
Abstract
The mononuclear phagocyte system (MPS), which con
sists of monocytes, dendritic cells (DCs), and macro
phages, plays a vital role in the innate immune defense 
against pathogens. Hepatitis C virus (HCV) is efficient in 
evading the host immunity, thereby facilitating its devel
opment into chronic infection. Chronic HCV infection 
is the leading cause of endstage liver diseases, liver 
cirrhosis, and hepatocellular carcinoma. Acquired im
mune response was regarded as the key factor to era
dicate HCV. However, innate immunity can regulate the 
acquired immune response. Innate immunityderived 
cytokines shape the adaptive immunity by regulating 
Tcell differentiation, which determines the outcome 
of acute HCV infection. Inhibition of HCVspecific Tcell 
responses is one of the most important strategies for im
mune system evasion. It is meaningful to illustrate the 
role of innate immune response in HCV infection. With 
the MPS being the important factor in innate immunity, 
therefore, understanding the role of the MPS in HCV 
infection will shed light on the pathophysiology of chronic 
HCV infection. In this review, we outline the impact of 
HCV infection on the MPS and cytokine production. We 
discuss how HCV is detected by the MPS and describe 
the function and impairment of MPS components in HCV 
infection. 
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Core tip: Hepatitis C virus (HCV) infection is efficient to 
develop into chronic infection. Innate immune system 
can shape the acquired immune response, which can 
eradicate HCV directly. As the main component of innate 
immunity, the mononuclear phagocyte system (MPS) 
plays a vital role in HCV infection. In this review, we dis
cuss the interaction between the HCV and MPS. MPS can 
detect HCV to promote virus eradication, and HCV can 
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shape the MPS to facilitate HCV persistence. We hope 
that this review will enable us to better understand HCV 
infection.
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INTRODUCTION
Hepatitis C virus and hepatitis C virus infection 
Hepatitis C virus (HCV) is a positive sense single-stranded 
RNA virus that belongs to the family Flaviviridae[1]. HCV 
infection affects more than 170 million people worldwide 
and is regarded as a leading cause of chronic liver 
disease[2]. The viral genome is approximately 9.6 kb, 
encoding a single 3011-amino acid-long polyprotein. 
The polyprotein is cleaved into three structural proteins 
(core, E1, and E2) and seven non-structural proteins 
(p7, NS2, NS3, NS4A, NS4B, NS5A, and NS5B)[3]. HCV 
is classified into seven genotypes as well as 67 subtypes, 
and it shows significant genetic diversity among different 
nations[4]. Even within the same patient, HCV usually 
exists in blood as a group of related quasispecies[5]. 
Acute HCV infections are anicteric and asymptomatic[6]. 
Nevertheless, 15%-20% of HCV-infected patients 
can recover from an acute infection, whereas the 
remaining 80%-85% of patients will progress to chronic 
infection[6-8]. Chronic HCV infection is a leading cause of 
end-stage liver diseases, liver failure, and hepatocellular 
carcinoma, resulting in approximately 350000 deaths 
per year[9,10]. HCV infection is usually diagnosed via the 
detection of both HCV antibody and HCV RNA. In the 
absence of viral RNA, the detection of HCV antibody 
indicates a spontaneously resolved or cured infection[10]. 
The combination of subcutaneous pegylated interferon 
(peginterferon) alpha and oral ribavirin was once the 
standard treatment for chronic HCV infection. However, 
this combination results in a sustained virological 
response (SVR) in only approximately 50% of patients[11]. 
In 2011, the United States Food and Drug Administration 
approved a novel HCV therapy including direct-acting 
antiviral drugs and protease inhibitor drugs. These 
drugs significantly increased the response rate, thereby 
revealing a new era of HCV treatment[12,13].

Mononuclear phagocyte system
The term mononuclear phagocyte system (MPS) was 
developed in the late 1960s and early 1970s by van 
Furth[14]. The MPS encompasses monocytes, dendritic 
cells (DCs), and macrophages, and altogether they play 
vital roles in tissue development, maintenance of homeo-
stasis, inflammation, and the innate immune defense 
against pathogens.

Monocytes constitute 5%-10% of the peripheral blood 

leukocytes in humans and are generated in the bone 
marrow and spleen[14]. During inflammation, monocytes 
can differentiate into macrophages and DCs[15-19], and 
they play important roles in both innate and adaptive 
immunity[20-24]. Circulating monocytes can traffic through 
the sinusoids, and thus, it has been proposed that liver-
resident monocytes and circulating monocytes should be 
distinguished[25]. However, blood monocytes pass through 
the liver numerous times, and therefore, we will consider 
circulating monocytes with liver-resident monocytes as 
one entity in this review. 

