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Introduction

According to the statistics (2016 update) from the American Heart Association (AHA), 15.5 

million people over 20 years old in the US have coronary heart disease, and every 42 

seconds, an American suffers from myocardial infarction (MI) [1]. For patients admitted into 

hospitals with suspected acute coronary syndrome (ACS), electrocardiography (ECG) is an 

important risk-stratification and assessment tool to guide further treatment for MI, and ST-

segment changes in ECG constitute the principle biomarker for such purpose. However, less 

than 25% of ACS patients present ST elevation (ST-elevation MI, or STEMI) and receive 

immediate medical attention. For the other 75% of myocardial infarctions, including non-ST 

elevation ACS (NSTE-ACS) or unstable angina (UA) [2], continuous ST-segment 

monitoring is crucial for early identification of transient myocardial ischemia (TMI, 

precursor of MI) and to prevent adverse clinical events.

Unfortunately, current ST-segment monitoring systems have yet to fulfil their designed 

purpose due to excessive false positive alarms. One study tracking a 16-bed intensive cardiac 

care (ICC) unit during a 31-day period discovered an average of 200 ST alarms per day, even 

with stricter trigger threshold at 200 μV being adopted in the facility instead of the 

recommended 100 μV, and over 90% of them are non-actionable alarms [3]. These nuisance 

alarms further contribute to the issue of alarm fatigue, which is ranked as one of the top 10 

technology hazards by the Emergency Care Research Institute (ECRI) in 2014 [4]. Alarm 

fatigue is described as the sensory overload caused by the overwhelming visual and auditory 

alerts generated by bedside physiologic motors to caregivers, which may lead to missed 

critical clinical opportunities [3]. Due to alarm fatigue, a recent statement from AHA has 

decreased the class of recommendation (COR) for ST alarms from class I (should be 
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performed) to class IIa (is reasonable to perform) [5]. Thus, there is an urgent unmet need 

for ST-segment monitoring algorithms with improved precision.

Recent advancement of deep learning has transformed many fields of study by taking 

advantage of big data and modern computing resources. The tremendous amount of digitized 

ECG data generated in clinical facilities meet well with the prerequisite for applying deep 

learning and have sparked various ECG research. One study adopted the convolutional 

neural network (CNN), one of the deep learning algorithms, to classify various types of ECG 

arrhythmia and has achieved cardiologist-level performance [6]. Another study used the 

CNN model to learn features in ECG that can screen patients with paroxysmal atrial 

fibrillation [7]. One more study took advantage of both convolutional and sequential models 

in deep learning to classify ECG signals from patients with coronary arterial disease from 

normal ECG [8], only to name a few. Inspired by these pioneering studies, the present work 

starts off to investigate the application of deep learning in detecting significant changes in 

ST segments, in an effort to improve the monitoring precision.

Expert cardiologists are able to identify ischemic changes in ST segments by visual 

inspection of ECG tracings in spite of the existence of moderate contamination of the 

waveform (body position change, motion artifact, numerous physiological confounders, 

etc.), where conventional ST-segment monitoring algorithms using numerical thresholding 

have usually failed. Addressing this circumstance, the present study adopts an image-based 

approach for sample representation to tackle the detection of ST changes as a computer 

visual task to leverage deep learning techniques, which have demonstrated close-to or even 

surpassed human performance [9]. In the present study, convolutional models are trained 

through a transfer-learning scheme from a publicly accessible long-term ECG database with 

expert annotation of ST events [10], and then are tested on an independent testing set in a 

simulated real-time fashion. Both qualitative and quantitative evaluations are performed to 

provide comprehensive examination of model performance. We further investigate various 

parameters during model building and their potential impact on the model performance, 

including finetuning parameters during training sample selection, and establishing a learning 

curve by varying number of ECG recordings in the training set.

