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Summary.

In all sorts of regression problems, it has become more and more important to deal with high-

dimensional data with lots of potentially influential covariates. A possible solution is to apply 

estimation methods that aim at the detection of the relevant effect structure by using penalization 

methods. In this article, the effect structure in the Cox frailty model, which is the most widely used 

model that accounts for heterogeneity in survival data, is investigated. Since in survival models 

one has to account for possible variation of the effect strength over time the selection of the 

relevant features has to distinguish between several cases, covariates can have time-varying 

effects, time-constant effects, or be irrelevant. A penalization approach is proposed that is able to 

distinguish between these types of effects to obtain a sparse representation that includes the 

relevant effects in a proper form. It is shown in simulations that the method works well. The 

method is applied to model the time until pregnancy, illustrating that the complexity of the 

influence structure can be strongly reduced by using the proposed penalty approach.
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1. Introduction

Proportional hazards (PH) models, and in particular the semi-parametric Cox model (Cox, 

1972) play a major role in the modeling of continuous event times. The Cox model assumes 

the semi-parametric hazard
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λ(t ∣ xi) = λ0(t) exp(xi
T β),

where λ(t|xi) is the hazard for observation i at time t, conditionally on the covariates xi
T = 

(xi1, … , xip). λ0(t) is the shared baseline hazard, and β the fixed effects vector. Note that for 

continuous time the hazard rate λ(t|xi) is defined as

λ(t ∣ xi) = lim
Δt 0

P(t ≤ T < t + Δt ∣ T ≥ t, xi) Δt,

representing the instantaneous risk of a transition at time t. Inference is usually based on 

maximization of the corresponding partial likelihood. This approach allows estimation of β 
while ignoring λ0(t) and performs well in classical problems with more observations than 

predictors. As a solution to the p > n problem, Tibshirani (1997) proposed the use of the so-

called least absolute shrinkage and selection operator (LASSO) penalty in the Cox model. 

Since then, several extensions have been proposed. In order to fit the penalized model, Gui 

and Li (2005) provided an algorithm using Newton–Raphson approximations and the 

adjusted LARS solution. Park and Hastie (2007) applied the elastic net penalty to the Cox 

model and proposed an efficient solution algorithm, which exploits the near piecewise 

linearity of the paths of coefficients to approximate the solution with different constraints. 

They numerically maximize the likelihood for each constraint via a Newton iteration. Also, 

Goeman (2010) addressed this problem and developed an alternative algorithm based on a 

combination of gradient ascent optimization with the Newton–Raphson algorithm. Another 

fast algorithm to fit the Cox model with elastic net penalties was presented by Simon et al. 

(2011), employing cyclical coordinate descent.

Frailty models aim at modeling the heterogeneity in the population. They can be used to 

account for the influence of unobserved covariates. They are especially useful if 

observations come in clusters, for example, if one models survival of family members or has 

repeated events for the same individual as in unemployment studies. The extreme case 

occurs if each individual forms its own cluster. For a careful investigation of identifiability 

issues see Van den Berg (2001). Parameter estimation in frailty models is more challenging 

than in the Cox model since the corresponding profile likelihood has no closed form 

solution. In the Cox PH frailty model, also known as mixed PH model, the hazard rate of 

subject j belonging to cluster i, conditionally on the covariates xij and the shared frailty bi, is 

given by

λij(t ∣ xij, bi) = biλ0(t) exp(xij
T β), i = 1, …, n, j = 1, …, Ni,

where the frailties bi are frequently assumed to follow a gamma distribution because of its 

mathematical convenience. The R package frailtypack (Rondeau et al., 2012) allows to 

fit such a Cox frailty model, covering four different types of frailty models (shared, nested, 

joint, and additive frailties). In the R package survival (Therneau, 2013) a simple random 

effects term can be specified, following a gamma, Gaussian, or t-distribution. A different 
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fitting approach based on hierarchical likelihoods allowing for log-normal and gamma frailty 

distributions is implemented in the R package frailtyHL, see Do Ha et al. (2012). A first 

approach to variable selection for gamma frailty models was proposed by Fan and Li (2002). 

