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C L I M A T O L O G Y

Multidimensional risk in a nonstationary climate:  
Joint probability of increasingly severe warm and  
dry conditions
Ali Sarhadi1,2*, María Concepción Ausín3,4, Michael P. Wiper3,  
Danielle Touma1, Noah S. Diffenbaugh1,2

We present a framework for quantifying the spatial and temporal co-occurrence of climate stresses in a nonstationary 
climate. We find that, globally, anthropogenic climate forcing has doubled the joint probability of years that are 
both warm and dry in the same location (relative to the 1961–1990 baseline). In addition, the joint probability that 
key crop and pasture regions simultaneously experience severely warm conditions in conjunction with dry years 
has also increased, including high statistical confidence that human influence has increased the probability of 
previously unprecedented co-occurring combinations. Further, we find that ambitious emissions mitigation, such 
as that in the United Nations Paris Agreement, substantially curbs increases in the probability that extremely hot 
years co-occur with low precipitation simultaneously in multiple regions. Our methodology can be applied to other 
climate variables, providing critical insight for a number of sectors that are accustomed to deploying resources 
based on historical probabilities.

INTRODUCTION
It is now clear that global-scale warming has led to changes in re-
gional climate, including temperature, precipitation intensity, sea level, 
sea ice, snowpack, drought risk, and extreme events (1, 2). Given this 
regional-scale climate change, a key question for building resilience 
in the current climate, as well as preparing for future climate change, 
is the extent to which global warming has caused changes in the 
spatial and temporal co-occurrence of climate stresses. This co- 
occurrence is critical for a broad suite of climate-sensitive concerns, 
including agricultural markets (3), food security (4, 5), poverty 
vulnerability (6), supply chains (7), weather-related insurance and 
reinsurance (8), and disaster preparedness and recovery.

Accounting for nonstationarity in multiple dimensions presents 
a key challenge for quantifying changes in the joint probability 
of climate stresses across space and time (9). In the past decade, 
considerable progress has been made in quantifying the risk of 
hydroclimatic extremes using univariate metrics under nonstationary 
conditions [e.g., (10)]. In addition, multivariate statistical methods 
have been used to model the probability of multiattribute climatic and 
hydrologic phenomena [e.g., (11–14)], including the co-occurrence 
of climate extremes [e.g., (15, 16)]. Although much has been learned, 
accounting for temporal nonstationarity in a multidimensional 
context that captures changes in the dependence structure between 
multiple variables across different locations has remained a persistent 
challenge (17–19).

In the current study, we present a multidimensional risk frame-
work for addressing this challenge. We focus on quantifying changes 
in the joint probability of warm and dry conditions, both in an indi-
vidual location and simultaneously in multiple locations. The sensi-
tivity of natural and human systems to warm and dry conditions 
[e.g., (20, 21)] provides compelling motivation for exploring whether 

anthropogenic forcing has altered the probability that those condi-
tions occur simultaneously in different parts of the world. In addi-
tion, our framework could be readily applied to other climatic or 
nonclimatic variables.

In light of international efforts to curb global warming, it is 
important to quantify changes in the joint probability of climate 
stresses at different levels of climate forcing. Quantifying how the 
probability of co-occurring stresses has changed during the historical 
period is critical both for managing risks in a nonstationary climate and 
for understanding the impacts of historical global warming. Similarly, 
quantifying the likelihood of changes in future emissions scenarios is 
critical for both evaluating the benefits of achieving mitigation targets 
such as those in the United Nations (UN) Paris Agreement and manag-
ing the resulting risks should those targets ultimately be achieved.

Our framework uses the vine copula to quantify the time-varying 
joint probability of co-occurring climate stresses across multiple 
dimensions under nonstationary conditions (see Materials and 
Methods). We use this framework to quantify changes in the prob-
ability that warm and dry years co-occur in an individual location 
and simultaneously in different locations. We analyze these changes 
in joint probability in historical observations, the Coupled Model 
Intercomparison Project, Phase 5 (CMIP5) Historical and Natural 
climate model simulations, and the CMIP5 future climate projections 
(see Materials and Methods).

