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Abstract: The alternative splicing plays an important role to generate protein diversity. Recent studies have shown 
alterations in alternative splicing, resulting in loss, gain or changes of functions in the resulting protein. Specific 
products of alternative splicing are known to contribute in cancer-related mechanisms, such as angiogenesis, mi-
gration, adhesion and cell proliferation, among others. We using high-density microarrays reported a CENP-E as 
a one of significant transcript expressed and potentially is alternatively spliced in cancer. We focus in validate 
alternative splicing of CENP-E transcript using RT-PCR and sequencing in different cancer cell lines. We performed 
RT-PCR using specific primers designed to delimit the non-reported alternative splicing in CENP-E transcript. Our 
results showed the co-expression of the variant one and two of CENP-E in all cell lines evaluated. We detected more 
expression of variant one than two. Moreover, we identify an alternative 5’splice site of CENP-E in the exon 38 and 
was observed in RoVa cell line. Additionally, we characterized alternative skipping from exon 20 (NAT-CENP-E), these 
alternative splicing was observed in all cell lines evaluated except RoVa. Finally, we corroborate alternative mRNA 
splicing in leukemia patients using quantitative RT-PCR, in 71.8% of the patients NAT-CENP-E is downregulated and 
28.2% is overexpressed.
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Introduction

The alternative splicing (AS) is an important 
mechanism to generate large number of mRNA 
and protein diversity. Approximately 75% of hu- 
man genes are subject to alternative splicing 
[1-4], however, little is known about the diversi-
ty of mRNA isoforms expressed in health and 
human diseases. The AS mechanisms are not 
completely clear, however, a large number of 
molecules including: DNA, RNA and proteins, in- 
teracting and promote AS. The spliceosome re- 
cognize specific sequences that delimit consti-
tutive transcript [5, 6]. Additionally, SR, hnRNP 
proteins and specific RNA sequences (ESS, 
ESE, ISS, ISE) promote the AS [6, 7]. In cancer, 
several factors are involved in aberrant AS such 
as: mutation in ESS, ESE, ISS, ISE; changes  
in gene expression and proteins diversity that 
plays some roles in AS regulation. The conse-

quence mRNA could be alternatively processed 
such as: alternative exon skipping, intronic re- 
tention, premature stop, alternative capping 
and polyadenylation [8]. The aberrant mRNA 
splice is associated to development and can- 
cer progression [9, 10], treatment resistance, 
among others [11-13].

Recent evidence has shown that AS of mRNA  
is modulated according tissue type [14], sug-
gesting that specific mRNA isoforms are exp- 
ressed tissue-type [15]. The alternative mRNA 
splicing in cancer can confer cellular advantag-
es such as: proliferation, migration, angiogene-
sis, among others [16]. The cancer represents 
the most complex human disease and involves 
several cellular characteristics including: evad-
ing growth suppressor, sustaining proliferative 
signals, angiogenesis, enabling replicative im- 
mortality, migration, metastasis, and chromo-
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somal instability, among others [17-19]. How- 
ever, little is known about the diversity of mech-
anisms of alternative mRNA splicing in cancer 
disease. Nowadays, several studies in cancer 
has showed diversity transcripts that are alter-
natively spliced and its contribution with evad-
ing growth suppressors (TP53, AXA7), sustain-
ing proliferative signalling (KRAS, RAC1), avoid-
ing immune destruction (IL7, HLA-G), enabling 
replicative immortality (TERT), Tumor-promoting 
inflammation (RAC1, CD44), activating invasion 
and metastasis (CD44, FGFR2), angiogenesis 
(VEGFA), genome instability and mutation (RA- 
C1), resisting cell death (TP53, BCL2L1) and 
deregulation cellular energetics (PKM, GLS) 
[19]. This events of aberrant splicing in differ-
ent cancer have an important impact as poten-
tial biomarkers of diagnosis, prognosis or ther-
apeutic targets.

The acute lymphoblastic leukemia (ALL) is the 
most common childhood malignance in the 
world wide [20] several congenital disorders 
are associated to susceptibility [21], which 
could contribute with changes in gene expres-
sion as well as alternative splicing, Sun L, et al. 
identify aberrant expression of Ikaros coding 
sequence between 6 and 7 yielded the wild 
type sequence, that contribute to leukemia 
[22]. However, little is known about the diversi-
ty of alternative mRNA splicing in leukemia.