They used an iterative, Newton–Raphson-based procedure to find the penalized maximum 

likelihood estimator and considered three types of penalties, namely the LASSO, the hard 

thresholding, and the smoothly clipped absolute deviation (SCAD) penalty. However, no 

software implementation is available yet. The penalized gamma frailty model methodology 

of Fan and Li (2002) was extended to other frailty distributions, in particular to inverse 

Gaussian frailties by Androulakis et al. (2012). They imposed the penalty on a generalized 

form of the full likelihood function designed for clustered data, which allows direct use of 

different distributions for the frailty term and which includes the Cox and gamma frailty 

model as special cases. For the gamma frailty case, they modified the likelihood presented 

by Fan and Li (2002). However, again, no corresponding software package is available yet.

While some multiplicative frailty distributions, such as, the gamma and the inverse 

Gaussian, have already been extensively studied (compare Androulakis et al., 2012) and 

closed form representations of the log-likelihoods are available, in some situations the log-

normal distribution is more intuitive and allows for more flexible and complex predictor 

structures though the corresponding model is computationally more demanding. The 

conditional hazard function of cluster i and observation j with multiplicative frailties 

following a multivariate log-normal distribution has the general form

λ(t ∣ xij, uij, bi) = λ0(t) exp(xij
T β + uij

Tbi),

where uij
T = (uij1, …, uijq) is the covariate vector associated with random effects bi, which 

follow a multivariate Gaussian distribution, that is, bi ~ N(0, Q(θ)), with mean vector 0 and 

covariance matrix Q(θ), which is depending on a vector of unknown parameters θ. Ripatti 

and Palmgren (2000) show how a penalized quasi-likelihood (PQL) approach based on the 

Laplace approximation can be used for estimation. The method follows the fitting approach 

proposed by Breslow and Clayton (1993) for the generalized linear mixed model (GLMM). 

If, additionally, penalization techniques are incorporated into the procedure, it becomes 

especially important to provide effective estimation algorithms, as standard procedures for 

the choice of tuning parameters such as cross-validation are usually very time-consuming. A 

preliminary version of this work is available as technical report (Groll et al., 2016).

2. Cox Frailty Model with Time-Varying Coefficients

While for Cox frailty models with the simple predictor structure ηij = xij
T β + uij

Tbi in the 

hazard function some solutions have already been given (Fan and Li, 2002, and Androulakis 

et al., 2012), often more complex structures of the linear predictor need to be taken into 

account. In particular, the effects of certain covariates may vary over time yielding time-

varying effects γk(t). A standard way to estimate the time-varying effects γk(t) is to expand 

them in equally spaced B-splines yielding γk(t) = ∑m = 1
M αk, m Bm(t; d) where αk,m, m = 1, …, 

M, denote unknown spline coefficients that need to be estimated, and Bm(t; d) denotes the 
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m-th B-spline basis function of degree d. For a detailed description of B-splines, see, for 

example, Wood (2006) and Ruppert et al. (2003).

At this point, we address the specification of the baseline hazard λ0(t). In general, for the 

cumulative baseline hazard Λ0(·) often the “least informative” non-parametric modeling is 

considered. More precisely, with t1
0 < … < tN

0  denoting the observed event times, the least 

informative non-parametric cumulative baseline hazard Λ0(t) has a possible jump hj at every 

observed event time t j
0, that is, Λ0(t) = ∑ j = 1

N h jI(t j
0 ≤ t). The estimation procedure may be 

stabilized, if, similar to the time-varying effects, a semi-parametric baseline hazard is 

considered, which can be flexibly estimated within the B-spline framework. Hence, in the 

following we use the transformation γ0(t) : = log(λ0(t)) and expand γ0(t) in B-splines.

Let now zij
T = (1, zij1, …, zijr) denote the covariate vector associated with both baseline 

hazard and time-varying effects and let αk
T = (αk, 1, …, αk, M), k = 0, …, r, collect the spline 

coefficients corresponding to baseline hazard or k-th time-varying effect γk(t), respectively. 

Further, let BT(t) := (B1(t; d), …, BM(t; d)) represent the vector-valued evaluations of the M 
basis functions in time t. Then, with νijk := zijk · B(t), one can specify the hazard rate

λ(t ∣ xij, zij, uij, bi) = exp(ηij(t)), with ηij(t) ≔ xij
T β + ∑

k = o

r
vijk

T αk + uij
Tbi . (1)

In general, the estimation of parameters in the predictor (1) can be based on Cox’s well-

known full log-likelihood, which is given by

l(β, α, b) = ∑
i = 1

n
∑

j = 1

Ni
dijηij(tij) − ∫

0

tij
exp(ηij(s))ds, (2)

where n denotes the number of clusters, Ni the cluster sizes, and the survival times tij are 

complete if dij = 1 and right censored if dij = 0.