RESULTS
The pattern of observed trends in the probability of warm years 
(Fig. 1A) largely resembles that of long-term warming (2). Aggre-
gated over all areas for which observational data are available for the 
full 1931–2015 period, the probability of a warm year (relative to a 
given area’s 1961–1990 mean) has increased from ~50% during the 
mid-20th century to >80% in the 21st century (Fig. 1D). The time 
evolution of warm year probability in the Historical climate model 
ensemble closely matches that of the observations, increasing from 
~40% in the mid-20th century to ~80% in the early 21st century 
(Fig. 1G). In contrast, the warm year probability remains centered 
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around 20% (relative to a given area’s 1961–1990 mean) throughout 
the Natural ensemble, with the 2.5th to 97.5th percentile confidence 
intervals of the Historical and Natural ensembles remaining com-
pletely separated after ~1970. There is thus high statistical confidence 
that the observed increase in warm year probability would not have 
occurred without anthropogenic forcing.

In contrast, the probability of dry years has remained ~50% at 
the global scale throughout the observational period (relative to the 
1961–1990 baseline; Fig. 1E), with areas of the tropics and subtropics 
exhibiting increases and much of the extratropics exhibiting decreases 
or no change (Fig. 1B). Although both the observations and the 
Historical climate model ensemble exhibit slight indications of a 
decrease in dry year probability in the late 20th and early 21st 
centuries, the 2.5th to 97.5th percentile confidence intervals of the 
Historical and Natural ensembles overlap substantially throughout 
the historical period (Fig. 1H).

Despite the spatial heterogeneity of trends in dry year probability 
(Fig. 1B), the increasing trends in warm year probability (Fig. 1A) 
lead to broad increases in the probability of years that are both warm 
and dry (“warm+dry”; Fig. 1C). At the global scale, the aggregated 
warm+dry probabilities are similar to what would be expected from 
the product of the two univariate probabilities (Fig. 1, D and E), with 
global warm+dry probability equaling ~20% in the mid-20th century 
and ~40% in the early 21st century (relative to the 1961–1990 base-
line; Fig. 1F). At the regional scale, the largest increases in warm+dry 

probabilities are generally associated with the largest increases in 
warm year probabilities, although the lack of data in the tropics 
likely limits the number of grid points that exhibit increases in both 
univariate probabilities. The most prominent exception to the general 
increase in warm+dry probability is the well-documented “warm-
ing hole” over the central and southeastern United States, where the 
warm, dry, and warm+dry probabilities all exhibit decreasing trends 
over the 1931–2015 period (Fig. 1C).

The increase in global warm+dry probability would be expected 
to increase the odds that different regions experience warm+dry 
years simultaneously. Given the negative impacts of co-occurring 
warm+dry conditions on agricultural yields (21) and the importance 
of co-occurring yield shocks for regional and global agricultural 
markets [e.g., (3–5)], we quantify the joint probability of warm+dry 
conditions in pairs of global crop and pasture regions (see Materials 
and Methods). We find that these regions have become substantially 
more likely to experience warm+dry anomalies in the same year 
over the historical period (Fig. 2).

