another component assigned 

minimal weight, the two are likely important, but have smaller weights as a result of their 

high pairwise correlation. From this type of analysis, we are able to detect components that 

are associated with a given health outcome and assess the total body burden they impose on 

an individual.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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APPENDIX

SIMULATING CORRELATED DATA

Our objective is to simulate normally distributed data N(M, ∑) with a given correlation 

structure for an outcome y and predictors x1, x2,…xc. Let ρ be the correlation matrix 

between and among y and the components in X and ∑ be the corresponding covariance 

matrix with diagonal values in vector S and sample means in vector m. To impose the 

correlation structure, we first use the relationship between the correlation and the variance 

that yields:

◻ = diag S ∗ ρ ∗ diag S

Then follow the simulation steps below where p = c + 1:

1) Calculate the Cholesky decomposition of ∑ (p × p dimension), such that 

∑ = Upxp′ Upxp. (see Harville (1997))

2) Simulate Zi ~ N(0px1, Ip). Z′ = [Z1Z2 …. Zn], i.e., Z is nxp where each row is a 

p-variate standard normal distribution.

3) Let M = (m*11xn)′ and Ynxp = Mnxp + Znxp
∗ Upxp

Carrico et al. Page 14

J Agric Biol Environ Stat. Author manuscript; available in PMC 2018 November 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



a) E(Y) = E(M + Z*U) = M + E(Z) = M

b) Var(Y) = Var(M + Z*U) = Var(M) + Var(Z*U) = 0 + U′Var(Z)U = U
′U = ∑

So, Y is nxp and has the distribution Np (M, ∑)

In the first step, in order to calculate U, ∑ must be positive definite. To evaluate relevant 

cases with highly correlated data, ∑ may be nearly singular. In this case, we use matrix 

ridging to stabilize the matrix.
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Figure 1. 
Heat map of Spearman correlation estimates between the urinary phthalate monoesters 

(logscale transformed; N = 1439) as measured in the National Health and Nutrition 

Examination Survey (NHANES, 2005–2008).
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Figure 2. 
Median number of correctly (solid) and incorrectly (dashed) selected variables over values 

of the selection threshold parameter for each of the four cases (Table 1) in the simulation 

study.
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Figure 3. 
Weights across 100 simulation studies (Case A) similar to Case 1, with observed correlation 

pattern among the chemicals where the correlation between the outcome and each active 

component is 0.1; and (Case B) similar to Case 4 with the observed correlation pattern 

diminished by half and where the correlation between the outcome and the active component 

is 0.2. Histograms for active chemicals are green and for inactive chemicals are red.
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Table 2.

Summary statistics (median and IQR of the number of variables correctly and incorrectly selected) for 

univariable analyses, regularization methods (lasso, adaptive lasso, and elastic net), and WQS regression.

Method Case1 Case2 Case3 Case4

# Correct # Incorrect # Correct # Incorrect # Correct # Incorrect # Correct # Incorrect

TRUTH 5 0 5 0 5 0 5 0

11 univariable analyses 2 (1,3) 0 (0,0) 2 (2,3) 0 (0,1) 4 (2,4) 0 (0,0) 4 (3,4) 0 (0,1)

Lasso: Nonzero 2 (0,3) 2 (0,4) 0 (0,0) 0 (0,0) 5 (4,5) 6 (5,6) 2 (1,2) 0 (0,0)

Lasso (quartiles): Nonzero 0 (0,0) 0 (0,0) 0 (0,0) 0 (0,0) 3 (3,4) 4 (3,5) 1 (0,2) 0 (0,0)

Adaptive lasso: Nonzero 2 (1,2) 1 (1,2) 0 (0,0) 0 (0,0) 4 (3,4) 3 (3,3) 1 (1,2) 0 (0,1)

Adaptive lasso (quartiles): 
Nonzero

2 (1,2) 1 (1,2) 0 (0,0) 0 (0,0) 4 (3,4) 3 (3,3) 1 (1,2) 0 (0,1)

Elastic net: Nonzero 3 (1,4) 3 (0,5) 1 (0,1) 0 (0,0) 5 (5,5) 6 (5,6) 2 (2,4) 0 (0,3)

Elastic net (quartiles): 
Nonzero

1 (0,1) 0 (0,0) 0 (0,1) 0 (0,0) 4 (3,5) 5 (4,5) 2 (1,3) 0 (0,1)

WQS regression (no 
bootstrap step)

2 (1,2) 0 (0,1) 3 (2,3) 1 (0,1) 2 (2,2) 0 (0,0) 3 (2,4) 0 (0,1)

WQS regression (with 
bootstrap step; signal 
function = 1)

3 (2,3) 1 (1,2) 3 (3,4) 2 (1,2) 3 (2,3) 0 (0,1) 4 (3,4) 1 (0,1)

WQS regression (with 
bootstrap step; signal 
function: relative test 
statistic)

3 (2,3) 1 (1,2) 4 (3,4) 2 (1,2) 3 (2,3) 0 (0,1) 4 (3,4) 1 (0,1)

WQS regression (with 
bootstrap step; signal 
function: significant β1)

4 (3,4) 2 (1,2) 4 (3,4) 2 (1,2) 3 (2,3) 0 (0,1) 4 (3,4) 1 (0,1)

One hundred datasets were simulated based on correlation patterns observed in NHANES (2005-08) between phthalate concentrations and 
residuals from a regression of oxidative stress as measured by log(GGT) on age, gender, smoking status, urinary creatinine (log scale), and BMI. 
Five of the 11 phthalates were set to be truly associated with the residuals. Case 1: observed correlation pattern among the chemicals and 3 times 
the observed absolute correlation with the residuals (Table 1); Case 2: observed correlations diminished by half with 3 times the observed absolute 
correlation with residuals; Case 3: observed correlation pattern among the chemicals with 5 times the observed absolute correlation with residuals; 
and Case 4: observed correlation diminished by half with 5 times the observed absolute correlation with residuals. A selection threshold of 0.05 
was used for WQS regression.

J Agric Biol Environ Stat. Author manuscript; available in PMC 2018 November 28.


	Abstract
	INTRODUCTION
	METHODS: WQS REGRESSION
	MOTIVATING EXAMPLE
	SIMULATION STUDIES
	Simulating Four Cases Based on Observed GGT and Phthalate Data
	Evaluation of WQS Regression and Accurate Variable Selection
	Comparison with Ordinary and Shrinkage Regression
	Evaluation of WQS Regression Weights and Underlying Correlation Pattern

	DISCUSSION
	APPENDIX
	References
	Figure 1.
	Figure 2.
	Figure 3.
	Table 1.
	Table 2.