Human blood DCs are major histocompatibility com-
plex (MHC) class Ⅱ [human leukocyte antigen D-related 
(HLA-DR)] positive and can be divided into myeloid DCs 
(mDCs) and plasmacytoid DCs (pDCs)[26]. pDCs are 
CD11c negative and are distinguished from mDCs using 
positive markers such as CD123, CD303, and CD304[26]. 
Alternatively, mDCs can be subdivided according to 
CD1c and CD141 expression[26]. Accordingly, DCs exist 
in CD303+ pDCs, CD11c+ CD1c+ mDCs, and CD11c+ 
CD141+ mDCs populations. It is worth mentioning that 
all these subsets are present in the liver[25], and the 
CD1c+ mDC population is the most prevalent liver DC 
subset[27]. Compared to blood DCs, hepatic DCs present 
an immature phenotype and have a lower capacity to 
stimulate T cells[27-29]. Furthermore, hepatic DCs pro-
duce more interleukin (IL)-10 and less IL-12p70[30,31], 
highlighting the tolerogenic peculiarity of hepatic DCs.

Macrophages are large phagocytic cells with multi-
functional roles in development, homeostasis, and dis-
eases[32]. Kupffer cells (KCs) are tissue-resident macro-
phages of the liver that have important functions in 
both the innate and acquired immune responses[32-34]. 
However, owing to their stationary state, they are not 
as potent as DCs in stimulating T cells[35]. Additionally, 
KCs can also regulate the functions of other hepatic 
cells[36,37]. As early as the 1990s, the interaction between 
KCs with natural killer (NK) cells and liver stellate cells 
was identified by electron microscopy, implying that the 
functions of NK cells and stellate cells may be shaped 
by KCs[38]. In our lab, we previously identified Toll-like 
receptor (TLR)-dependent crosstalk between human KCs 
and NK cells[39].

HCV infection is notorious for its propensity to 
become chronic due to the lack of robust acquired im-
mune responses. The immune response against HCV 
infection is primarily controlled by the adaptive immune 
system; however, a robust acquired immune response 
is determined by the innate immune response[40]. In 
other words, proper innate immunity is essential for the 
initiation of the acquired immune response. Mounting 
evidence confirms that the MPS is crucial for innate 
immunity and plays an important role in multiple infec-
tions, including parasitic infections[41], tuberculosis[42], 
human immunodeficiency virus (HIV) infection[43,44], and 
respiratory syncytial virus infection[45]. Therefore, it is 
necessary to clarify the interaction between HCV and the 
MPS. The immunophenotype of the MPS in normal liver 
has been previously reviewed[25]. However, the impact 
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of HCV infection on the MPS has not been reviewed 
yet. Therefore, in this review, we summarize recent 
findings regarding the role of the MPS in HCV infection, 
and we focus on the function and impairment of MPS 
components following HCV infection.

DETECTION OF HCV BY THE MPS
Pathogen-associated molecular patterns (PAMPs) on HCV 
can be detected by three classes of pattern recognition 
receptors (PRRs): RIG I-like receptors (RLRs), TLRs, and 
NOD-like receptors (NLRs)[46]. These PRRs function early 
after infection, thereby restricting HCV replication[46]. 

RIG-I, representative of RLRs, can sense HCV 
RNA as non-self through the 5′-triphosphate (5′-ppp) 
found on the viral RNA in addition to the 3′ poly-U/
UC tract[47,48]. Blocking of the signaling pathway of 
melanoma differentiation-associated gene 5 (MDA5), 
another member of the RLRs, led to enhanced HCV repli-
cation[49]. Both RIG-I and MDA5 utilize the adaptor pro-
tein mitochondrial antiviral signaling (MAVS) to initiate 
immune signaling, and they recognize different PAMPs, 
indicating that they may function complementarily[50-52]. 
In West Nile virus infection, RIG-I was found to play 
an important role in the early immune response after 
infection, whereas MDA5 was more important in the later 
period of infection[53]. 