Previous work shows that the occurrence of extreme years—and 
especially extremely warm years—is particularly important for the 
volatility of agricultural yields and hence prices [e.g., (5, 22)]. We 
therefore analyze the joint probability of progressively larger climate 
anomalies. Like the co-occurrence of years that are warmer and drier 
than the historical mean (Fig. 2), we find that the joint probability 
of simultaneous occurrence of these more extreme combinations of 
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Fig. 1. Historical changes in warm year probability, dry year probability and joint probability. (A to C) Change in warm year probability, dry year probability, and 
joint probability, calculated as the trend over the period (1931–2015) using Sen’s slope estimator times the length of the period. Maps show results for the 50th percentile 
of the Bayesian sampling. Dark gray indicates no change in the location parameter through time (see Materials and Methods). (D to F) Global average of the warm year 
probability, dry year probability, and joint probability aggregated across the grid points in the National Oceanic and Atmospheric Administration (NOAA) observations. 
The bold line shows the posterior mean, and the color envelope shows the 2.5th to 97.5th percentile range (see Materials and Methods). (G to I) Global average of the 
warm year probability, dry year probability, and joint probability aggregated across the grid points in the Historical and Natural forcing experiments of the CMIP5 
global climate model ensemble. The bold line shows the ensemble-mean posterior mean, and the color envelope shows the ensemble-mean 2.5th to 97.5th percentile 
range (see Materials and Methods).
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Fig. 2. Historical changes in joint probability of years that are both warm and dry occurring simultaneously in different regions of the world. (A and B) Maps 
showing global cropland and pasture areas in the year 2000 [redrawn from (32)], along with the regions used in our analysis. (C to E) Thickness of lines shows the probability 
(based on the Bayesian posterior mean) that both regions of a respective region-region pair experience simultaneous warm and dry conditions in the same year during the 
1931–1950, 1961–1980, and 1996–2015 periods, based on NOAA observations. Each region pair shares a single joint probability. The color of each region-region joint probability 
is shown as the color of the first region on the circular plot, starting with Canada and moving clockwise around the circular plot. Thus, all region-region joint probabilities 
involving Canada are shown in red, and all involving US_West are shown in dark gray except for Canada-US_West, etc. The values of the region-region joint probabilities 
are shown in (F) to (H). (F to H) Colors show the probability values depicted by lines in (C) to (E). Symbols show the P value of the difference in joint probability between 
the CMIP5 Historical and Natural simulations for the 1931–1950, 1961–1980, and 1986–2005 periods (see Materials and Methods). The absence of a symbol indicates 
P value less than 0.01, a gray circle indicates P value between 0.01 and 0.05, and a black circle indicates P value greater than 0.05.
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temperature and precipitation has also increased during the his-
torical period (Fig. 3). For example, the joint probability of a year 
in which the temperature exceeds 2 standard deviations (SDs) of the 
baseline variability and the precipitation is drier than the baseline 
mean has increased from <5% for all region pairs in the 1931–1950 
and 1961–1980 periods to >10% for 31% of the region pairs in 
the 1996–2015 period (Fig. 3A). Similarly, the joint probability 
of a year in which the temperature exceeds 2 SDs of the baseline 
variability and the precipitation is at least 1 SD drier than the baseline 
mean has increased from <1% for all region pairs in the 1931–1950 
and 1961–1980 periods to >1% for 42% of the region pairs in the 
1996–2015 period (Fig. 3B). Further, whereas most region pairs 
exhibit zero probability during the 1931–1950 and 1961–1980 periods 
that a year exceeds 4 SDs of the baseline temperature variability 
and is simultaneously drier than the baseline mean, all region pairs 
exhibit >0% probability during the 1996–2015 period, including 
>1% probability in 12% of the region pairs (Fig. 3C).

To test the influence of anthropogenic climate forcings on these 
historical increases in joint probability, we compare the CMIP5 
historical forcing simulations with the CMIP5 natural forcing 
simulations (see Materials and Methods). We find that the difference 
between the Historical and Natural climate model ensembles is statis-
tically significant for all region pairs during the 1996–2015 period 
(Fig. 3). The emergence of an anthropogenic signal during the 
1996–2015 period is particularly pronounced for the simultaneous 
occurrence of a 4-SD temperature anomaly combined with a 1-SD 
precipitation anomaly (Fig. 3C). These results suggest that historical 
anthropogenic climate forcing has elevated the risk that increasingly 
severe warm+dry conditions occur simultaneously in multiple 
regions.

Continued greenhouse gas emissions are likely to further increase 
the joint probabilities of severely warm+dry conditions (Fig. 4). 
Relative to the CMIP5 historical simulations, the joint probability of 
a year in which the temperature simultaneously exceeds 2 SDs of the 
baseline variability in both regions increases by at least 60 percentage 
points for all region pairs in the 2020–2050 period of Representative 
Concentration Pathway 8.5 (RCP8.5), and the joint probability of a 
year in which the temperature simultaneously exceeds 4 SDs in-
creases by at least 30 percentage points for 90% of the region pairs 
(Fig. 4A). As a result, the joint probability of a year in which the 
temperature exceeds 2 SDs and the precipitation is drier than the 
baseline mean increases by at least 20 percentage points for 21% of 
the region pairs (Fig. 4C). Likewise, the joint probability of a year in 
which the temperature exceeds 4 SDs and the precipitation is drier 
than the baseline mean increases by at least 10 percentage points for 
44% of the region pairs (Fig. 4C).

