
NeuralNetTools: Visualization and Analysis Tools for Neural 
Networks

Marcus W. Beck
US Environmental Protection Agency, National Health and Environmental Effects Research 
Laboratory, Gulf Ecology Division, 1 Sabine Island Drive, Gulf Breeze, Florida, 32561, United 
States of America

Abstract

Supervised neural networks have been applied as a machine learning technique to identify and 

predict emergent patterns among multiple variables. A common criticism of these methods is the 

inability to characterize relationships among variables from a fitted model. Although several 

techniques have been proposed to “illuminate the black box”, they have not been made available in 

an open-source programming environment. This article describes the NeuralNetTools package 

that can be used for the interpretation of supervised neural network models created in R. Functions 

in the package can be used to visualize a model using a neural network interpretation diagram, 

evaluate variable importance by disaggregating the model weights, and perform a sensitivity 

analysis of the response variables to changes in the input variables. Methods are provided for 

objects from many of the common neural network packages in R, including caret, neuralnet, 
nnet, and RSNNS. The article provides a brief overview of the theoretical foundation of neural 

networks, a description of the package structure and functions, and an applied example to provide 

a context for model development with NeuralNetTools. Overall, the package provides a toolset for 

neural networks that complements existing quantitative techniques for data-intensive exploration.

Keywords

neural networks; plotnet; sensitivity; variable importance; R

1. Introduction

A common objective of data-intensive analysis is the synthesis of unstructured information 

to identify patterns or trends “born from the data” (Bell, Hey, and Szalay 2009; Kelling, 

Hochachka, Fink, Riedewald, Caruana, Ballard, and Hooker 2009; Michener and Jones 

2012). Analysis is primarily focused on data exploration and prediction as compared to 

hypothesistesting using domain-specific methods for scientific exploration (Kell and Oliver 

2003). Demand for quantitative toolsets to address challenges in data-rich environments has 

increased drastically with the advancement of techniques for rapid acquisition of data. Fields 

of research characterized by high-throughput data (e.g., bioinformatics; Saeys, Inza, and 

Current address: Southern California Coastal Water Research Project, 3535 Harbor Blvd., Suite 110, Costa Mesa, CA, 92626, United 
States of America, Telephone: +1/714/755/3217, marcusb@sccwrp.org

EPA Public Access
Author manuscript
J Stat Softw. Author manuscript; available in PMC 2019 January 01.

About author manuscripts | Submit a manuscript
Published in final edited form as:

J Stat Softw. 2018 ; 85(11): 1–20. doi:10.18637/jss.v085.i11.E
PA

 A
uthor M

anuscript
E

PA
 A

uthor M
anuscript

E
PA

 A
uthor M

anuscript



Larrañaga 2007) have a strong foundation in computationally-intensive methods of analysis, 

whereas disciplines that have historically been limited by data quantity (e.g., field ecology; 

Swanson, Kosmala, Lintott, Simpson, Smith, and Packer 2015) have also realized the 

importance of quantitative toolsets given the development of novel techniques to acquire 

information. Quantitative methods that facilitate inductive reasoning can serve a 

complementary role to conventional, hypothesis-driven approaches to scientific discovery 

(Kell and Oliver 2003).

Statistical methods that have been used to support data exploration are numerous (Jain, 

Duin, and Mao 2000; Recknagel 2006; Zuur, Ieno, and Elphick 2010). A common theme 

among data intensive methods is the use of machine-learning algorithms where the primary 

objective is to identify emergent patterns with minimal human intervention. Neural 

networks, in particular, are designed to mimic the neuronal structure of the human brain by 

“learning” inherent data structures through adaptive algorithms (Rumelhart, Hinton, and 

Williams 1986; Ripley 1996). Although the conceptual model was introduced several 

decades ago (McCulloch and Pitts 1943), neural networks have had a central role in 

emerging fields focused on data exploration. The most popular form of neural network is the 

feed-forward multilayer perceptron (MLP) trained using the backpropagation algorithm 

(Rumelhart et al. 1986). This model is typically used to predict the response of one or more 

variables given one to many explanatory variables. The hallmark feature of the MLP is the 

characterization of relationships using an arbitrary number of parameters (i.e., the hidden 

layer) that are chosen through iterative training with the backpropagation algorithm. 