Endosomal TLRs are the main sensors that detect 
HCV. Among them, TLR3 can sense double-stranded 
(ds)RNA[54,55], whereas the GU-rich sequences in HCV 
RNA can be recognized by TLR7 and TLR8[56,57]. Addi-
tionally, TLR2 is specialized in HCV protein detection[58]. 
Wang et al[54] previously demonstrated that interferon 
(IFN)-stimulated genes (ISGs) are upregulated in primary 
human hepatocytes after polyinosinic: polycytidylic 
acid (polyI:C) stimulation, owing to the expression of 
TLR3. However, the authors observed that HCV infection 
weakened the ability of hepatocytes to induce ISG 
expression compared to the polyI:C stimulation[54], 
indicating that TLR3 signaling may be impaired by HCV. 
Consistently, it was previously established that TIR-
domain-containing adapter-inducing interferon-β (TRIF), 
an adaptor protein of TLR3 signaling, can also be cleaved 
by the NS3/4A protease[59,60]. 

It is worth mentioning that the results described 
above were derived from primary human hepatocytes or 
hepatocyte cell lines infected by HCV. In vivo, uninfected 
hepatocytes were able to sense the adjacent infected 
cells by TLR3[55]. Extracellular dsRNA was detected by 
the uninfected hepatocytes in a macrophage scavenger 
receptor 1 (MSR1)-dependent manner[55]. MSR1 can 
bind to the viral dsRNA and transport it to the endosome, 
within which TLR3 is engaged[55]. This mechanism may 
be employed by the MPS to trigger an antiviral state in a 
TLR3-dependent manner. Furthermore, HCV-infected cells 
can induce the production of type Ⅰ IFN from pDCs[61]. 
Additionally, HCV RNA activates the MPS populations like 
mDCs and pDCs to produce proinflammatory cytokines 
and chemokines, including IL-1β, tumor necrosis factor 

(TNF)-α, IL-6, IL-12, IL-10, CXCL9, and CXCL10[57]. 
Particularly, the GU-rich sequences induce type I IFN 
from monocytes and pDCs[57]. In contrast, the polyU/UC 
sequences of HCV RNA activate IL-1β production from 
the nucleotide-binding oligomerization domain-like re-
ceptor family pyrin domain containing 3 (NLRP3) inflam-
masome of macrophages, resulting in persistent liver 
inflammation[62,63].

In addition, HCV proteins can also activate the 
MPS. It was identified that HCV core protein (HCVc) 
and NS3 activate monocytes[64] and macrophages[58], 
thereby triggering inflammatory pathways in a TLR2-de-
pendent manner[58]. Additionally, HCVc and NS3 inhibit 
DC differentiation[64]. Furthermore, TLR1 and TLR6, co-
receptors of TLR2, are also involved in HCVc and NS3-
induced macrophage activation[65].

Compared to the HCV RNA, HCV viral particles are 
less efficient in stimulating the MPS[57]. Nevertheless, 
they can activate macrophages, leading to production of 
proinflammatory cytokines like IL-6, IL-1β, and TNF-α 
rather than the antiviral cytokines including IL-12 and 
type Ⅰ IFN[57]. 

IMPACT OF HCV ON THE MPS
HCV and monocytes
Effect of HCV on TLR signaling: TLR signaling is 
associated with the outcome of acute HCV infection 
as well as the therapeutic outcome[66]. Accumulating 
evidence suggests that HCV infection can influence the 
expression of TLRs[67-69]. Particularly, the expression levels 
of TLR2 and TLR4 are elevated after HCV infection in 
monocytes[67-69]. The expression of TLR2 is significantly 
correlated with serum TNF-α and alanine transaminase 
(ALT) levels[67], indicating that the inflammation asso-
ciated with HCV infection is partially attributed to pro-
duction of proinflammatory cytokines in a TLR2-depen-
dent manner. Similarly, HCVc can activate the MPS in 
a TLR2-dependent manner[58]. In contrast, TLR3 and 
TLR4 in monocytes are compromised after HCV infec-
tion[70]. In healthy individuals, the repeated stimulation 
of monocytes via the TLR ligands leads to tolerance, 
thereby providing a protective mechanism to limit in-
flammation. However, this tolerance is disrupted in 
HCV-infected patients[71]. Therefore, monocytes from 
HCV-infected patients are hyper-responsive, and their 
expression of TNF-α is upregulated. The loss of TLR 
tolerance can be attributed to IFN-γ[71]. Alternatively, 
other reports demonstrated that HCVc can induce down-
regulation of IL-6 production after stimulation with TLR2 
and TLR4 ligands[72,73]. We hypothesize that HCVc induces 
hyporesponsiveness, leading to the evasion of immunity 
in the early period of infection, whereas IFN-γ-induced 
loss of tolerance may contribute to inflammation and 
subsequent liver damage in chronic infection.