The lower forcing in the RCP2.6 scenario substantially curbs the 
increase in joint probability for the most severe thresholds (Fig. 5). 
For example, the joint probability of a year in which the tempera-
ture exceeds 4 SDs of the baseline variability is >20% larger in 
RCP8.5 than RCP2.6 for 83% of the region pairs and >50% larger in 
RCP8.5 for 33% of the region pairs (Fig. 5A). Four-SD annual tem-
perature anomalies represent extreme conditions and are likely to 
cause acute impacts even if they do not occur in conjunction with 
low precipitation. However, in addition to the increases in the prob-
ability of co-occurring extremely hot years, the joint probability of 
a year in which the temperature exceeds 4 SDs and the precipitation 
is drier than the baseline mean is >20% larger in RCP8.5 for 72% of 
the region pairs. Likewise, the joint probability of a year in which the 

temperature exceeds 4 SDs and the precipitation is at least 1 SD 
drier than the baseline mean is >20% larger in RCP8.5 for 62% of 
the region pairs.

DISCUSSION AND CONCLUSIONS
Our methodology for calculating the joint probability of co-occurring 
climate stresses has a number of benefits. Our methodology accounts 
for nonstationarity within a multivariate risk framework, which is 
critical given the strong influence of historical global warming on 
multiple climate variables. Although there has been progress in devel-
oping multivariate risk frameworks (15, 18, 23) and in explicitly 
accounting for nonstationarity in univariate risk frameworks [e.g., 
(10, 24)], accounting for nonstationarity in a multivariate risk frame-
work has been less common (13, 25).

Our use of the vine copula (see Materials and Methods) provides 
an advance by enabling quantification of joint probability across four 
climate variables while accounting for nonstationarity. Our method-
ology could readily be applied to other climate variables, such as the 
multiple hazards that can occur simultaneously during landfalling 
tropical cyclones (i.e., wind speed, storm surge, and precipitation) 
or the multiple physical ingredients that converge to cause severe 
precipitation events (e.g., upper-level circulation, lower-level circu-
lation, and atmospheric water vapor). It can also be applied to other 
geographic co-occurrences of multiple climate stresses (i.e., “com-
pound extremes,” such as the high temperatures, high winds, and 
low humidity that increase wildfire risk). Caution should be taken, 
however, in the implementation of normalized metrics, which can 
introduce artifacts in the quantification of probabilities of extremes 
[e.g., (26, 27)].

Application of our multidimensional joint probability framework 
to warm+dry years provides a number of insights. Beyond simply 
confirming the intuition that long-term warming increases the 
co-occurrence of warm+dry conditions, our analysis provides ex-
plicit quantification of joint probability through time. In particular, 
our framework reveals that the probability of warm+dry conditions 
has doubled at the global scale over the historical period and that this 
doubling has occurred in response to anthropogenic climate forcing. 
Likewise, our framework reveals that anthropogenic forcing has sub-
stantially increased the joint probability that warm+dry conditions 
occur simultaneously in crop and pasture regions, with key region 
pairs such as China and India now exhibiting >15% probability of 
simultaneously experiencing both a 2-SD temperature anomaly and 
a negative precipitation anomaly in the same year. Last, we find that 
the probability of extremely warm and dry conditions occurring 
simultaneously in key crop and pasture regions is substantially greater 
over the next three decades in RCP8.5 than RCP2.6. The relative 
reduction in joint probability in the RCP2.6 pathway highlights the 
benefits of ambitious mitigation in the near-term decades.