In a previous study, we performed analysis of 
transcriptome using Affymetrix GeneChip 1.0. 
The analysis included healthy and ovarian can-
cer and ovarian [1], cervical, breast, head and 
neck and leukemia cell lines (data no was sho- 
wn). Our results revealed that 207 transcripts 
expressed alternative mRNA isoforms, includ-
ing: Centromere-associated protein E (CENP-E), 
p-value = 1.87E-03, AS p-value = 5.00E-05, 
fold change = 4.3574 [1].

CENP-E is expressed before mitosis and is ac- 
cumulated in G2 phase, its role is implicated in 
promote chromosome movement and spindle 
elongation [23], consequently, correct chromo-
somal segregation [24]. CENP-E has been asso-
ciate with aneuploidies, chromosome instabili-
ty [25, 26] and cancer develop [27]. The mech-
anism is not clear, however chromosome insta-
bility could promoter loss of tumour suppressor 
genes and cellular transformation. In addition, 
the aneuploidy is a very common characteris- 
tic in several types of cancer including: breast 
[26], colorectal [25, 28] and represent risk for 

specific cancer, including leukemia [29]. More- 
over, CENP-E expression is consider as tumour 
suppressor and oncogene [30]. 

In order to identify AS in CENP-E transcript, in 
this study we designed specific primers to de- 
limit the potential alternative splicing, CENP-E 
expression was evaluated in 22 cancer cell 
lines using RT-PCR and sequencing. Additionally, 
we quantify the expression of new alternative 
transcript of CENP-E using Quantitative RT-PCR 
in 72 leukemia patients (LP). Our results dem-
onstrate a new alternative mRNA splice of 
CENP-E was expressed in cancer cell lines and 
leukemia patients.

Materials and methods

Microarray data mining

We used CELL files of microarray that previous-
ly reported. The analysis was performed using 
Partek Genomics Suite v6.6 according to a pre-
vious study [1], the probe exon ID were identi-
fied and mapping using NetAffy http://www.
affymetrix.com/estore/ and UCSC Genome Bro- 
wser http://genome.ucsc.edu/ and Integrated 
Genome Browser v8.2.3.

Cell lines

We used 22 cancer cell lines, that include: ovar-
ian (NIH-OVECAR-3, SK-OV-3, TOV-21G, TOV-
112D) provide by PhD. Laura Diaz; cervical 
(HeLa, SiHa, CaLo, RoVa, ViBo, C-33A, ViPa, 
INBL, Caski, MS-751, HaCaT) provided by PhD. 
Alberto Monroy; breast and leukemia (MCF-7, 
MDA-MB231, Jurkat) provided by provide by 
PhD. Alejandro Zentella; Leukemia (REH, K-562) 
provided by PhD. Patricia Pérez Vera and PhD. 
Fabian Arechavaleta provided Hep-G2, Hek-
293T. The adherent cell lines were cultured  
at 37°C, 5% of CO2, Dulbecco’s Modified Eagle 
Medium (DMEM) (Gibco, Life Technologies CA. 
USA), supplemented with 10% of Fetal bovine 
serum (Gibco, Life Technologies CA. USA) and 
1% Penicillin-Streptomycin. Leukemia cell lines 
(REH, K-562) were cultured al 37°C, 5% of CO2, 
10% Fetal bovine serum (Gibco, Life Technolo- 
gies CA. USA), 1% Penicilin-Streptomycin, 1% 
L-Glutamine and 1% non-essential amino acids.   

Leukemia bone marrow

All investigations were performed in accord-
ance with the Declaration of Helsinki and ap- 
proval by research and ethics committee of 
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Instituto Nacional de Pediatria, SSA number 
CONBIOETICA09CEI02420130507. After infor- 
mer consent was obtain. We obtain ~1 ml of 
bone marrow of the LP, the sample was collect-
ed in EDTA tube, after that was added Lym- 
phoprep (Stem cell technology) and were obtain 
the mononuclear cell. The total RNA was iso-
lated using TRIzol reagent (Life Technologies, 
Carlsbad, CA, USA) according to manufacturer’s 
instructions. Besides, white blood cells of heal- 
thy donator were obtained.