Impact of HCV on cytokine production from 
monocytes: IL-10, an anti-inflammatory cytokine, can 
be produced by monocytes[74]. IL-10 has several immuno-
regulatory functions after HCV infection. It is involved 
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cytes are also elevated during HCV infection and the type 
Ⅰ as well as type Ⅲ IFNs upregulate the IL-10 monocyte 
receptors, leading to higher sensitivity of monocytes to 
IL-10[83].

Programmed cell death-1 (PD-1) is primarily ex-
pressed on activated lymphocytes, whereas its ligand 
(PD-L) is widely expressed by many cells[84]. PD-1/
PD-L interactions can affect responses against self 
and foreign antigens[84]. Consistently, PD-1/PD-L1 sig-
naling in monocytes has critical roles in HCV infection. 
Monocytes from CHC patients are endowed with high 
levels of PD-L1, which enables the suppression of T cell 
proliferation, reduces the frequency of HCV-specific 
effector T cells, and downregulates the production of type 
1 help T cell (Th1) cytokines as well[85]. PD-L1 signaling 
downregulates IL-12 expression, leading to low Th1 
cytokine production[86]. HCVc interacts with the receptor 
for the globular heads of C1q (gC1qR) to increase 
PD-1 expression by monocytes[87]. PD-1 is associated 
with suppressor of cytokine signaling 1 (SOCS-1), and 
they work together to inhibit the activation of signal 
transducer and activator of transcription (STAT)-1 and 
the subsequent IL-12 production[87].

The galectin-9 (Gal-9) and T cell immunoglobulin 
and mucin domain 3 (Tim-3) pathway in monocytes is 
also vital for HCV infection. Monocytes express Gal-9 
upon exposure to HCV-infected cells or the subgenomic 
replicon cells and exosomes from infected cells[88]. Con-
sistently, Tim-3, receptor of Gal-9, is constitutively ex-
pressed on resting monocytes and can be up-regulated 
in CHC patients[89]. HCVc upregulates Tim-3 in a c-Jun 
N-terminal kinase (JNK) and T-bet-dependent manner[90]. 
The Gal-9/Tim-3 pathway is involved in the dysfunction 
of IL-12, IL-23, and IL-17[89,91]. Crosstalk between PD-1 
and SOCS-1, Gal-9, and Tim-3 inhibits IL-12 production 
by limiting STAT-1 phosphorylation[89]. 

In conclusion, imbalance between IL-10 and IL-12 
is a key feature of HCV infection. High levels of IL-10 
combined with low IL-12 levels lead to a poor antiviral 
microenvironment. To make matters worse, HCV-infected 
patients and healthy controls show different responses to 
IL-10 and IL-12, i.e., IL-10 can suppress IFN-γ production 
in both HCV-infected patients and healthy controls, 
whereas the stimulatory effect of IL-12 on IFN-γ is com-
promised in HCV-infected patients[92] (Figure 1).

Regulatory function of monocytes following HCV 
infection: Following HCV infection, monocytes modulate 
the functions of other immune cells, such as NK cells 
and T cells. Additionally, NS5A can upregulate IL-10 
and TGF-β expression in monocytes, and in turn, these 
cytokines suppress NK cell function by downregulating 
the expression of NKG2D, an activating receptor ex-
pressed on the surface of NK cells[93]. Furthermore, 
monocytes secrete the IL-18 and IL-36 inhibitory pro-
teins, which can reduce NK cell activation, TNF-related 
apoptosis-inducing ligand (TRAIL) expression, and the 
ability to kill target cells[94]. Monocyte-derived Gal-9 
upregulates the cytotoxicity of NK cells, leading to HCV-
specific T cell apoptosis and liver injury[95]. Co-culture of 

in HCV-specific CD8+ T cell regulation; specifically, IL-10 
can reduce the frequency of CD8+ T cells and impair 
their differentiation[75]. Furthermore, IL-10 preferentially 
targets TLR4 signaling[76]. The inhibitory role of IL-10 
against the production of proinflammatory cytokines 
was preferentially mediated by TLR4 signaling, i.e., the 
stimulation of chronic hepatitis C (CHC) patient-derived 
monocytes by lipopolysaccharide (LPS) (a TLR4 ligand) 
rather than R848 (a TLR8 agonist) led to lower TNF-α 
and IL-12 production[76]. 