The increasing probability that different areas of the globe simul-
taneously experience multiple climate stresses has important impli-
cations for a number of sectors. Given the historical sensitivity of 
agriculture to episodes of hot, dry conditions, the increase in joint 
probability of warm+dry years has direct implications for the ability 
of international trade to buffer the impacts of yield shocks within a 
region (3–5). Of particular concern is the yield volatility (3, 5, 6, 22), 
which can increase the risk of commodity price volatility (3, 22), 
poverty vulnerability (6), and supply chain disruption (7). By increas-
ing the occurrence of low-yield years, increases in the frequency of 
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Fig. 3. Historical change in joint probability of simultaneous warm+dry conditions of varying severity. Colors show the probability (based on the Bayesian poste-
rior mean) that both regions of a respective region-region pair experience simultaneous warm and dry conditions in the same year during the 1931–1950, 1961–1980, 
and 1996–2015 periods, based on NOAA observations. (A) Joint probability for years in which the temperature anomaly is at least 2 SDs warmer than the baseline mean 
and the precipitation anomaly is drier than the baseline mean. (B) Joint probability for years in which the temperature anomaly is at least 2 SDs warmer than the baseline 
mean and the precipitation anomaly is at least 1 SD drier than the baseline mean. (C) Joint probability for years in which the temperature anomaly is at least 4 SDs warmer 
than the baseline mean and the precipitation anomaly is drier than the baseline mean. The P value of the difference in joint probability between the CMIP5 Historical and 
Natural simulations is indicated as in Fig. 2.
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Fig. 4. Projected future change in joint probability of simultaneous warm+dry conditions of varying severity. Colors show the probability (based on the Bayesian 
posterior mean) that both regions of a respective region pair experience severe conditions in the same year during the 2020–2050 period of the RCP8.5 simulations, 
expressed as the absolute difference from the probability in the CMIP5 historical simulations. (A) Joint probability for years in which the temperature anomaly is at least 
2 SDs (left column) or 4 SDs (right column) warmer than the baseline mean. (B) Joint probability for years in which the precipitation anomaly is drier than the baseline 
mean (left column) or at least 1 SD drier than the baseline mean (right column). (C) Joint probability for years in which the temperature anomaly is at least 2 SDs warmer 
than the baseline mean and the precipitation anomaly is drier than the baseline mean (left column), the temperature anomaly is at least 4 SDs warmer than the baseline 
mean and the precipitation anomaly is drier than the baseline mean (center column), or the temperature anomaly is at least 4 SDs warmer than the baseline mean and 
the precipitation anomaly is at least 1 SD drier than the baseline mean (right column).
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hot years can increase yield volatility (5, 22), independent of changes 
in temperature variability. Thus, although we do not explicitly quantify 
changes in year-to-year temperature variations and although changes 
in subannual extremes (such as heat waves) are likely to be even more 
extreme than the annual-scale climate anomalies studied here (22), 
annual-scale anomalies that exceed 4 SDs of the baseline tempera-
ture variability are sufficiently extreme to cause substantial negative 
yield shocks and associated increases in yield volatility (5, 22).

In addition to agriculture-dependent sectors, the increasing 
probability of spatially co-occurring climate stresses also has broad 
implications for sectors and services that are accustomed to deploy-
ing resources based on historical probabilities, such as disaster- 
related preparedness, recovery, and insurance. The fact that historical 
global warming has already increased the probability of spatially 
and temporally co-occurring climate stresses highlights the risks of 
nonstationarity in the current climate, as well as the differential 
risks associated with different levels of future global warming.

MATERIALS AND METHODS
Overview of framework for multidimensional  
risk quantification
We developed a new framework for quantifying time-dependent, 
multidimensional risk in a nonstationary climate and applied this 
framework to quantify the influence of global warming on the joint 
probability of warm and dry conditions over the past several decades 
and in future climate forcing trajectories. Our framework (which is 
summarized below and described in detail in the Supplementary 
Materials) is based on the canonical vine (C-vine) copula, which we 
applied to varying severities of annual-scale temperature and pre-
cipitation anomalies to calculate the time-varying joint probability 
that warm and dry conditions occur simultaneously in pairs of re-
gions. The result is a generalized, fully dynamic multidimensional 

risk framework that models the time-varying temporal and spatial 
dependence structure between multiple extremes.

While the application of bivariate copulas is now common, 
applications of four-dimensional copulas are rare (28). To the best 
of our knowledge, this is the first introduction of a dynamic four- 
dimensional vine copula (with a dynamic graphical structure) that 
evolves through time and quantifies the time-varying dependence 
structure for multiple climate variables in multiple locations. This 
methodology allows us to account for nonstationarity in the depen-
dence structure between correlated heavy-tailed multiple extremes, 
including for thresholds that fall in the extreme tail of the historical 
distribution. In addition, the application of the Bayesian Markov Chain 
Monte Carlo (MCMC) allowed us to quantify the uncertainty in 
estimating time-varying statistical moments and subsequently the 
joint probability of compound extremes through time. Although in 
this initial study we analyzed the joint probability of varying severi-
ties of warm and dry conditions in multiple locations, our framework 
is generalizable to other climate variables and to other nonclimatic 
multidimensional risks.