Methods

Data source

The Long-Term ST Database from the Physionet is selected as the data source to generate 

training and testing samples [10, 11]. The database contains 86 whole-day Holter ECG 

recordings from 80 human subjects with 2- or 3-lead configuration. The signals are recorded 

at the sampling frequency of 250 Hz and at 12-bit resolution within the range between −10 

to 10 millivolts. The database provides single-lead annotation information related to 

significant ST episodes (including ischemic and heart-rate related ST changes), significant 

ST shift (due to axis shift or conduction change), noisy and unreadable segments (as shown 

in Figure 1), based on three types of protocols to capture significant ST changes. The present 

study adopts annotation information from the protocol B [10], which defines significant ST 

changes to be exceeding 100 microvolts continuously for at least 30 seconds. For 

consistency, all recordings in the database that are with 2-lead configuration, are with 
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significant ST episodes and are from subjects with a single recording are selected in the 

present study. ECG leads used in most of these recordings are the combination of one of 

precordial leads (V2, V3, V4 or V5) with modified limb lead III (MLIII). This results in 59 

recordings from 59 distinct subjects for further analysis. We then randomly select 30 

recordings as training data and the rest as testing data. A full list of recordings in training/

testing sets can be found in Table 1.

Image sample generation

We take an image-based approach for sample generation, which has been successfully 

adopted for assessment of signal quality in ECG signals [12]. Specifically, we take the 

snapshots of 10-second ECG images from continuous single-lead ECG waveform as 

training/testing samples. In this way, monitoring ST changes is transformed into a computer 

vision task, which can be well approached using the convolutional neural network. Each 10-

second ECG trace is firstly overlaid with a grid same as the standard ECG paper (40 ms per 

horizontal interval; 0.1 mV per vertical interval). Then the image is transformed into 

grayscale colormap to remove redundant color information that does not contribute to the 

classification task, and finally saved into an 8-bit jpeg file with image dimension of 600 px 

(W) by 450 px (H). These image samples are then further resized through bilinear 

interpolation to adhere to the input requirement of transfer learning using Google Inception 

V3.

Training/testing data preparation

For each ECG channel, we group ECG episodes associated with significant ST changes as 

the case condition (i.e. the ST condition), which includes ischemic ST and heart-rate related 

ST episodes (labeled in green in Figure 1). Then the remaining waveforms are grouped 

together as the control condition (i.e. the non-ST condition; labeled in red in Figure 1), by 

excluding segments annotated as unreadable, noise or ST shift. It’s worth noting that the 

database provides limited annotation information about events related to noise and ST shift, 

with single event time given rather than a duration. As an approximation, the 10-second data 

before and after the event time are excluded for these events.

Different sample selection schemes are designed for training and testing sets. For the 

training set, balanced numbers of image samples from ST and non-ST conditions are 

desirable for model training. To achieve this, 10,000 10-second image samples are randomly 

selected from non-ST ECG segments based on a uniform distribution for each recording as 

non-ST condition. For ST condition, the number of samples to be selected from each ST 

episode is determined by the total sample number (10,000) divided by the number of ST 

episodes in each recording. Within each ST episode, the corresponding number of image 

samples are selected by their temporal offsets with respect to the maxima of ST change, 

based on a Gaussian distribution with mean at the maxima of ST change and the standard 

deviation as a hyperparameter to tune. The maxima of ST change is determined by the 

maximal ST change within one episode, which is provided as a part of annotation 

information in LTST database [10]. Such design imposes higher weights for the selection of 

samples close to maxima of ST change, under the heuristic that more representative features 

related to ST change can be captured in this way. In total, there are 300,000 and 266,275 
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image samples for non-ST and ST conditions selected as training samples, respectively. For 

the testing set, consecutive 10-second image samples are selected for both conditions to 

approximate the real-time testing scenario. The prevalence of ST and non-ST conditions in 

the testing set can be found in Table 1.

Model training

We adopt a transfer learning scheme to attain CNN models from a comprehensively 

pretrained model rather than training the model from ground up. The underlying logic is 

recycling model parameters that capture common image features sharable across different 

computer vision tasks from a pretrained model in favor of an effective and efficient training 

process. The pretrained model used here is Google’s Inception V3, which has been trained 

from millions of images and 1000 classes from the ImageNet [13, 14]. We keep all the 

model parameters in the Inception model except the final layer, which is retrained by the 

training images in the present study. In this way, the pretrained model is adapted to identify 

image samples with significant ST changes. To retrain the final layer, the number of epochs 

is set at 2000. The training/validating/testing data separation in the training set follows an 

80%−10%−10% split, which enables quick assessment of bias-variance tradeoff during the 

training process.