As mentioned in the introduction, a possible strategy to maximize the full log-likelihood (2) 

is based on the PQL approach, which was originally suggested for GLMMs by Breslow and 

Clayton (1993). Typically, the covariance matrix Q(θ) of the random effects bi depends on 

an unknown parameter vector θ. Hence, the joint likelihood-function can be specified by the 

parameter vector of the covariance structure θ and parameter vector δT := (βT, αT, bT). The 

corresponding marginal log-likelihood has the form

lmar(δ, θ) = ∑
i = 1

n
log ∫ Li(β, α, bi)p(bi ∣ θ)dbi ,
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where p(bi|θ) denotes the density function of the random effects and the quantities 

Li(β, α, bi ≔ Π
j = 1

Ni
exp(ηij(tij))

dij exp ( − ∫ 0
tij exp(ηij(s))ds) represent the likelihood contributions 

of single clusters i, i = 1, …, n. Approximation along the lines of Breslow and Clayton 

(1993) yields

lapp(δ, θ) = ∑
i = 1

n
logLi(β, α, bi) − 1

2 bT Q(θ)b

= ∑
i = 1

n
∑

j = 1

Ni
dijηij(tij) − ∫

0

tij
exp(ηij(s))ds − 1

2 bT Q(θ)b .
(3)

The penalty term bTQ(θ)b results from Laplace approximation. The PQL approach usually 

works within the profile likelihood concept. It is distinguished between estimation of δ, 

given the plug-in estimate θ and resulting in the profile likelihood lapp (δ, θ), and estimation 

of θ.

3. Penalization

In general, the roughness or “wiggliness” of the estimated smooth functions can be 

controlled by applying a difference penalty directly on the spline coefficients, see, for 

example, Eilers (1995) and Eilers and Marx (1996). However, with potentially varying 

coefficients in the predictor, model selection becomes more difficult. In particular, one has to 

determine which covariates should be included in the model, and, which of those included 

have a constant or time-varying effect. So far, in the context of varying coefficient models in 

the literature only parts of these issues have been addressed. For example, Wang et al. (2008) 

and Wang and Xia (2009) used procedures that simultaneously select significant variables 

with (time-)varying effects and produce smooth estimates for the non-zero coefficient 

functions, while Meier et al. (2009) proposed a sparsity-smoothness penalization for high-

dimensional generalized additive models. More recently, Xiao et al. (2016) proposed a 

method that is able to identify the structure of covariate effects in a time-varying coefficient 

Cox model. They use a penalization approach that combines the ideas of local polynomial 

smoothing and a group non-negative garrote. It is implemented in the statistical program R 

and the corresponding code is available on one of the authors’ webpages. Also for functional 

regression models several approaches to variable selection have been proposed, see, for 

example, Matsui and Konishi (2011), Matsui (2014) and Gertheiss et al. (2013). Leng 

(2009), for example, presented a penalty approach that automatically distinguishes between 

varying and constant coefficients. The objective here is to develop a penalization approach to 

obtain variable selection in Cox frailty models with time-varying coefficients such that 

single varying effects are either included, are included in the form of a constant effect or are 

totally excluded. The choice between this hierarchy of effect types can be achieved by using 

a specifically tailored penalty. We propose to use
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ξ ⋅ Jζ(α = ξ ζ ∑
k = 1

r
ψωΔ, k ∥ ΔMαk ∥2 + (1 − ζ) ∑

k = 1

r
ϕωk ∥ αk ∥2 , (4)

where ∥ · ∥2 denotes the L2-norm, ξ ≥ 0 and ζ ∈ (0, 1) are tuning parameters and ΔM 

denotes the ((M − 1) × M)-dimensional difference operator matrix of degree one, defined as

ΔM =
−1 1

⋱ ⋱
−1 1

. (5)