Data sources
We analyzed observational temperature and precipitation data from 
the NOAA Global Historical Climate Network–Monthly gridded 
products, which are available on a 5° by 5° geographical grid (29). 
We restricted our observational analysis to grid points for which 
observational data were available for the full 1931–2015 period, with 
the joint probability analysis restricted to those grid points for which 
both observational temperature and precipitation data were available. 
The NOAA temperature and precipitation data were available as 
monthly anomalies, which we aggregated to annual values. Because 
the temperature and precipitation data used different baseline pe-
riods for calculating the anomalies (1981–2010 for temperature and 
1961–1990 for precipitation), we used a simple arithmetic adjustment 
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to express each of the temperature values as an anomaly from the 
1961–1990 period (i.e., by adding the difference between the 1981–2010 
calendar-month mean and the 1961–1990 calendar-month mean to 
each monthly temperature value).

We also analyzed climate model data from the CMIP5 (30). To 
match the NOAA observational data, we calculated monthly tem-
perature and precipitation anomalies using the 1961–1990 baseline. 
Following many previous studies, we accessed all available CMIP5 
realizations and interpolated all climate model realizations to a 
common 1° by 1° geographical grid. For the regional analyses (see 
below), we used all the 1° by 1° grid points in each region.

We used four of the CMIP5 forcing experiments (see tables S1 to 
S3 for a list of realizations). To analyze historical changes in the 
probability of warm and dry years, we used the Historical and Natural 
forcing experiments, which were available through the year 2005. 
The historical forcing experiment includes both natural and anthro-
pogenic climate forcings during the historical period, while the natural 
forcing experiment includes only the natural climate forcings. We 
tested the statistical significance of the differences between the Historical 
and Natural sample populations using the Kolmogorov-Smirnov test 
(see the Supplementary Materials). For this comparison, we evaluated 
two categories of statistical significance: P value less than 0.01 and 
P value between 0.01 and 0.05.

We also compared the probability of warm and dry years in the 
2020–2050 period of the RCP2.6 and RCP8.5 future climate forcing 
scenarios. Of the RCP scenarios archived in CMIP5, RCP8.5 most 
closely tracks the recent emissions trajectory, while RCP2.6 most closely 
represents the ambitious mitigation detailed in the UN Paris Agree-
ment (31) (see the Supplementary Materials for additional details).

Analysis of joint probability of warm and dry years
We quantified changes in the joint probability of warm and dry years 
co-occurring in an individual location (warm+dry years) and co- 
occuring simultaneously in different locations. We performed this 
quantification for multiple thresholds of warm and dry severity, in-
cluding temperature that exceeds the baseline mean by at least 2 SDs 
of the baseline variability, temperature that exceeds the baseline 
mean by at least 4 SDs of the baseline variability, and precipitation that 
is at least 1 SD drier than the baseline mean. We quantified changes 
in the joint probability of different temperature and precipitation 
thresholds for the historical observational data, the CMIP5 Historical 
and Natural climate model simulations, and the CMIP5 future climate pro-
jections (see the Supplementary Materials for a complete description).

We first tested whether there have been changes in the probability 
of warm years and the probability of dry years separately for each 
area of the globe. For each grid point, we first evaluated whether there 
has been a trend in the mean of the climate variable (as represented 
by the location parameter of the distribution). For grid points that 
do demonstrate a trend in the location parameter, we fitted a poly-
nomial regression model to the time series to model the changes in 
the location parameter through time. We then applied a Bayesian 
inference framework to fit a posterior distribution around the value 
of the location parameter at each year in the time series. We used 
a time-varying normal distribution for all grid points at which the 
Kolmogorov-Smirnov test did not reject normality of the residuals 
and a time-varying Student’s t distribution for all other grid points. 
The Bayesian posterior mean of the location parameter in the fitted 
distribution at each year then provides the probability that the tem-
perature anomaly is above the temperature threshold or that the 

precipitation anomaly is below the precipitation threshold, respec-
tively, at each grid point.