Conceptually, the MLP is a hyper-parameterized non-linear model that can fit a smooth 

function to any dataset with minimal residual error (Hornik 1991).

An arbitrarily large number of parameters to fit a neural network provides obvious predictive 

advantages, but complicates the extraction of model information. Diagnostic information 

such as variable importance or model sensitivity are necessary aspects of exploratory data 

analysis that are not easily obtained from a neural network. As such, a common criticism is 

that neural networks are “black boxes” that offer minimal insight into relationships among 

variables (e.g., Paruelo and Tomasel 1997). Olden and Jackson (2002) provide a rebuttal to 

this concern by describing methods to extract information about variable relationships from 

neural networks. Many of these methods were previously described but not commonly used. 

For example, Olden and Jackson (2002) describe the neural interpretation diagram (NID) for 

plotting (Özesmi and Özesmi 1999), the Garson algorithm for variable importance (Garson 

1991), and the profile method for sensitivity analysis (Lek, Delacoste, Baran, Dimopoulos, 

Lauga, and Aulagnier 1996). These quantitative tools “illuminate the black box” by 

disaggregating the network parameters to characterize relationships between variables that 

are described by the model. Although MLP neural networks were developed for prediction, 

methods described in Olden and Jackson (2002) leverage these models to describe data 

signals. Increasing the accessibility of these diagnostic tools will have value for exploratory 

data analysis and may also inform causal inference.

This article describes the NeuralNetTools package (Beck 2018) for R (R Core Team 2018) 

that was developed to better understand information obtained from the MLP neural network. 

Functions provided by the package are those described in Olden and Jackson (2002) but 

Beck Page 2

J Stat Softw. Author manuscript; available in PMC 2019 January 01.

E
PA

 A
uthor M

anuscript
E

PA
 A

uthor M
anuscript

E
PA

 A
uthor M

anuscript



have not been previously available in an open-source programming environment. The reach 

of the package is extensive in that generic functions were developed for model objects from 

the most popular neural network packages available in R. The objectives of this article are to 

1) provide an overview of the statistical foundation of the MLP network, 2) describe the 

theory and application of the main functions in the NeuralNetTools package, and 3) provide 

an applied example using neural networks and NeuralNetTools in data exploration. The 

current released package version is available from the Comprehensive R Archive Network 

(CRAN) at https://CRAN.R-project.org/package=NeuralNetTools, whereas the development 

version is maintained as a GitHub repository.

2. Theoretical foundation and existing R packages

The typical MLP network is composed of multiple layers that define the transfer of 

information between input and response layers. Information travels in one direction where a 

set of values for variables in the input layer propagates through one or more hidden layers to 

the final layer of the response variables. Hidden layers between the input and response layers 

are key components of a neural network that mediate the transfer of information. Just as the 

input and response layers are composed of variables or nodes, each hidden layer is 

composed of nodes with weighted connections that define the strength of information flow 

between layers. Bias layers connected to hidden and response layers may also be used that 

are analogous to intercept terms in a standard regression model.