The first term of the penalty controls the smoothness of the time-varying covariate effects, 

whereby for values of ξ and ζ large enough, all differences αk,l − αk,l−1, l = 2, …, M, are 

removed from the model, resulting in constant covariate effects. As the B-splines of each 

variable with varying coefficients sum up to one, a constant effect is obtained if all spline 

coefficients are set equal. Hence, the first penalty term does not affect the spline’s global 

level. The second term penalizes all spline coefficients belonging to a single time-varying 

effect in the way of a group LASSO and, hence, controls the selection of covariates. Both 

tuning parameters ξ and ζ should be chosen by an appropriate technique, such as, for 

example, K-fold cross-validation (CV). The terms ψ ≔ M − 1 and ϕ ≔ M represent 

weights that assign different amounts of penalization to different parameter groups, relative 

to the respective group size. In addition, we use the adaptive weights 

wΔ, k ≔ 1 ∕ ∥ ΔMαk
(ML) ∥2 and wk ≔ 1 ∕ ∥ αk

(ML) ∥2, where α(ML) denotes the corresponding 

(slightly ridge-penalized) maximum likelihood estimator. Within the estimation procedure, 

that is, the corresponding Newton–Raphson algorithm, local quadratic approximations of the 

penalty terms are used following Oelker and Tutz (2015). Note that the penalty from above 

may be easily extended by including a conventional LASSO penalty for time-constant fixed 

effects βk, k = 1, …, p.

Since the baseline hazard in the predictor (1) is assumed to be semi-parametric, another 

penalty term should be included controlling its roughness. If the smooth log-baseline hazard 

γ0(t) = log(λ0(t)) is twice differentiable, one can, for example, penalize its second order 

derivatives, similar to Yuan and Lin (2006). Alternatively, if γ0(t) is expanded in B-spline 

basis functions, that is, γ0(t) = ∑m = 1
M α0, mBm(t; d), simply second order differences of 

adjacent spline weights α0,m, m = 1, …, M, can be penalized. Hence, in addition to ξ · Jζ(α) 

the penalty

ξ0 ⋅ J0(α0) = ξ0 ∥ ΔM
2 α0 ∥2

2
(6)

has to be included. Although this adds another tuning parameter ξ0, it turns out that in 

general it is not worthwhile to also select ξ0 on a grid of possible values. Similar findings 

with regard to penalization of the baseline hazard have been obtained for discrete frailty 
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survival models, see Groll and Tutz (2016). While some care should be taken to select ξ and 

ζ, which determine the performance of the selection procedure, the estimation procedure is 

already stabilized in comparison to the usage of the “least informative” non-parametric 

cumulative baseline hazard Λ0(t) = ∑ j = 1
N h jI(t j

0 ≤ t) for a moderate choice of ξ0.

4. Estimation

Estimation is based on maximizing the penalized log-likelihood, obtained by expanding the 

approximate log-likelihood lapp(δ,θ) from (3) by the penalty terms ξ0 · J0(α0) and ξ · Jζ(α), 

that is,

lpen(δ, θ) = lapp(δ, θ) − ξ0 ⋅ J0(α)0 − ξ ⋅ Jζ(α) . (7)

The estimation procedure is based on a conventional Newton–Raphson algorithm, while 

local quadratic approximations of the penalty terms are used, following Fan and Li (2001).

The presented algorithm is implemented in the pencoxfrail function of the corresponding 

R-package (Groll, 2016; publicly available via CRAN, see http://www.r-project.org).

4.1. Fitting Algorithm

In the following, an algorithm is presented for the maximization of the penalized log-

likelihood lpen(δ, θ) from equation (7). For notational convenience, we omit the argument θ 
in the following description of the algorithm and write lpen(δ) instead of lpen(δ, θ). For fixed 

penalty parameters ξ0, ξ and ζ, the following algorithm can be used to fit the model:

Algorightm PenCoxFrail

(1) Initialization

Choose starting values β(0)
, α(0)

, b(0)
, θ(0)

 (see Section (A.3) of supplementary materials).

(2) Iteration
 For l = 1, 2,… until convergence:

 (a) Computation of parameters for given θ(l − 1)
    Based on the penalized score function spen(δ) = ∂lpen/∂δ and the penalized information matrix Fpen(δ) (see 
Section (A.1) of supplementary materials) the general form of a single Newton-Raphson step is given by

δ(l) = δ(l − 1) + (Fpen(δ(l − 1)))−1spen(δ(l − 1)) .

    As the fit is within an iterative procedure it is sufficient to use just one single step.
 (b) Computation of variance-covariance components

    Estimates Q(l)
 are obtained as approximate EM-type estimates (see Section (A.2) of supplementary 

materials), yielding the update θ(l)
.