Analysis of serum samples collected from CHC 
patients often shows higher IL-10 levels either pro-
duced spontaneously or after stimulation with HCV 
antigens[77,78]. Particularly, CHC patients have high IL-10 
levels and relatively low levels of IFN-γ and IL-2[79], 
whereas patients with the self-limiting HCV produce 
lower IL-10 levels in response to both viral antigens and 
unspecific stimulation[80]. 

HCV NS4 can stimulate peripheral blood mononuclear 
cells (PBMCs) to produce IL-10 and transforming growth 
factor (TGF)-β[81]. TGF-β cooperates with IL-10 to inhibit 
the host-protective immune responses[82]. Additionally, 
supernatants of NS4-stimulated monocytes can inhibit 
DC maturation and DC stimulatory function[81]. 

In our lab, we studied the network of cytokines that 
regulate IL-10 production and the cytokines regulated 
by IL-10 upon HCV infection[74]. The stimulation of 
monocytes with HCVc and polyI:C induces the secretion 
of TNF-α, IL-1β, IL-10, and type Ⅰ IFN. Interestingly, 
TNF-α, IL-1β, and IFN promote the IL-10 production, 
whereas high IL-10 levels inhibit TNF-α, IL-1β, and IFN 
production[74]. Furthermore, receptors for IL-10 on mono-

HCVc

PD1

gC1qR

SOCS1

Gal9 HCVc

Tim3 TLR4

AP1

STAT1

TLR2

AP1

NFκB NFκB

IL12 IL10

Figure 1  Mechanisms underlying aberrant interleukin-10 and interleukin 
-12 expression. Monocytes are a main producer of interleukin-10 (IL-10) 
in hepatitis C virus (HCV) infection. HCV core protein (HCVc) can stimulate 
monocytes to produce IL-10, which selectively inhibits Toll-like receptor 4 
signaling, leading to impairment of interleukin -12 (IL-12). Programmed cell 
death 1 (PD-1)/ ligand of PD-1 (PD-L1) signaling and the galectin-9 (Gal-9)/ 
T cell immunoglobulin and mucin domain 3 (Tim-3) pathways suppress IL-12 
production by inhibiting activator protein 1 and signal transducer and activator 
of transcription 1 activation. The interaction between HCVc and receptor for the 
globular heads of C1q also inhibits IL-12 production but promotes PD-1/PD-L1 
and Gal-9/Tim-3 pathways. The red arrow represents inhibition, whereas the 
green arrow indicates promotion. HCVc: HCV core protein; IL: Interleukin; TLR: 
Toll-like receptor; PD-1: Programmed cell death 1; PD-L1: Ligand of PD-1; 
Gal-9: Galectin-9; TIM-3: T cell immunoglobulin and mucin domain 3; AP-1: 
Activator protein 1; STAT: Signal transducer and activator of transcription; 
gC1qR: Receptor for the globular heads of C1q; SOCS: Suppressor of cytokine 
signaling; NFκB: Nuclear factor-κB.
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monocytes with T cells leads to elevated mortality rate 
of T cells[96]. In addition to these detrimental functions, 
monocytes were found to be beneficial in the following 
situation: elevated OX40L expression, which is involved 
in the CD4+ T cell response. Blocking OX40L expression 
from monocytes leads to HCV-specific CD4+ T cell impair-
ment[97]. Upon co-culture with JFH-1/HuH7.5 cells, NK 
cells from PBMCs produce high levels of IFN-γ. pDC-
derived IFN-α is indispensable for IFN-γ production, 
whereas the monocyte-derived IL-15 can augment IFN-γ 
production to the maximum[98].

HCV and DCs
Impaired functions of DCs following HCV infection: 
In vivo study showed that gene expression in DCs from 
acute HCV resolving patients and from patients who 
become chronically infected is different[99]. The same 
result is also confirmed in healthy controls and CHC 
patients[99]. All these indicate that DCs play an important 
role in HCV infection.