cDNA synthesis and RT-PCR amplification 

The cDNA was synthesized; in brief 5 ug of total 
RNA was digested using 1 u DNase, 1x DNase 
buffer (Thermo Scientific). The master mix was 
incubated for 30 min at 37°C. After that, was 
added 1 ul EDTA 5 mM and was incubated at 
65°C for 10 min. Subsequently, the samples 
were place in master mix containing: 0.2 μg of 
random hexamer primer, 40 u M-MLV, 10 mM 
DNTP’s mix, 40 U RNase inhibitor, 0.2 M DTT, 
1x M-MLV buffer. The mix was incubated at 
25°C 10 min, 37°C 60 min and 70°C 10 min 
(Invitrogen).

We evaluated housekeeping RPL4 expression 
as reference control; the cDNA was dilute 1:10. 
The PCR amplification was performed using 2 
ul of dilute cDNA, Dream Taq Green DNA Poly- 
merase 0.125 U, Buffer Dream Taq 1x, dNTPs 
Mix 0.4 mM (Thermo Scientific, USA), primer 5’ 
CGAATGAGAGCTGGCAAAGGCAAA 3’ Fw and 5’ 
ACGCCAAGTGCCGTACAATTCATC 3’ Rev 0.2 μM 
final concentration. The mix reactions were ini-
tially incubated at 95°C 2 min, and then ware 
run 35 cycles 95°C 15 s, 60°C 15 s and 72°C 
15 s, finally 72°C 5 min. 

CENP-E amplification was performed using 
three sets of primers; we used the same condi-
tions of mix reaction Set1 5’ CCAACTCAAGGA- 
AAGCCTGCAAGA 3’ Fw, 5’ TTCCATGGAGCATCTC- 
TGGTTTGC 3’ Rev (NM_001286734.1; 490 pb, 
NM_001813.2; 778 pb); Set2 5’ AGCTGCTTAG- 
AGAAAAGGAAGACC 3’ Fw, 5’ GCAAAATGACTTCT- 
TCCCGCA 3’ Rev (NM_001286734.1 and NM_ 
001813.2; 492 pb); Set3 5’ GAAGGAGAAAATG- 
ATTTGCTCTG 3’ Fw, 5’ GCAAAATGACTTCTTCCC- 
GCA 3’ Rev (118 pb). The mix reactions were 
initially incubated at 95°C for 2 min, then ware 
run for 35 cycles at 95°C for 15 s, 59.5°C for 
15 s and 72°C for 15 s, finally 72°C for 5 min, 
the Tm of Set2 was 56.5 and Set3 53.5°C, all 

amplifications were performed using 2720 
Thermal Cycler (Applied Biosystems). 

DNA purification and sequencing

PCR products were separated by electropho- 
resis gel using 2.5% agarose, the DNA were 
purified using QIAquick Gel Extraction (Qiagen, 
Valencia, CA, USA) according to the standard 
protocol. After, amplicons were subjected to 
Sanger sequencing in ABI Prism 3130 Genetic 
Analyzer (Applied Biosystems) using the BigDye 
Terminator 3.1 cycle sequencing Kit (Applied 
Biosystems). Subsequently, the sequences we- 
re assembled using annotated sequences in 
National Center for Biotechnology Information 
(NCBI).