The PenCoxFrail algorithm stops if there is no substantial change in the estimated 

regression parameters collected in the parameter vector δT = (βT, αT, bT). More 

mathematically, for a given small number ε the algorithm is stopped, if
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∥ δ(l + 1) − δ(l) ∥2 ∕ ∥ δ(l) ∥2 ≤ ε . (8)

4.2. Computational Details of PenCoxFrail

In the following, we give a more detailed description of the single steps of the 

PenCoxFrail algorithm. In Web Appendix A of the supplementary materials, we describe 

the derivation of score function and information matrix. Then, an estimation technique for 

the variance-covariance components is given. Finally, we give details for computation of 

starting values.

As already mentioned in Section 3, the tuning parameter ξ0 controlling smoothness of the 

log-baseline hazard γ0(t) = log(λ0(t)) needs not to be selected carefully. A possible strategy 

is to specify for both ζ and ξ suitable grids of possible values and then use K-fold CV to 

select optimal values. From our experience for the second tuning parameter ζ, which 

controls the apportionment between smoothness and shrinkage, a rough grid is sufficient, 

whereas a fine grid is needed for ξ. A CV error measure on the test data is the model’s log-

likelihood evaluated on the test data, that is,

cve(δtrain) = ∑
i = 1

ntest
∑

j = 1

Ni
test

dijηij(tij) − ∫0

tij
exp(ηij(s))ds,

where ntest denotes the number of clusters in the test data and Ni
test the corresponding cluster 

sizes. The estimator δ train is obtained by fitting the model to the training data, resulting in 

the linear predictors ηij(t). As K-fold CV can generally be time-consuming, it is again 

advisable to successively decrease the penalty parameter ξ and use the previous parameter 

estimates as starting values for each new fit of the algorithm while fixing the other penalty 

parameters ξ0 and ζ. This strategy can considerably save computational time.

5. Simulation Studies

The underlying models are random intercept models with balanced design

λij(t ∣ zij, ui) = exp(ηij(t)), i = 1, …, n, j = 1, …, Ni, ηij(t) = γ0(t) + ∑
k = 1

r
zijkγk(t) + bi,

with different selections of (partly time-varying) effects γk (t), k ⊂ {1, …, r}, and random 

intercepts bi~N(0, σb
2), σb ∈ {0, 0.5, 1}. We consider three different simulation scenarios, and 

the performance of estimators is evaluated separately for the structural components and the 

random effects variance. A detailed description of the simulation study design is found in 

Web Appendix B. In order to show that the penalty (4), which combines smoothness of the 

coefficient effects up to constant effects together with variable selection, indeed improves 

the fit in comparison to conventional penalization approaches, we compare the results of the 
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PenCoxFrail algorithm with the results obtained by three alternative penalization 

approaches. The first approach, denoted by Ridge, is based on a penalty similar to the first 

term of the penalty (4), but with a ridge-type penalty on the spline coefficients, that is, 

ξ ⋅ J (α) = ξ(∑k = 1
r ∥ ΔM

2 αk ∥2
2). Hence, smooth coefficient effects are obtained, though 

neither constant effect estimates are available nor variable selection is performed. The 

alternative competing approaches, denoted by Linear and Select, are obtained as extreme 

cases of the PenCoxFrail algorithm, by choosing a penalty parameter ζ equal to 1 or 0, 

respectively. The former choice yields a penalty that can choose between smooth time-

varying and constant effects, while the latter one yields a penalty that simultaneously selects 

significant variables with time-varying effects and produces smooth estimates for the non-

zero coefficient functions.

In addition, we compare the results of the PenCoxFrail algorithm with the results obtained 

by using the R functions gam (Wood, 2011) and coxph (Therneau, 2013), which are 

available from the mgcv and survival library, respectively. However, it should be noted 

that although both functions can in principle be used to fit Cox frailty models with time-

varying effects, the use of these packages is not straightforward. Even though the gam 

function has recently been extended to include the Cox PH model, the estimation is based on 

penalized partial likelihood maximization and, hence, no time-varying effects can be 

included in the linear predictor. However, Holford (1980) and Laird and Olivier (1981) have 

shown that the maximum likelihood estimates of a piece-wise PH model and of a suitable 

Poisson regression model (including an appropriate offset) are equivalent. In the piece-wise 