DCs derived from peripheral blood progenitors in 
vitro enabled the extensive study of DC populations. 
Compared to healthy control DCs, HCV-DCs (derived 
from CHC patients) exhibit a normal phenotype and 
morphology but stimulate allogeneic T cells poorly[100,101]. 
Owing to the low expression of IL-12 in HCV-DCs, they 
induce lower amounts of IFN-γ from T cells compared 
with control DCs in co-cultures of allogeneic DCs and T 
cells[102]. Additionally, HCV-DCs are refractory to matu-
ration stimuli and maintain an immature phenotype[103]. 
Interestingly, the observed defects in HCV-DCs are 
improved after viral clearance[100,103]. In agreement, 
transfection of DCs from a healthy donor with adenovirus 
encoding HCV E1 and HCVc resulted in poor ability to 
stimulate the allogeneic and autologous T cells[104].

To confirm the results obtained from in vitro ge-
nerated DCs, researchers evaluated the functions 
and phenotypes of blood DCs ex vivo directly during 
chronic HCV infection[105-109]. Compared to those among 
healthy controls, the frequencies of mDCs, pDCs, and 
DC progenitors are significantly lower in HCV-infected 
patients[106,108-110]. DCs from HCV-infected patients 
have a reduced ability to stimulate allogeneic CD4+ T 
cells[105,107,110]. Additionally, they show abnormalities in 
the production of cytokines, such as reduced IFN-α and 
IL-12 levels[107,110] and increased IL-10 production[107,108]. 
Interestingly, these defects are resolved after viral elimi-
nation, indicating that HCV can indeed infect DCs and 
alter their function[106,108,109]. Additionally, the tryptophan-
catabolizing enzyme indolamine 2,3-dioxygenase (IDO), 
an inducer of immune tolerance, was found to be signifi-
cantly increased in mDCs of CHC patients[111]. Moreover, 
HCV-infected patient monocyte-derived DCs and infected 
control monocyte-derived DCs (infected ex vivo with 
HCV) show an inability to mature, and this impairment 
can be reversed by IDO inhibitors[111].

The anti-HCV immune response mainly occurs in 
the liver; therefore, it is reasonable to speculate that the 
behavior of circulating DCs can be different from that of 
liver-resident DCs. Therefore, studies were designed to 

isolate and characterize human liver DCs[112]. In contrast 
to the circulating DCs, mDCs from livers of HCV-infected 
patients did not show noticeable defects in stimulating 
T cells and produced lower levels of IL-10 than mDCs 
from healthy individuals[112]. However, the livers of HCV-
infected patients harbored decreased numbers of pDCs 
compared to the livers of healthy individuals[112], and 
thus, the amount of IFN-α was lower in the HCV-infected 
patients[112]. In summary, lower amount of IFN-α and 
lower levels of IL-10 can contribute to persistent viral 
infection and inflammation in HCV infection, respec-
tively[112].

Additionally, DCs from HCV-infected patients showed 
lower production of IFN-λ[113], abolished cytotoxic acti-
vity[114], upregulated levels of Fas ligand as well as 
PD-L2[115], and imbalanced expression between the co-
stimulatory and co-inhibitory markers[116,117].

HCV-derived mechanisms underlying DC impair-
ment: The mechanisms underlying DC impairment as 
well as the HCV proteins modulating DC functions have 
been previously investigated[118]. HCVc and NS3 proteins 
are involved in the impairment of DC maturation, lower 
levels of T cell stimulation as well as higher levels of 
IL-10 production from DCs in HCV-infected patients[64] 
(Table 1). Additionally, HCVc protein can engage gC1qR 
to inhibit IL-12 production and further restrain Th1 
responses[119]. HCV E2 protein interacts with CD81 of DCs 
to alter DC migratory behavior, thereby incapacitating 
the recirculation of DCs to the lymphoid tissue, which 
can cause impairment of T cell priming[120] (Table 1). 
In our lab, we isolated liver-derived pDCs from normal 
liver tissues collected from benign tumor dissections and 
liver transplant donors. We observed that the interaction 
of E2 with CD81 inhibits pDC maturation, activation, 
and IFN-α production[121]. HCV NS4 protein can change 
the DC phenotype and is involved in the reduction 
of Th1 cytokine production and impairment of T cell 
stimulation[122]. NS3 and E2 proteins can hinder IFN-λ 
production from DCs[113]. NS5A increases IL-8 production 
from DCs and influences the phosphorylation of STAT1 
and STAT2[123] (Table 1). 