Training a neural network model requires identifying the optimal weights that define the 

connections between the model layers. The optimal weights are those that minimize 

prediction error for a test dataset that is independent of the training dataset. Training is 

commonly achieved using the backpropagation algorithm described in Rumelhart et al. 
(1986). This algorithm identifies the optimal weighting scheme through an iterative process 

where weights are gradually changed through a forward- and backward-propagation process 

(Rumelhart et al. 1986; Lek and Guégan 2000). The algorithm begins by assigning an 

arbitrary weighting scheme to the connections in the network, followed by estimating the 

output in the response variable through the forward-propagation of information through the 

network, and finally calculating the difference between the predicted and actual value of the 

response. The weights are then changed through a backpropagation step that begins by 

changing weights in the output layer and then the remaining hidden layers. The process is 

repeated until the chosen error function is minimized, as in standard model-fitting 

techniques for regression (Cheng and Titterington 1994). A fitted MLP neural network can 

be represented as (Bishop 1995; Venables and Ripley 2002):

yk = f o ∑
h

whk f h ∑
i

wihxi , (1)

where the estimated value of the response variable yk is a sum of products between the 

respective weights w for i input variables x and h hidden nodes, mediated by the activation 

functions fh and fo for each hidden and output node.

Beck Page 3

J Stat Softw. Author manuscript; available in PMC 2019 January 01.

E
PA

 A
uthor M

anuscript
E

PA
 A

uthor M
anuscript

E
PA

 A
uthor M

anuscript

https://cran.r-project.org/package=NeuralNetTools


Methods in NeuralNetTools were written for several R packages that can be used to create 

MLP neural networks: neuralnet (Fritsch and Guenther 2016), nnet (Venables and Ripley 

2002), and RSNNS (Bergmeir and Benítez 2012). Limited methods were also developed for 

neural network objects created with the train function from the caret package (Kuhn 2008). 

Additional R packages that can create MLP neural networks include AMORE that 

implements the “TAO-robust backpropagation algorithm” for model fitting (Castejón Limas, 

Ordieres Meré, González Marcos, de Pisón Ascacibar, Pernía Espinoza, Alba Elías, and 

Perez Ramos 2014), FCNN4R that provides an R interface to the FCNN C++ library (Klima 

2016), monmlp for networks with partial monotonicity constraints (Cannon 2017), and 

qrnn for quantile regression neural networks (Cannon 2011). At the time of writing, the 

CRAN download logs (Csardi 2015) showed that the R packages with methods in 

NeuralNetTools included 95% of all downloads for the available MLP packages, with nnet 
accounting for over 78%. As such, methods have not been included in NeuralNetTools for 

the remaining packages, although further development of NeuralNetTools could include 

additional methods based on popularity. Methods for each function are currently available 

for ‘mlp’ (RSNNS), ‘nn’ (neuralnet), ‘nnet’ (nnet), and ‘train’ (caret; only if the object 

also inherits from the ‘nnet’ class) objects. Additional default methods or methods for class 

‘numeric’ are available for some of the generic functions.

3. Package structure

The stable release of NeuralNetTools can be installed from CRAN and loaded as follows:

R> install.packages(“NeuralNetTools”)

R> library(“NeuralNetTools”)

NeuralNetTools includes four main functions that were developed following similar 

techniques in Olden and Jackson (2002) and references therein. The functions include 

plotnet to plot a neural network interpretation diagram, garson and olden to evaluate variable 

importance, and lekprofile for a sensitivity analysis of neural network response to input 

variables. Most of the functions require the extraction of model weights in a common format 

for the neural network object classes in R. The neuralweights function can be used to 

retrieve model weights for any of the model classes described above. A two-element list is 

returned with the first element describing the structure of the network (number of nodes in 

the input, hidden, and output layers) and the second element as a named list of model 

weights. The function is used internally within the main functions but may also be useful for 

comparing networks of different classes.

A common approach for data pre-processing is to normalize the input variables and to 

standardize the response variables (Lek and Guégan 2000; Olden and Jackson 2002). A 

sample dataset that follows this format is included with NeuralNetTools. The neuraldat 

dataset is a simple data.frame with 2000 rows of observations and five columns for two 

response variables (Y1 and Y2) and three input variables (X1, X2, and X3). The input 

variables are random observations from a standard normal distribution and the response 

variables are linear combinations of the input variables with additional random components. 

Beck Page 4

J Stat Softw. Author manuscript; available in PMC 2019 January 01.