PH model time is subdivided into reasonably small intervals and the baseline hazard is 

assumed to be constant in each interval. Therefore, after construction of an appropriate 

design matrix by “splitting” the data one can use the gam function to fit a Poisson regression 

model with time-varying coefficients and obtains estimates of the corresponding piece-wise 

PH model. In the gam function, an extra penalty can be added to each smooth term so that it 

can be penalized to be zero. This means that the smoothing parameter estimation that is part 

of the fitting procedure can completely remove terms from the model. Though the 

equivalence of piece-wise PH model and the offset Poisson model is generally well-known, 

to the best of our knowledge, the concept of combining it with the flexible basis function 

approach implemented in the gam function, including time-varying effects, has not been 

exploited before.

In order to fit a time-varying effects model with coxph, we first constructed the 

corresponding B-spline design matrices. Next, we reparametrized them following Fahrmeir 

et al. (2004), such that the spline coefficients are decomposed into an unpenalized and a 

penalized part, and then incorporated the transformed B-spline matrices into the design 

matrix. Finally, to obtain smooth estimates for the time-varying effects, we put a small ridge 

penalty on the penalized part of the corresponding coefficients. However, for this fitting 

approach no additional selection technique for the smooth terms, in our case the time-

varying coefficients, is available. The fit can be considerably improved if the data set is 

again enlarged by using a similar time-splitting procedure as for the gam function.
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Averaging across 50 data sets, we consider mean squared errors for baseline hazard (mse0), 

smooth coefficient effects (mseγ) and σb (mseσb), defined in Web Appendix B. In addition, 

we investigate proportions of correctly identified null, constant and time-varying effects as 

well as of the correctly identified exact true model structure. Finally, all methods are also 

compared with regard to computational time and proportions of non-convergent simulation 

runs.

Simulation Study I (n = 100, Ni = 5)

Table 1 and Web Tables S1 and S2 show the three different mean squared errors (B.1) for the 

Ridge, Linear, Select, gam, coxph, and the PenCoxFrail method for the three 

different simulation Scenarios A, B, and C. In Figure 1, the performance of the methods is 

compared to PenCoxFrail.

First of all, it is obvious that the Ridge and coxph method are clearly outperformed by the 

other methods in terms of mse0 and mseγ. It turns out that in terms of mse0, the Select and 

PenCoxFrail procedures always perform very well, while the best performer in terms of 

mseγ is changing over the scenarios: in Scenario A and C, where mostly time-constant or 

only slightly time-varying effects are present, the Linear procedure performs very well, 

while in Scenario B, where several strongly time-varying effects are present, the Select 

and gam procedures perform best. Altogether, here, the flexibility of the combined penalty 

(4) becomes obvious: regardless of how the underlying set of effects is composed of, the 

PenCoxFrail procedure is consistently among the best performers and yields estimates that 

are close to the estimates of the respective “optimal type of penalization.” As this optimal 

type of penalization can change from setting to setting and is usually not known in advance, 

its automatic selection provides a substantial benefit in the considered class of survival 

models. With respect to the estimation of the random effects variance σb
2 all approaches yield 

satisfactory results, with slight advantages for the Select, gam, and PenCoxFrail 

methods.

Next, we investigate the performance of the four different procedures focussing on the time-

varying coefficient functions. Exemplarily, Figure 2 and Web Figures S1 and S2 show the 

estimated effects of the coefficient functions obtained by all six methods in Scenario B with 

σb = 1. Though generally capturing some features of the coefficient functions, the Ridge 

and coxph methods do not yield satisfying results, in particular with respect to coefficient 

functions that are zero (compare γ13(t) and γ14(t) in Figure 2). In the chosen scenario, the 

Select, gam, and PenCoxFrail procedures do a very good job in shrinking coefficients 

of noise variables down to zero, see again γ13(t) and γ14(t), as well as in capturing the 

features of the strongly time-varying coefficient functions γ9(t) to γ12(t). With respect to 

these effects, the three procedures clearly outperform the other approaches. For the time-

constant coefficient functions, γ5(t) and γ6(t), the Linear method yields the best estimates. 

In general, note that though the Select and the PenCoxFrail method capture the features 

of the coefficient functions quite well, there is a substantial amount of shrinkage noticeable 

in the non-zero coefficient estimates, γ5(t), γ6(t), and γ9(t) to γ12(t). The resulting bias is a 
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typical feature of LASSO-type estimates and is tolerated in return for the obtained variance 

reduction.