Quantitative RT-PCR 

The cDNA of LP was performed as follows: one 
ug of total RNA was digested using 1 u DNase, 
1x DNase buffer (Thermo Scientific). The mas-
ter mix was incubated for 30 min at 37°C. After 
that, was added 1 ul EDTA 5 mM and was incu-
bated at 65°C for 10 min. Subsequently, the 
samples were place in master mix containing: 
0.2 μg of random hexamer primer, 40 u M-MLV, 
10 mM DNTP’s mix, 40 U RNase inhibitor, 0.2 
M DTT, 1x M-MLV buffer. The mix was incubat-
ed at 25°C for 10 min, 37°C for 60 min and 
70°C for 10 min (Invitrogen). For quantitative 
PCR we using KAPA SYBR Fast Universal qPCR 
Kit according to the manufacture’s recommen-
dations. The cDNA was diluted 1:10 to perform 
real time RT-PCR, the master mix contain 5 ul  
of Kapa Syber, 2 ul of cDNA diluted, 0.2 of ROX 
dye, 1.8 ul of H2O and 0.5 ul primers 10 uM 
(set3 5’ GAAGGAGAAAATGATTTGCTCTG 3’ Fw, 
5’ GCAAAATGACTTCTTCCCGCA 3’ Rev) or house- 
keeping RPS18 5’ CAGCCAGGTCCTAGCCAATG 
3’ Fw, 5’ CCATCTATGGGCCCGAATCT 3’ Rev. The 
amplification of RPS18 and CENP-E was per-
formed as follows: 95°C for 20 seconds, for 30 
cycles at 95°C for 3 seconds, 57°C seconds. 
The melting curve was performed at 95°C for 
15 seconds and the ramp was 55°C to 95°C, 
the temperature was increased +0.3°C. The 
amplification was carried out in a StepOne AB 
(Applied Biosystems). CENP-E expression was 
determined by relative quantification, which 
was calculated using 2 e (-ΔΔCt) methods, 
where ΔCt = Ct NAT-CENP-E - Ct RPS18 and 
ΔΔCt = ΔCt leukemia - ΔCt heatly [31].
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Figure 1. Exons expressed in CENP-E transcript. The plot showed individual expression of all exons that constitute centromere-associated protein E transcript. A. 
CENP-E is transcribed in antisense chain, two alternative mRNA splice are retrieved from UCSC Genome Browser. B. Plot depicting expression of probe set in healthy 
tissue (HT, blue), Tumors (T, green) and Ovarian Cell Lines (CL, red). C. Heat map contain individual expression from each sample and exon.
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Statistical analysis

We performed a non-parametric Kruskal-Wallis 
test, the significant was consider with P < 0.05 
and was carried using Prism 6.

Results

Analysis of exon expression in CENP-E tran-
script

Previous results in ovarian cancer showed sig-
nificant and differential expression in CENP-E 
transcript [1]. We performed analysed using 
high-density microarrays Affymetrix GeneChip 
1.0 the bioinformatics analysis was performed 
using Partek Genomics suite v6.6. 50 probes 
set that measure expression in 49 exons of 

CENP-E Figure 1. The plot showed over-expres- 
sed in Tumors (T) and Cell Lines (CL) vs Healthy 
Tissue (HT) samples. The heat map of CENP-E 
expression showed in almost six targets low 
expression, suggesting AS. However, we focu- 
sed in the evaluation of two regions in CENP-E 
transcript, indicating by blue arrow, those tar-
gets showed the most consistent suppression 
in all samples analysed Figure 1.

PCR amplification

The cDNA synthesis was evaluated using a 
housekeeping gene RPL4 according a previous 
report [1]. The RPL4 expression in cancer cell 
lines is depicted in the Figure 2A. After that, we 
evaluated expression of CENP-E using consen-
sus primers that amplified variant one and two 

Figure 2. CENP-E transcript variant 
one and two are expressed in cancer 
cell lines. A. Agarose gel showed ex-
pression in housekeeping gene RPL4 
in 22 cancer cell lines that include: 1 
(NIH-OVCAR-3), 2 (SK-OV-3), 3 (TOV-
21G), 4 (TOV-112D), 5 (HeLa), 6 (SiHa), 
7 (CaLo), 8 (RoVa), 9 (ViBo), 10 (C-
33A), 11 (Vipa), 12 (INBL), 13 (Caski), 
14 (MS-751), 15 (MDA-MB-231), 16 
(MCF-7), 17 (Hep-G2), 18 (HaCat), 19 
(Hek-293T), 20 (REH), 21 (Jurkat), 22 
(K-562). B. The agarose gel is showing 
the co-expression of two CENP-E tran-
scripts using consensus primers in 22 
cancer cell lines. C. Electropherogram 
shows the sequence of alternative 
splice, the top lines indicate the bound-
aries of partial alternative skipping 
of exon 38. D. Model of alternative 3’ 
splice site form exon 38 in CENP-E.
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(Set1). Set1 primers, amplify the exon 36-40; 
the PCR products were predicted using primer 
blast https://www.ncbi.nlm.nih.gov/tools/prim-
er-blast/index.cgi?LINK_LOC=BlastHome (778 
pb and 490 pb products for CENP-E variant one 
and two, respectively). CENP-E was evaluated 
in cancer cell lines and the PCR showed the co-
expression of both variants, as expected the 
size correspond at transcript variant one and 
two. However, the expression was inconspicu-
ous in the variant one in contrast to variant two 