E
PA

 A
uthor M

anuscript
E

PA
 A

uthor M
anuscript

E
PA

 A
uthor M

anuscript



The response variables are also scaled from zero to one. Variables in additional datasets can 

be pre-processed to this common format using the scale function from base to center and 

scale input variables (i.e., z-scores) and the rescale function from scales to scale response 

variables from zero to one. The examples below use three models created from the 

neuraldat dataset and include ‘mlp’ (RSNNS), ‘nn’ (RSNNS), and ‘nnet’ (nnet) objects.

R> set.seed(123)

R> library(“RSNNS”)

R> x <- neuraldat[, c(“X1”, “X2”, “X3”)]

R> y <- neuraldat[, “Y1”]

R> mod1 <- mlp(x, y, size = 5)

R> library(“neuralnet”)

R> mod2 <- neuralnet(Y1 ~ X1 + X2 + X3, data = neuraldat, hidden = 5)

R> library(“nnet”)

R> mod3 <- nnet(Y1 ~ X1 + X2 + X3, data = neuraldat, size = 5)

3.1. Visualizing neural networks

Existing plot functions in R to view neural networks are minimal. Such tools have practical 

use for visualizing network architecture and connections between layers that mediate 

variable importance. To our knowledge, only the neuralnet and FCNN4R packages provide 

plotting methods for MLP networks in R. Although useful for viewing the basic structure, 

the output is minimal and does not include extensive options for customization.

The plotnet function in NeuralNetTools plots a neural interpretation diagram (NID; Özesmi 

and Özesmi 1999) and includes several options to customize aesthetics. A NID is a 

modification of the standard conceptual illustration of the MLP network that changes the 

thickness and color of the weight connections based on magnitude and sign, respectively. 

Positive weights between layers are shown as black lines and negative weights as gray lines. 

Line thickness is proportional to the absolute magnitude of each weight (Figure 1).

A primary and skip layer network can also be plotted for ‘nnet’ models with a skip layer 

connection (Figure 2). Models with skip layers include additional connections from the input 

to output layers that bypass the hidden layer (Ripley 1996). The default behavior of plotnet 

is to plot the primary network, whereas the skip layer can be viewed separately with skip = 

TRUE. If nid = TRUE, the line widths for both the primary and skip layer plots are relative 

to all weights. Plotting a network with only a skip layer (i.e., no hidden layer, size = 0 in 

nnet) will include bias connections to the output layer, whereas these are included only in 

the primary plot if size is greater than zero.

The RSNNS package provides algorithms to prune connections or nodes in a neural network 

(Bergmeir and Benítez 2012). This approach can remove connection weights between layers 

or input nodes that do not contribute to the predictive performance of the network. In 

addition to visualizing connections in the network that are not important, connections that 

are pruned can be removed in successive model fitting. This reduces the number of free 

parameters (weights) that are estimated by the model optimization algorithm, increasing the 

Beck Page 5

J Stat Softw. Author manuscript; available in PMC 2019 January 01.

E
PA

 A
uthor M

anuscript
E

PA
 A

uthor M
anuscript

E
PA

 A
uthor M

anuscript



likelihood of convergence to an estimable numeric solution for the remaining connection 

weights that minimizes prediction error (i.e., model identifiability; Ellenius and Groth 2000). 

Algorithms in RSNNS for weight pruning include magnitude-based pruning, optimal brain 

damage, and optimal brain surgeon, whereas algorithms for node pruning include 

skeletonization and the non-contributing units method (Zell, Mamier, Vogt, Mache, Hübner, 

Döring, Herrmann, Soyez, Schmalzl, Sommer, Hatzigeorgiou, Posselt, Schreiner, Kett, 

Clemente, Wieland, and Gatter 1998). The plotnet function can plot a pruned neural 

network, with options to omit or display the pruned connections (Figure 3).