The Linear and Select approaches only yield good results either with respect to 

distinction between constant and time-varying effects or with respect to variable selection, 

whereas the PenCoxFrail method performs well in terms of both criteria. Also gam yields 

good results regarding the distinction between zero and time-varying effects, however, it 

fails to correctly identify constant effects. While in Scenarios A and B not a single approach 

is able to correctly identify the exact true model structure, in Scenario C at least the 

PenCoxFrail succeeds in about one fifth of the simulation runs in the three σb settings 

(compare Web Table S5).

In terms of computational time, the coxph method is by far the fastest approach, followed 

by the three methods ridge, linear, and select, which all depend on a single tuning 

parameter. Together with gam, the PenCoxFrail approach is the most demanding method 

because it uses two tuning parameters (compare Web Table S3). In addition, we considered 

the proportions of non-convergent simulation runs. The methods are considered to have 

converged, if criterion (8) was reached within 100 iterations. Although the ridge, 

linear, select, and PenCoxFrail methods did not converge in some scenarios, their 

performance with respect to the three mean squared errors (B.1), including the non-

convergent simulation runs, is nevertheless satisfactory, particularly for PenCoxFrail 

(compare Web Table S4). Two additional simulation studies are presented in the 

supplementary materials, see Web Appendix B.

6. Application

In the following, we will illustrate the proposed method on a real data set that is based on 

Germany’s current panel analysis of intimate relationships and family dynamics (pairfam), 

release 4.0 (Nauck et al., 2013). The panel was started in 2008 and contains about 12,000 

randomly chosen respondents from the birth cohorts 1971–73, 1981–83, and 1991–93. 

Pairfam follows the cohort approach, that is, the main focus is on an anchor person of a 

certain birth cohort, who provides detailed information, orientations and attitudes (mainly 

with regard to their family plans) of both partners in interviews that are conducted yearly. A 

detailed description of the study can be found in Huinink et al. (2011).

The present data set was constructed similar to Groll and Abedieh (2016). For a subsample 

of 2501 women retention time (in days) until birth of the first child is considered as 

dependent variable, starting at their 14th birthdays. To ensure that the (partly time-varying) 

covariates are temporally preceding the events, duration until conception (and not birth) is 

considered, that is, the event time is determined by subtracting 7.5 months from the date of 

birth, which is when women usually notice pregnancy. For each woman, the employment 

status is given as a time-varying covariate with six categories. Note that due to gaps in the 

women’s employment histories, the category “no info” is introduced. As in the preceding 

studies, for women remaining in this category longer than 24 months it is set to 

“unemployed.” Besides, several other time-varying and time-constant control variables are 
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included. Web Tables S9 and S10 give an overview of all considered variables together with 

their sample proportions and Table 2 shows an extraction of the data set.

Note that due to the incorporated time-varying covariates, the 2501 observations have to be 

split whenever a time-varying covariate changes. This results in a new data set containing 

20,550 lines. In order to account for regional fertility differences, we incorporate a random 

intercept for the German federal state where the women were born. Though this model could 

generally be fit with the gam function by construction of an appropriate design matrix, 

further splitting the data and then fitting a Poisson regression model with time-varying 

coefficients, in the present application this strategy would create an extremely large data set, 

which is not manageable. For this reason, we abstain from using the gam function. 

Moreover, as already pointed out in Section 5, in order to fit a time-varying effects model 

with coxph, again the data would have to be manually enlarged by using a similar time-

splitting procedure. So, we restrict our analysis to a conventional Cox model with time-

constant effects, which we use for comparison with our PenCoxFrail approach.

When fitting the data with PenCoxFrail, because of the quite large sample size cross-

validation as the standard procedure for the choice of the tuning parameters turned out to be 

extremely time-consuming. Hence, we use an alternative ad hoc strategy to determine the 

optimal tuning parameter ξ proposed in Liu et al. (2007) and Chouldechova and Hastie 

(2015). In addition to considering the original variables in the data set, we generate 10 noise 

variables and include them in the analysis. We simply fix the second tuning parameter to ζ = 

0.5 and fit PenCoxFrail using 5 basis functions for all 16 covariates. Figure 3 shows the 

regularization plots, which display ∥α∥2 along the sequence of ξ values. It turns out that 

there are two strong predictors that enter well before the “bulk,” namely the “relationship 

status” (solid) and “education level” (dashed-dotted).