Figure 2B. In some cell lines the variant one 
was not observed in: C33, HaCaT, REH and 
Jurkat cell lines. Unexpectedly, the ViBo cells 
showed an amplicon in ~600 pb and in order  
to reveal the identity of the PCR product, the 
DNA was purified and sequencing Figure 2C. 
After that, the sequence resulting was aligned 
to reference mRNA (NM_001813.2 and NM_ 
001286734.1) the alignment showed a loss of 
159 nucleotides in the end 5’ of exon 38 Figure 
2D.

Figure 3. Alternative mRNA splice of CENP-E reveal exon skipping form exon 20. Expression of CENP-E in 22 cell 
lines included 1 (NIH-OVCAR-3), 2 (SK-OV-3), 3 (TVO-21G), 4 (TVO-112D), 5 (HeLa), 6 (SiHa), 7 (CaLo), 8 (RoVa), 9 
(ViBo), 10 (C-33A), 11 (Vippa), 12 (INBL), 13 (Caski), 14 (MS-751), 15 (MDA-MB231), 16 (MCF-7), 17 (Hep-G2), 18 
(HaCat), 19 (Hek-293T), 20 (REH), 21 (Jurkat), 22 (K-562). A. Agarose gel showed expression of consensus primers 
to amplified transcript variant one/two of CENP-E. In some cell lines was observed inconspicuous expression on 
~300 pb showed with red arrow. B. Electropherogram showed the expression of constitutive CENP-E transcript, the 
top line indicated the boundary sites of exon 19 and 20. C. Electropherogram showed the boundaries sites of exon 
19 and 21, indicating the alternative exon skipping of exon 20. D. In agarose gel showed specific amplification of 
NAT-CENP-E. E. Model of alternative exon skipping of NAT-CENP-E.
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On the other hand, we design specific primers 
to amplify exon 18-21 (Set2), the design exclu-
sively amplify a consensus sequence of the 
transcript one/two (492 pb). We observed two 

the sequence and alignment showed skipping 
from exon 20 Figure 3C, 3E.

Our results indicated the alternative exon skip-
ping in eight cell lines evaluated. In order to 
evaluate the new alternative splicing in CENP- 
E, we designed specific primer in forward that 
include boundary exons 19 and 21, the reverse 
primer used was the same that the previous 
analysis (Set3). The PCR showed only one 
amplicon of ~100 pb, name NAT-CENP-E Figure 
3D. The expression observed is less than con-
stitutive transcripts (one or two). Our results 
showed the skip of exon 20 in almost all cell 
lines evaluated. Interestingly, the ViBo cell line 
did not express this transcript.

Alternative mRNA splice of CENP-E is ex-
pressed in acute lymphoblastic luekemia

The amplification of the new alternative tran-
script of CENP-E (NAT-CENP-E) showed an ex- 
pression in different types of cell lines, include 
leukemia. These results suggest that NAT-
CENP-E could be expressed in many types of 
cancer. In addition, our results showed the spe-
cific expression of NAT-CENP-E. In order to iden-
tify the expression of NAT-CENP-E, we evaluat-
ed in healthy controls (HC) and LP using RT-PCR 
end point Figure 4. We evaluated NAT-CENP-E 
expression in 10 HC and 10 LP, interestingly we 

Figure 4. Acute Lymphoblastic Leukemia expressed NAT-CENP-E. Agarose gel 
at 1.5% showed the expression NAT-CENP-E. A. 10 healthy controls are shown, 
the expression were heterogenous in all samples, HC1 to HC10. B. 10 Acute 
Lymphoblastic Leukemia patients were evaluated, LP1 to LP10. We observer 
some patients overexpressed NAT-CENP-E and some patients no expressed 
NAT-CENP-E.