R> pruneFuncParams <- list(max_pr_error_increase = 10.0,

+ pr_accepted_error = 1.0, no_of_pr_retrain_cycles = 1000,

+ min_error_to_stop = 0.01, init_matrix_value = 1e-6,

+ input_pruning = TRUE, hidden_pruning = TRUE)

R> mod <- mlp(x, y, size = 5, pruneFunc = “OptimalBrainSurgeon”,

+ pruneFuncParams = pruneFuncParams)

R> plotnet(mod, rel_rsc = c(3, 8))

R> plotnet(mod, prune_col = “lightblue”, rel_rsc = c(3, 8))

Note that the pruned network obtained with RSNNS and thus this plot might vary depending 

on the platform used.

3.2. Evaluating variable importance

The primary benefit of visualizing a NID with plotnet is the ability to evaluate network 

architecture and the variation in connections between the layers. Although useful as a 

general tool, the NID can be difficult to interpret given the amount of weighted connections 

in most networks. Alternative methods to quantitatively describe a neural network 

deconstruct the model weights to determine variable importance, whereas similar 

information can only be qualitatively inferred from plotnet. Two algorithms for evaluating 

variable importance are available in NeuralNetTools: Garson’s algorithm for relative 

importance (Garson 1991; Goh 1995) and Olden’s connection weights algorithm (Olden, 

Joy, and Death 2004).

Garson’s algorithm was originally described by Garson (1991) and further modified by Goh 

(1995). The garson function is an implementation of the method described in the appendix 

of Goh (1995) that identifies the relative importance of each variable as an absolute 

magnitude. For each input node, all weights connecting an input through the hidden layer to 

the response variable are identified to return a list of all weights specific to each input 

variable. Summed products of the connections for each input node are then scaled relative to 

all other inputs. A value for each input node indicates relative importance as the absolute 

magnitude from zero to one. The method is limited in that the direction of the response 

cannot be determined and only neural networks with one hidden layer and one output node 

can be evaluated. The olden function is a more flexible approach to evaluate variable 

importance using the connection weights algorithm (Olden et al. 2004). This method 

calculates importance as the summed product of the raw input-hidden and hidden-output 

Beck Page 6

J Stat Softw. Author manuscript; available in PMC 2019 January 01.

E
PA

 A
uthor M

anuscript
E

PA
 A

uthor M
anuscript

E
PA

 A
uthor M

anuscript



connection weights between each input and output node. An advantage is the relative 

contributions of each connection weight are maintained in both magnitude and sign. For 

example, connection weights that change sign (e.g., positive to negative) between the input-

hidden to hidden-output layers would have a canceling effect, whereas garson may provide 

different results based on the absolute magnitude. An additional advantage is that the olden 

function can evaluate neural networks with multiple hidden layers and response variables. 

The importance values assigned to each variable are also in units based on the summed 

product of the connection weights, whereas garson returns importance scaled from 0 to 1.

Both functions have similar implementations and require only a model object as input. The 

default output is a ggplot2 bar plot (i.e., geom_bar; Wickham 2009) that shows the relative 

importance of each input variable in the model (Figure 4). The plot aesthetics are based on 

internal code that can be changed using conventional syntax for ggplot2 applied to the 

output object. The importance values can also be returned as a data.frame if bar_plot = 

FALSE. Variable importance shown in Figure 4 is estimated for each model using:

R> garson(mod1)

R> olden(mod1)

R> garson(mod2)

R> olden(mod2)

R> garson(mod3)

R> olden(mod3)

3.3. Sensitivity analysis

An alternative approach to evaluate variable relationships in a neural network is the Lek 

profile method (Lek et al. 1996; Gevrey, Dimopoulos, and Lek 2003). The profile method 

differs fundamentally from the variable importance algorithms by evaluating the behavior of 

response variables across different values of the input variables. The method is generic and 

can be extended to any statistical model in R with a predict method. However, it is one of 

few methods used to evaluate sensitivity in neural networks.