Our approach allows us to model changes in the mean levels of 
temperature and precipitation over time, and also changes in the de-
pendence between the two. In addition, although we assumed vari-
ance with no time trend, the fluctuation of the variance through time 
was modeled by Bayesian MCMC sampling to ensure that conver-
gence occurs for both the mean and variance (see the Supplementary 
Materials). It would be possible to extend our approach to model 
changes in higher moments of the statistical distribution (by, for 
example, assuming that the relevant scale factor log 2 depends on the 
time point), but in practice, none of the grid points in the observa-
tional temperature or precipitation dataset exhibit statistically sig-
nificant trends in the residual time series (fig. S3), supporting our 
assumption of no time trend in the variance.

To quantify changes in the joint probability of warm+dry years, 
we used the best-fitted trend models for the location parameter of 
the marginal distributions of temperature and precipitation and se-
lected a copula distribution at each grid point. The copula enables 
construction of a time-varying multivariate distribution that models 
the dependence structure between warm and dry years at each grid 
point. Similar to the calculation of the probability of a warm (or a 
dry) anomaly in each year using the univariate distribution (described 
above), we used the multivariate copula distribution to quantify the 
joint probability of a temperature anomaly above the threshold and 
a precipitation anomaly below the threshold in each year, at each grid 
point. For the climate model analysis, we constructed the copula for 
each realization; e.g., in comparing the Historical and Natural experi-
ments, we conducted the copula analysis individually for each realiza-
tion for which temperature and precipitation data were both archived.

Given the importance of spatially co-occurring climate stresses 
[e.g., (3, 4)], we quantified the global probability of warm anomalies, 
dry anomalies, and warm+dry anomalies in each year by aggregating 
the respective warm, dry, and warm+dry probability values from 
the available grid points. In addition, we also calculated the joint 
probability of warm+dry anomalies simultaneously occurring in two 
regions. For this regional joint probability analysis, we first calculated 
the regional-mean temperature and precipitation time series for key 
crop and pasture regions (Fig. 3). Then, for each pair of regions, we 
constructed a four-dimensional C-vine copula (temperature in region 
1, precipitation in region 1, temperature in region 2, and precipitation 
in region 2), which accounted for dependencies in the time series. 
We then used this four-dimensional copula to calculate the proba-
bility that both regions experienced warm+dry anomalies in the same 
year. We evaluated this joint probability of simultaneous warm+dry 
anomalies in pairs of regions for multidecadal periods of the historical 
observations, the Historical and Natural CMIP5 simulations, and the 
RCP2.6 and RCP8.5 CMIP5 simulations (see the Supplementary 
Materials for additional details).

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/4/11/eaau3487/DC1
Section S1. Datasets
Section S2. Methodology
Fig. S1. Schematic flowchart of the methodology to calculate temporal probability of warm, 
dry, and warm+dry years.
Fig. S2. A C-vine copula with four dimensions, three trees, and six edges.
Fig. S3. P values for the time trend of the residual time series.
Fig. S4. Comparison of joint probability in the NOAA observations and CMIP5 Historical 
simulations.

http://advances.sciencemag.org/cgi/content/full/4/11/eaau3487/DC1
http://advances.sciencemag.org/cgi/content/full/4/11/eaau3487/DC1
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Table S1. List of climate model realizations for temperature variable used to calculate warm 
year probability for the CMIP5 Historical and Natural forcing experiments and also for future 
projections based on RCP2.6 and RCP8.5.
Table S2. List of climate model realizations for precipitation variable used to calculate dry year 
probability for the CMIP5 Historical and Natural forcing experiments and also for future 
projections based on RCP2.6 and RCP8.5.
Table S3. List of climate model realizations available and overlapped for temperature and 
precipitation variables used to calculate joint warm and dry year probability for the CMIP5 
Historical and Natural forcing experiments and also for future projections based on RCP2.6 
and RCP8.5.
Table S4. Elliptical and Archimedean copula functions used in the present study.
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