additional amplicons in ~600 
and ~400 pb, however, the 
sequences were not corres- 
ponded to CENP-E transcript. 
We observed strong expres-
sion in the constitutive mRNA 
variant one/two of CENP-E 
(PCR fragment of ~492 pb) 
Figure 3A, and the sequence 
showed the expression for 
CENP-E transcript one/two, 
as expected Figure 3B. Addi- 
tionally, we could observe in 
eight cell lines (OVECAR-3, 
SK-OV-3, TOV-112D, C33-A, 
Hep-G2, Jurkat, K-562, MS- 
751) inconspicuously ampli-
con in ~300 pb indicated in 
Figure 3A, the amplicon was 
purified and sequence. The 
sequence revealed a novel 
mRNA transcript that is ex- 
pressed in cancer cell lines; 

Figure 5. Relative quantification of NAT-CENP-E in 
Acute Lymphoblastic Leukemia. Evaluation of NAT-
CENP-E using Real Time RT-PCR. The plot showed the 
relative expression of 10 healthy donator and 71 LP. 
The LP were fractionated in low (n = 51, less to one-
fold in gene expression P = 0.0001) and high expres-
sion (n = 20, more of one-fold in gene expression P 
= 0.0016) and were compared against to reference 
control. 
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observed inconstant expression in HC Figure 
4A as well as LP Figure 4B.

In order to quantify level expression, we per-
formed quantitative RT-PCR using housekeep-
ing gene RPS18, we performed standardization 
of our primer design that include (standard and 
melting curves for both of them transcripts and 
their validation Supplementary Figure 1 accord-
ing to Livak K et. al., 2001 [31]. Then was evalu-
ated NAT-CENP-E in 10 HC and 71 LP, our resul- 
ts showed expression in HC as well as patients. 
Then, we grouped the patients as low expres-
sion (lower expression that the normalized con-
trol group, n = 51) and high expression (more 
expression that the normalized control group, n 
= 20). Finally, we compared HC expression vs 
patients with low expression and HC vs high 
expression. In both comparison, we observed 
significant differences P = 0.0001 and P = 
0.0016, respectively Figure 5.

Discussion

The cancer is a complex disease with several 
cellular processes involved in malignance deve- 
lopment. The great challenge in cancer is the 
identification of specific molecular markers for 
diagnosis, prognosis and therapeutic targets. 
However, several tumour type shows heteroge-
neity molecular profile such as: medulloblasto-
ma [32, 33], melanoma [34], leukemia [35] 
among other, and several subtypes of cancer 
showed different prognosis. Approximately, the 
cancer is characterized by marks including: 
sustaining proliferation, angiogenesis, resisting 
cell death, invasion and metastasis, among 
others [17]. Sustaining proliferation signalling 
is consequence of alteration in control of cell 
cycle, by means of over expression of oncopro-
teins such as: RAS, MYC, RAF [36]. On the other 
hand, down regulation of tumour suppressor 
including: TP53, RB; this proteins plays a cen-
tral role in cell cycle control [18]. Recent stud-
ies have shown complex gene expression pro-
file as well as alternative mRNA splice is cancer- 
associated.

The AS constitutes an important key of control 
in gene expression. It allows generate RNA 
diversity, consequently large number of protein 
expressed, this enable high capacity of a single 
gene increase transcriptional potential [37]. In 
fact, the proteins result of AS allowed changes 
in protein topology, location, function. Different 

reports has shown the expression of mRNA 
splice cancer-associated, such as: GLS MAX 
(deregulating cellular energetics) [38, 39]; VE- 
GFA (inducing angiogenesis) [40, 41]; BCL2L1, 
CASP2, CASP8, MDM2, TP53 (resisting cell 
death) [42-45]; BRAF, EGFR, FGFR2 (sustaining 
growth suppressors) [39, 46, 47]; CD44, FG- 
FR2, RAC1 (activating invasion and metastasis) 
[47-49]. On the other hands, the proteins prod-
uct of alternative splicing could be therapeutic 
target [19]. However, little it is known about of 
diversity of mRNA splice in human diseases. 
Although, the bioinformatics analysis has sho- 
wn that up to 70% of human genes could gener-
ate at least two transcripts from a single gene 
[50] there are little mRNA transcript variants 
identify and characterized.