The lekprofile function evaluates the effects of input variables by returning a plot of model 

predictions across the range of values for each variable. The remaining explanatory variables 

are held constant when evaluating the effects of each input variable. The lekprofile function 

provides two options for setting constant values of unevaluated explanatory variables. The 

first option follows the original profile method by holding unevaluated variables at different 

quantiles (e.g., minimum, 20th percentile, maximum; Figures 5a and 6a). This is 

implemented by creating a matrix where the number of rows is the number of observations 

in the original dataset and the number of columns is the number of explanatory variables. All 

explanatory variables are held constant (e.g., at the median) while the variable of interest is 

sequenced from its minimum to maximum. This matrix is then used to predict values of the 

response variable from a fitted model object. This is repeated for each explanatory variable 

to obtain all response curves. Constant values are set in lekprofile by passing one or more 

values in the range 0–1 to the group_vals argument. The default holds variables at the 

Beck Page 7

J Stat Softw. Author manuscript; available in PMC 2019 January 01.

E
PA

 A
uthor M

anuscript
E

PA
 A

uthor M
anuscript

E
PA

 A
uthor M

anuscript



minimum, 20th, 40th, 60th, 80th, and maximum percentiles (i.e., group_vals = c(0, 0.2, 0.4, 

0.6, 0.8, 1)).

A second implementation of lekprofile is to group the unevaluated explanatory variables by 

natural groupings defined by the data. Covariance among predictors may present unlikely 

scenarios if all unevaluated variables are held at the same level (e.g., high values for one 

variable may be unlikely with high values for a second variable). The second option holds 

unevaluated variables at means defined by natural clusters in the data (Figures 5b and 6b). 

Clusters are identified using k-means clustering (kmeans from the base package stats; 

Hartigan and Wong 1979) of the input variables if the argument passed to group_vals is an 

integer greater than one. The centers (means) of the clusters are then used as constants for 

the unevaluated variables. Beck, Wilson, Vondracek, and Hatch (2014) provide an example 

of the clustering method for lekprofile by evaluating response of a lake health index to 

different explanatory variables. Lake clusters were identified given covariance among 

variables, such that holding explanatory variables at values defined by clusters created more 

interpretable response curves. Both methods return similar plots, with additional options to 

visualize the groupings for unevaluated explanatory variables (Figure 6). For the latter case, 

group_show = TRUE will return a stacked bar plot for each group with heights within each 

bar proportional to the constant values. Sensitivity profiles were created using the standard 

approach based on quantiles and using the alternative clustering method (Figure 5), 

including bar plots of the relative values for unevaluated explanatory variables (Figure 6).

R> lekprofile(mod3)

R> lekprofile(mod3, group_show = TRUE)

R> lekprofile(mod3, group_vals = 6)

R> lekprofile(mod3, group_vals = 6, group_show = TRUE)

4. Applied example

Although NeuralnetTools provides several methods to extract information from a fitted 

neural network, it does not provide explicit guidance for developing the initial model. A 

potentially more challenging aspect of using MLP neural networks is understanding the 

effects of network architecture on model performance, appropriate use of training and 

validation datasets, and implications for the bias-variance tradeoff with model over- or 

under-fitting (Maier and Dandy 2000). A detailed discussion of these issues is beyond the 

scope of this paper, although an example application is presented below to emphasize the 

importance of these considerations. The models presented above, including the neuraldat 

dataset, are contrived examples to illustrate use of the NeuralNetTools package and they do 

not demonstrate a comprehensive or practical application of model development. In general, 

the following should be considered during initial development (Ripley 1996; Lek and 

Guégan 2000; Maier and Dandy 2000):

• Initial data pre-processing to normalize inputs, standardize response, and assess 

influence of outliers.

Beck Page 8

J Stat Softw. Author manuscript; available in PMC 2019 January 01.

E
PA

 A
uthor M

anuscript
E

PA
 A

uthor M
anuscript

E
PA

 A
uthor M

anuscript



• Network architecture including number of hidden layers, number of nodes in 

each hidden layer, inclusion of bias or skip layers, and pruning weights or inputs.