Model parameter investigation

To investigate the impact of training sample selection for the ST condition on the model 

performance, three models are trained from ST samples selected from different Gaussian 

distributions by tuning standard deviations (5, 10, and 30 seconds). Figure 2(a) shows the 

comparison of sample distributions from different standard deviations when selecting same 

number of samples. It shows the smaller the standard deviation, the closer selected samples 

are to the maxima of ST changes. The learning curve of the proposed model is also 

investigated by varying the number of recordings in the training set, from 5 to 30 with an 

increment of 5 recordings, during the model training. To achieve fair comparison, 

performance from all models is tested and compared based on the same testing set.

Performance evaluation

Model performance is evaluated both qualitatively and quantitively. Receiver operating 

characteristic (ROC) curves from all recordings in the testing set are firstly generated to 

provide qualitative evaluation of individual performance. Based on ROC curves, optimal 

probability cutoff points can be derived with maximal Youden’s index. Then various 

common performance metrics are calculated to provide quantitative evaluation at the group 

level, including sensitivity, specificity and area under the ROC curve (AUC). Since there are 

far more non-ST than ST samples in the testing set (see Table 1), support-weighted F1 score 

is also calculated to take inter-class prevalence into consideration, which is achieved by 

Scikit-learn library [15]. The Student t tests are performed to compare performance from 

different models, as well as their performance against the guess level.
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Results

Figure 2(b) presents model performance from training samples selected from Gaussian 

distributions with different standard deviations. Each bar represents mean and standard 

deviation of AUCs across all 29 testing recordings. All three models yield comparable 

performance, with the 30-second model achieving the highest mean AUC at 87.05% 

(± 8.36%), followed by the 5- second model at 86.46% ± 9.05% and the 10-second model at 

86.10% ± 8.89%. Statistical tests reveal significant difference in performance only between 

10-second and 30-second models after Bonferroni correction for multiple comparisons (p < 

0.01). Since 30-second model presents the best overall performance, subsequent model and 

results are based on the common standard of using 30 seconds as standard deviation for 

training sample selection.

Individual-level performance from each recording in the testing set is shown in Figure 3. 

Each curve in the figure depicts ROC curve from one recording, and the dashed line depicts 

the guess level. The figure provides a qualitative evaluation of model performance, with all 

recordings above the guess level. It also shows variation in performance across different 

recordings. Most recordings present ROC curves deflecting far away from the guess line, 

indicating high true positive (i.e. power) and low false positive rate are achievable with 

carefully selected threshold. However, there are also recordings presenting low power across 

all thresholds, with ROC curves close to the guess line.

In addition to Figure 3, quantitative and group-level performance results are presented in 

Table-2 while maintaining comparable specificity at 80.34%. Besides, one-sample Student t 

tests show all metrics exceed the guess level with corrected significance level (p<<0.01). 

When examining the learning curve, all performance metrics show a general increasing trend 

along with more recordings in the training set, and best overall performance is achieved by 

the model using all 30 recordings in the training set. It also reveals that comparable 

performance can already be achieved with as few as 5 recordings in the training set, 

delivering a median AUC at 86.71% (range: 64.72–99.20%) and median F1 score at 84.27% 

(range: 52.85–97.82%).

Discussion

The image-based approach adopted in the study is inspired by the previous study on image- 

based ECG quality assessment [12]. The general idea is to convert one-dimensional ECG 

temporal dynamics into two-dimensional images so that image-based techniques and 

methods can be leveraged. In our study, taking 10-second snapshots of ECG waveforms 

transforms detection of ST changes into a computer vision task, where the convolutional 

neural network has demonstrated state-of-the-art performance. Then image features that 

differentiate ST from non- ST conditions can be extracted by convolutional layers in the 

CNN model for the classification of each 10-second image sample.