The acute lymphoblastic leukemia is the most 
common childhood malignance in the world 
wide and the second leading cause died in 
Mexico [51]. Approximately 20% of patients 
relapse with poor prognostic, probably by treat-
ment resistance [35]. Several aberrant alterna-
tive splicing has been involved in different can-
cer type such as: GLS, LDHC, AIMP2, CEACAM1, 
TERT, CD44, RAC1, FGFR2 [19], however, is lit-
tle know of the diversity of alternative mRNA 
splicing in leukemia.

Centromere-associated protein E is very impor-
tant for transition from metaphase to anaphase 
[52] contribute to alignment [53] and accurate 
chromosome segregation mediated to mitotic 
spindle. The crucial role of CENP-E is mediated 
the motor domain, which is essential to moves 
toward microtubules, in addition other kinesin-
related motor proteins are required to drive cor-
rect function [54]. Our findings have showed 
the significant over expression of CENP-E ovar-
ian cancer-associated [1] and cancer cell lines, 
including leukemia (data no shown). CENP-E 
was one of most significant alternatively splice 
transcript [1]. Our experimental findings showed 
expression of CENP-E in all cancer cell lines 
evaluated. Moreover, all cell lines expressed 
the new alternative mRNA spliced of CENP-E, 
except RoVa cell line. Additionally, we quantify 
the expression in leukemia patients, these 
results showed that NAT-CENP-E is over 
expressed in 20 patients.

CENP-E is a protein essential for maintenance 
of chromosomal stability by means of stabiliza-
tion of microtubule capture at kinetochores. 
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CENP-E has been reported as suppressor gene. 
However, in several types of cancer CENP-E has 
shown to be up-regulated, including in pituitary 
tumours [55], breast [56, 57], ovarian [58], and 
lung cancers [59], and gliomas [60], among 
others. Our results showed two groups of 
patients, one that NAT-CENP-E is suppressed 
that correspond ~80%, and the remaining pa- 
tients over expressed NAT-CENP-E. Interestingly, 
the group that over expressed NAT-CENP-E is 
the 20%. Approximately, the same percentage 
of patients in México showed relapse with poor 
prognosis. Different reports have shown con-
tradictory results on CENP-E, suggesting two 
roles in cancer as tumour suppressor and onco-
gene. Probably the capacity as a suppressor 
and oncogene is the result of alternative mRNA 
splice of CENP-E transcript. The classic exam-
ple of antagonic function of proteins conse-
quence of alternative splicing is Bcl-xL with pro-
survival and Bcl-xS pro-apoptotic functions [42, 
61]. TNR6 is subject to alternative splicing [62] 
producing a short protein, the consequence is 
loss the transmembrane domain and the pro-
tein resulting is soluble and inhibit FAS-media- 
ted cell death [63].

On the other hand, the cancer cells exhibit 
genetic alterations that include deletions, am- 
plifications, polyploidy, aneuploid, among oth-
ers. Probably the over expression of CENP-E 
and alternative mRNA transcripts of this gene 
plays a role in genetic alterations in some types 
of cancer, including leukemia. In childhood leu-
kaemia some patients showed high percent of 
aneuploid and the better prognosis. Probably 
the expression of CENP-E and their transcripts 
contribute with the course of the disease.

In this study, we identify new alternative mRNA 
splice of CENP-E transcript in several cancer 
cell lines and demonstrated the expression of 
new alternative mRNA transcript of the CENP-E 
gene in Childhood Acute Lymphoblastic Leuke- 
mia. Although our bioinformatics and experi-
mental analysis in cancer cell lines a leukemia 
patients have shown the expression of NAT-
CENP-E, future experiments are required to 
demonstrate the function and impact of tran-
scriptional variants of CENP-E in cancer.

Conclusion

In summary, our study we demonstrated by 
RT-PCR and sequencing the expression of new 

alternative mRNA splice of CENP-E transcript, 
resulting from exon 20 is skip. Only one cell  
line expressed alternative 5’ splice site in exon 
38. We consider that over expression of NAT-
CENP-E in patients could play an important role 
in several types of cancer.
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Supplementary Figure 1. Quantitative RT-PCR standardization. Curve melting showed only one amplification prod-
uct of PCR. (A) RPS18 transcript. (B) NAT-CENP-E. Curve amplification using 1:5 dilution in (C) RPS18 and (D) NAT-
CENP-E. (E) Validation of expression of NAT-CENP-E vs RPS18.