Figure 4 shows the estimated time-varying effects of the two strongest predictors, the 

“relationship status” and the “education level” right before the noise variables enter (that is, 

their corresponding spline coefficients excess the threshold ∥α∥2 > 0.05), which corresponds 

to a tuning parameter choice ξ48 = 6.09.

The baseline hazard exhibits a bell shape, which is in accordance with the typical female 

fertility curve: it is increasing from early adolescence with a maximum in the early thirties, 

before it decreases when the female menopause approaches (compare Web Figure S4). For 

the conventional Cox model with simple time-constant effects (red dashed line) the bell 

shape is more pronounced in comparison to our time-varying effects approach (black solid 

line), where covariates are allowed to have more complex effects over time. As expected, 

compared to the reference single there is a positive effect on the transition rate into 

motherhood if women have a partner in the sense that the closer the relationship the stronger 

the effect. The strongest positive effect is observed for married women, though this effect 

clearly declines when women get older and approach menopause. Besides, it turns out that a 

low (high) education level of women clearly increases (decreases) the transition rate into 

motherhood compared to the reference medium education. Again, it is remarkable that these 

effects on the fertility are clearly vanishing when women approach menopause. For the 

remaining covariates we obtained the following results: no level of the employment status 
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seems to have an effect on the transition into motherhood, except for the category school for 

which the probability of a transition into motherhood is clearly reduced as woman are 

usually quite young when attending school. Furthermore, we found a clear positive, time-

constant effect of women having three or more siblings (reference category: no siblings), a 

slightly positive effect of the women’s parents educational level belonging to the category no 
info (reference: medium education) and a negative effect of the women’s parents being 

highly educated, which is diminishing over time. Moreover, negative effects of the 

categories other religion and Christian (reference: no religion) were observed, which both 

decline when women approach menopause. Finally, a certain amount of heterogeneity is 

detected between German federal states with an estimated standard deviation σb = 0.179.

7. Concluding Remarks

It turns out that combining the proposed penalization approach for model selection in Cox 

frailty models with time-varying coefficients with the promising class of multivariate log-

normal frailties results in very flexible and sparse hazard rate models for modeling survival 

data. The conducted simulations illustrate the flexibility of the proposed combined penalty: 

regardless of the underlying set of true effects, the PenCoxFrail procedure can 

automatically adopt to it and yields estimates close to the “optimal type of penalization.” As 

this optimal type of penalization can change from setting to setting and is usually unknown 

in advance, its automatic selection provides a substantial benefit in the considered class of 

survival models.

PenCoxFrail uses the Laplace approximation, which yields a log-likelihood (3) that 

already contains a quadratic penalty term. By appending structured penalty terms that 

enforce the selection of effects one obtains a penalized log-likelihood that contains all the 

penalties. An alternative strategy would be the indirect maximization of the log-likelihood 

by considering the random effects as unobservable variables. Then an EM algorithm could 

be derived, in which the penalization for effect selection is incorporated in the M-step. For 

the GLMM, the EM strategy has the advantage that one can use maximization tools from the 

generalized linear models framework, however, this simplification may not work for the Cox 

model.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Simulation study I: boxplots of log(mseγ(·)/mseγ(PenCoxFrail)) for Scenario A (top), B 

(middle), and C (bottom).
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Figure 2. 
Estimated (partly time-varying) effects γ11(t) to γ14(t), exemplarily for Scenario B and σb = 

1; left: Ridge (dashed-dotted light gray), Linear (dotted gray), Select (dashed dark gray) 

and PenCoxFrail (black); right: gam (dashed dark gray), coxph (dotted gray) and 

PenCoxFrail (black); true effect in thick gray.
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Figure 3. 
Coefficient built-ups for the pairfam data along a transformation of the tuning parameter, 

namely log(ξ). The gray solid, dashed-dotted and dotted lines correspond to the original six 

variables, black dashed lines to the simulated noise variables; the horizontal dotted line 

represents the chosen tuning parameter log(ξ48) = log(6.09).
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Figure 4. 
Pairfam data: estimated time-varying effects for the categorical covariates “relationship 

status” and “education level” versus time (women’s age in years) at the chosen tuning 

parameter ξ48 = 6.09; for comparison, time-constant effects of a conventional Cox model are 

shown (gray solid line) together with 95% confidence intervals.
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