The sample representation of ECG signals as images also makes the implementation of 

transfer learning scheme with Google’s Inception V3 readily accessible, since current 

transfer-learning setup with Inception requires input as images to obtain the transfer-learned 
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CNN model [13]. The transfer-learned model achieves median sensitivity at 82.64% to 

detect significant ST change, which is on par with previous studies using the same database 

(78.90%, 78.10% and 78.28%) [16–18], while maintaining a comparable specificity at 

80.34%. Moreover, our approach using deep learning offers simple training process 

bypassing the complex rule-defining and feature engineering steps in conventional 

algorithms. By comparing to our previous feasibility study trained/tested with much fewer 

recordings [19], our approach presents stable performance in detecting significant ST 

change, which is further validated by the learning curve (as shown in Table 2).

Our achieved performance also demonstrates the viability of transfer learning in biomedical 

research, especially when the original model has been trained from a large image database 

with most of its images irrelevant to the medical domain. The adopted transfer learning 

approach recycles model parameters from a pretrained model that can capture common 

image features regardless of classes and only trains the final layer or layers to equip the 

model with domain expertise. This could also have great implication to other image-based 

biomedical studies, such as computerized diagnostic classification using CT and MRI scans, 

to achieve an efficient and effective training process with transfer learning.

The duration of 10 seconds is selected in the present study with the following 

considerations. First, our image-based approach is inspired by the insight that clinicians 

usually read and identify pathological changes in ECG through visual pattern recognition. 

The selection of 10-second image samples aligns well with the current real-time clinical 

setup, where most of bedside physiological monitors offer 10-second ECG strips as the 

frontend presentation. The classification of ST change at 10-second resolution resembles the 

real-time clinical practice when clinicians visually evaluate those ECG strips from bedside 

monitors screen by screen.

Second, accurate classification of significant ST change at short-duration level can serve as 

groundwork to multiple succeeding goals. It’s been found that many false ST alarms in 

current in-hospital ECG monitors are induced by brief ST changes from turning, breathing, 

signal noise etc., and introducing a delay in monitoring algorithms can effectively reduce the 

number of alarms and mitigate alarm fatigue [3,20, 21]. Thus, the precise detection of short-

duration ST change together with simple postprocessing steps, such as adding a delay, could 

provide great power in tackling the issue of excessive false positive alarms that plague the 

current ST monitoring software. On the other hand, the precise detection of short-duration 

ST change offers valuable information about temporal patterns of ST change that lead to 

downstream clinical endpoints, such as myocardial infarction. These temporal features could 

be further utilized by sequential models, e.g., recurrent neural network (RNN), to make 

prediction of the more clinically meaningful endpoints and to provide early warning.

When evaluating model performance at the individual level, we notice some testing 

recordings present considerably lower performance than most others. One plausible reason 

for this could be tied to one limitation of the LTST database that only single event time, 

instead of event duration, is provided for events of significant ST shift and noise. This 

greatly undermines the validity of true labels in the data especially for recordings with many 

episodes related to ST shift and ECG signal noise, such as those aforementioned ones. 
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Future effort is needed to complete the annotation of these events in order to have them 

properly accounted for during model training and testing.

Another limitation of the present study is that the ST detection algorithm is built upon 

single-lead level, given that the database consists of ECG recordings with 2-or 3-lead 

configuration and annotation information is available at single-lead level. It has been found 

that true transient myocardial ischemia events typically have presence in contiguous leads 

(leads closed placed), and taking such information into account could improve detecting 

sensitivity [21]. Furthermore, some ischemic ST events are lead specific and can be only 

detectable through certain leads [22], so they might be missed by algorithms monitoring 

single or very few number of leads alone. Under our current framework using the image-

based approach, one can easily add more information, such as ECG tracings from other 

leads, to fit into the image representation. Thus, one of our future directions is to establish an 

annotated ST database with in-hospital 12-lead ECG recordings, based on which a multi-

lead prediction model can be built and evaluated under the same framework as proposed 

here. Lastly, one common hurdle of adopting deep learning in biomedical research is the 

lack of model transparency. Further investigation of model parameters to reveal underlying 

image features that contribute to the model decision is of great importance to the model 

understanding. Making the model findings transparent to clinicians may play an important 

role in clinical adoption and creation of clinical decision support tools.