On the other hand, a number of studies failed to 
find defects in DCs during HCV infection[124-128]. It was 
reported that both HCV patients and chimpanzees 
infected with HCV harbor phenotypic and functional intact 
mDCs and pDCs[124,125]. DCs (both pDCs and monocyte-
derived DCs) from healthy donors and HCV patients 
show comparable functions[127]. These discrepancies can 
be attributed to the inhomogeneous disease state of the 
patient cohorts, technicalities in methods used for DC 
purification, stimuli used to induce maturation, and the 
evaluation of discrepant effector functions.

HCV and macrophages
Fundamental functions of macrophages after 
HCV infection: The number of proinflammatory 
macrophages is increased significantly in HCV-infected 
livers, highlighting the importance of macrophages 
in HCV infection[129-131]. This increase is dependent 
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on the proliferation of resident KCs and recruitment 
of monocytes[129]. Macrophages express TRAIL, Fas-
ligand, granzyme B, perforin, and reactive oxygen 
species, which cause direct cytotoxicity to the infected 
hepatocytes[132,133]. Furthermore, macrophage-derived 
IL-6 and IL-1β can inhibit HCV replication[134,135]. Moreover, 
TLR3 and TLR4 ligands can activate KCs to secrete 
IFN-β, therefore restricting HCV replication[136]. This 
observation is in agreement with the results obtained by 
our group. We isolated KCs from living donor allografts 
and stimulated them with TLR ligands and/or HCVc. 
Indeed, we observed that TLR3 induced KCs to secrete 
type Ⅰ IFNs, and this effect was blocked by HCVc[133]. 
Additionally, KCs were reported to produce TGF-β, IL-10, 
Gal-9, PD-L1, and PD-L2 during CHC, which suppresses 
the antiviral functions of T cells[133,137-139].

HCV infection can influence the macrophage 
phenotype: Burgio et al[140] observed that the immuno-
phenotypes of KCs can change during HCV infection. 
The expression of CD80, CD40, and MHC-Ⅱ was aber-
rantly regulated during HCV infection. Those KCs form 
clusters with T cells (mostly CD4+) in the livers from 
HCV-infected patients. In contrast, in healthy livers, the 
KC-T cell clusters are scarce and the T cells are mostly 
CD8+. Taken together, these results indicate that HCV 
infection can change the phenotype of KCs from efficient 
antigen endocytic cells to professional antigen-presenting 
cells[140]. Additionally, the HCV E2 protein can polarize 
monocyte-derived macrophages to the M2 phenotype 
by enhancing STAT3 and inhibiting STAT1 activation[141]. 
In our group, we observed that HCVc can also affect 
the differentiation states of cells from monocytes to 
macrophages. Both M1 and M2 polarization are inhibited 
in a TLR2-dependent manner[142].

Role of macrophages in mediating HCV-associated 
inflammation: HCV proteins and RNA can activate 
macrophages, leading to the production of proin-
flammatory cytokines such as IL-1β, IL-6, IL-18, and 
TNF-α[62,63,133,143]. It is noteworthy that upon macrophage 
activation with HCV viral particles, the response is 
proinflammatory rather than antiviral[57]. This could be 
attributed to the polyU/UC sequences of HCV RNA, which 

activate the NLRP3 inflammasome of macrophages. 
Additionally, macrophage-derived TNF-α was reported 
to promote HCV entry into polarized hepatoma cells[144]. 
In HCV-infected patients, LPS can induce significantly 
high levels of TNF-α, because macrophages of HCV-
infected patients are deprived of TLR-tolerance[71,130]. The 
combination of increased TNF-α production along with 
the enhanced HCV entry may represent an important 
mechanism by which macrophages enhance HCV in-
fection and infection-associated inflammation (Figure 2).

Macrophages play an important role in HCV-
associated liver fibrosis and/or cirrhosis: Pro-
gressive fibrosis and/or cirrhosis is a characteristic of 
CHC, and macrophages play an important role in this 
process[145]. In CHC, the role of macrophages in fibrosis 
is mediated by the pro-inflammatory cytokines IL-1β 
and TNF-α, which have a well-established pro-fibrotic 
function[146-149]. Additionally, conditioned medium from 
HCV-exposed macrophages can modulate the primary 
human hepatic stellate cells (HSC) and LX2 cell line. 
CCL5 derived from macrophages activates HSCs, leading 
to the increased expression of inflammatory and pro-
fibrogenic markers such as NLRP3, IL-1β, IL-6, CCL5, 
TGFβ1, COL4A1, matrix metalloproteinase 2 (MMP2), 
and α-smooth muscle actin (SMA)[150].