Conclusions

The present study lays out a pipeline for using deep learning to improve the precision of ST- 

segment monitoring and to mitigate the issue of alarm fatigue. The combination of image-

based approach and transfer-learning scheme adopted here provides efficiency and 

effectiveness in training CNN models for detection of ST changes, with both high sensitivity 

and specificity. Furthermore, robust performance has been demonstrated from models 

obtained with various number of recordings for training. The detection of ST changes at the 

short-duration level serves as a foundation for episode-level ST detection, and could also 

have great implication to the prediction of more clinical meaningful endpoints, such as MI, 

down the road.
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Figure 1. 
Conceptual timeline of annotated events in the LTST database. Events marked in green form 

up the ST condition. Events marked in red represent the non-ST condition. Events marked 

by black include noise, unreadable segments and sudden ST shifts, which are removed from 

analysis.
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Figure 2. 
Impact of varying standard deviations (5, 10 and 30 seconds) for training sample selection 

on the model performance. Figure 2(a) Conceptual sample distributions with respect to 

maxima of ST change from different standard deviations; Figure 2(b) Comparison of 

classification performance (AUC) across different models. * indicates significant level of 

0.01.
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Figure 3. 
ROC curves from individual testing recordings achieved by the 30-second model. Dashed 

line denotes the guess level.
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Table 1.

Full list of training/testing recordings used in the present study. Items shaded in grey are 30 recordings 

randomly selected as the training set. For testing set, the prevalence of each class is presented as (#ST 

samples: #non-ST samples).

Training set Testing set

s20031 s20301 s20471 s20021
(273:14785)

s20211
(391:16197)

s20411
(1211:15425)

s20051 s20321 s20481 s20041
(3397:13761)

s20241
(1161:15653)

s20451
(960:16096)

s20061 s20341 s20491 s20091
(460:15737)

s20251
(141:16968)

s20461
(265:16167)

s20071 s20351 s20561 s20101
(359:14300)

s20261
(1183:14899)

s20511
(173:14010)

s20081 s20361 s20591 s20121
(105:15218)

s20281
(262:16796)

s20521
(283:13202)

s20111 s20371 s20601 s20131
(1493:13547)

s20291
(722:15724)

s20551
(1005:15985)

s20141 s20401 s20611 s20151
(743:16240)

s20311
(1803:15345)

s20571
(139:10017)

s20161 s20421 s20631 s20181
(601:16422)

s20331
(346:17162)

s20581
(50:15809)

s20171 s20431 s20641 s20191
(72:17202)

s20381
(347:16818)

s20621
(4000:12322)

s20231 s20441 s20651 s20201
(73:14979)

s20391
(547:14315)
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Table 2.

Learning curve and quantitative evaluation of model performance at group level, including AUC, sensitivity, 

specificity and F1 score.

# Training
Recordings

AUC
(median: range)

Sensitivity
(median: range)

Specificity
(median: range)

F1 Score
(median: range)

5 86.71:
64.72–99.20%

82.08:
56.00–100%

77.88:
36.81–96.41%

84.27:
52.85–97.82%

10 84.11:
57.63–98.47%

80.92:
41.29–99.42%

73.01:
47.74–97.58%

83.32:
60.53–98.45%

15 86.69:
63.12–99.26%

80.20:
56.74–99.29%

79.94:
61.45–96.39%

84.92:
73.36–97.27%

20 87.88:
65.14–99.30%

80.56:
47.25–100%

80.22:
57.41–95.96%

85.82:
71.19–96.97%

25 87.74:
63.73–99.27%

81.92:
51.91–100%

81.44:
61.74–95.97%

87.31:
73.93–96.97%

30 87.87:
63.07–99.28%

82.64:
50.08–100%

80.34:
59.49–96.08%

87.38:
72.44–97.69%
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