HCV-infected patients have elevated serum levels 
of macrophage colony-stimulating factor (M-CSF) and 
IL-34[151], and these proteins are intensely expressed 
around the liver lesions. In vitro, hepatocytes produce 
IL-34, M-CSF, and inflammatory cytokines in response 
to HCV infection[151]. IL-34 and M-CSF promote the 
differentiation of monocytes into macrophages and en-
dow the macrophages with profibrotic properties[151]. 
These profibrotic macrophages recruit monocytes to the 
liver and activate HSCs via platelet-derived growth factor, 
TGF-β, and galectin-3[151].

CONCLUSION
Components of the MPS have redundant but non-
identical roles in HCV infection. Monocytes act as pro-
genitors for DCs as well as macrophages, and they play 
an important role in blunting the immune system by 

HCV protein Target cells Functional change Mechanism Ref.

HCV core and NS3 mDCs Impaired maturation Increased IL-10 and decreased IL-12 production [64]
Impaired T-cell stimulation

E2 mDCs Alter DC migratory behavior Interacts with CD81 [120]
pDCs Inhibited maturation [121]

Impaired activation
Decreased IFN-α production

E2 andNS3 mDCs Impaired IFN-λ production Not shown [113]
NS4 mDCs Th1 cytokine reduction Not shown [122]

T-cell stimulatory impairment
NS5A mDCs Increased IL-8 production Not shown [123]

Impaired interferon signaling Influence the phosphorylation of STAT1 and STAT2

Table 1  Hepatitis C virus-derived mechanisms underlying dendritic cell impairment

HCV: Hepatitis C virus; NS: Nonstructural protein; mDC: Myeloid dendritic cell; pDC: Plasmacytoid dendritic cell; IL: Interleukin; Th1: Type 1 help T cell; 
IFN: Interferon; STAT: Signal transducer and activator of transcription.

Yang Y et al . MPS in HCV infection



4968 November 28, 2018|Volume 24|Issue 44|WJG|www.wjgnet.com

secreting large amounts of IL-10 and decreasing IL-12 
production. Altered TLR signaling is the most probable 
cause for abnormal cytokine production in HCV infection. 
Results from studies examining the impairment of DCs 
during HCV infection are still controversial. In this review, 
we adopt the argument that mDCs show a reduced 
ability to stimulate T cells, whereas pDCs produce 
decreased amounts of IFN-α in HCV infection. However, 
a definitive conclusion requires further investigation. 
Macrophages are a double-edged sword in HCV infection, 
with both beneficial and detrimental effects. Macrophage-
derived proinflammatory cytokines can control the viral 
spread in acute infection. However, if HCV infection 
is not controlled, these proinflammatory cytokines 
contribute to persistent inflammation and complications, 
including fibrosis and cirrhosis. Persistent inflammation 
is a characteristic of HCV infection, and thus, the 
differentiation of monocytes into DCs and macrophages 
should happen frequently. Will the impairments of 
the precursor monocytes be inherited by DCs and ma-

crophages? Or will those impairments be reversed during 
differentiation? These questions remain to be inves-
tigated.

The majority of previous studies focused on only 
one component of the MPS, and thus, data on the inter-
play and cooperation between MPS components are 
scarce[98,152,153]. For instance, the recruitment of DCs to 
the liver requires KCs and the majority of the recruited 
DCs bind to KCs. This DC-KC binding is indispensable, 
because KC depletion leads to the inhibition of DC 
migration to the liver[152]. Furthermore, monocytes 
produce IL-10 and TNF-α, leading to the apoptosis of 
pDCs and consequently inhibiting the production of 
IFN-α by pDCs[153]. Additionally, pDC-derived IFN-α and 
monocyte-derived IL-15 work together to maximize the 
IFN-γ induction by NK cells and NKT cells during HCV 
infection[98]. Other forms of interplay and cooperation 
involving the MPS remain to be analyzed.

In this review, we describe the impact of HCV in-
fection on each population of the MPS. As a precursor 
of DCs and macrophages, monocytes are the major 
contributors to the regulation of the immune system 
following HCV infection. Monocytes produce high levels 
of IL-10 and low levels of IL-12, which leads to a blunted 
microenvironment. On the other hand, DCs demonstrate 
an impaired ability to stimulate T cells that inhibit effi-
cient anti-HCV T-cell function. As tissue-resident cells, 
macrophages are tightly associated with HCV-induced 
inflammation and cirrhosis.
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