• Separating data into training and test datasets, e.g., 2:1, 3:1, leave-one-out, etc.

• Initial starting weights for the backpropagation algorithm.

• Criteria for stopping model training, e.g., error convergence tolerance, maximum 

number of iterations, minimum error on test dataset, etc.

A dataset from nycflights13 (Wickham 2017) is used to demonstrate (1) the use of the 

functions in NeuralNetTools to gain additional insight into relationships among variables, 

and (2) the effects of training conditions on model conclusions. This dataset provides 

information on all flights departing New York City (i.e., JFK, LGA, or EWR) in 2013. The 

example uses all flights from the UA carrier in the month of December to identify variables 

that potentially influence arrival delays (arr_delay, minutes) at the destination airport. 

Factors potentially related to delays are selected from the dataset and include departure 

delay (dep_delay, minutes), departure time (dep_time, hours, minutes), arrival time 

(arr_time, hours, minutes), travel time between destinations (air_time, minutes), and 

distance flown (distance, miles). First, the appropriate month and airline carrier are selected, 

all explanatory variables are scaled and centered, and the response variable is scaled to 0–1.

R> library(“nycflights13”)

R> library(“dplyr”)

R> tomod <- filter(flights, month == 12 & carrier == “UA”) %>%

+ select(arr_delay, dep_delay, dep_time, arr_time, air_time,

+ distance) %>% mutate_each(funs(scale), -arr_delay) %>%

+ mutate_each(funs(as.numeric), -arr_delay) %>%

+ mutate(arr_delay = scales::rescale(arr_delay, to = c(0, 1))) %>%

+ data.frame

Then, a standard MLP with five hidden nodes was created with the nnet package to model 

the effects of selected variables on arrival delays. The entire dataset is used for the example 

but separate training and validation datasets should be used in practice.

R> library(“nnet”)

R> mod <- nnet(arr_delay ~., size = 5, linout = TRUE, data = tomod,

+ trace = FALSE)

The default output is limited to structural information about the model and methods for 

model predictions (see str(mod) and ?predict.nnet). Using functions from NeuralNetTools, a 

more comprehensive understanding of the relationships between the variables is illustrated.

R> plotnet(mod)

R> garson(mod)

Beck Page 9

J Stat Softw. Author manuscript; available in PMC 2019 January 01.

E
PA

 A
uthor M

anuscript
E

PA
 A

uthor M
anuscript

E
PA

 A
uthor M

anuscript



R> olden(mod)

R> lekprofile(mod, group_vals = 5)

R> lekprofile(mod, group_vals = 5, group_show = TRUE)

Figure 7 shows the information about arrival delays that can be obtained with the functions 

in NeuralNetTools. The NID (7a) shows the model structure and can be used as a general 

characterization of the relationships between variables. For example, most of the connection 

weights from input nodes I2 and I5 are strongly negative (gray), suggesting that departure 

time and distance traveled has an opposing relationship with arrival delays. Similarly, large 

positive weights are observed for I3 and I4, suggesting arrival time and time in the air are 

positively associated with arrival delays. However, interpreting individual connection 

weights between layers is challenging. Figures 7b and 7c provide more quantitative 

descriptions using information from both the NID and model predictions. Figure 7b shows 

variable importance using the garson and olden algorithms. The garson function suggests 

time between destinations (air_time) has the strongest relationship with arrival delays, 

similar to a strong positive association shown with the olden method. However, the garson 
function shows arrival time (arr_time) as the third most important variable for arrival delays, 

whereas this is ranked highest by the olden function. Similar discrepancies between the two 

methods are observed for other variables, which are explained below. Finally, results from 

the lekprofile function (Figure 7c) confirm those in Figure 7b, with the addition of non-

linear responses that vary by different groupings of the data. Values for each variable in the 

different unevaluated groups (based on clustering) show that there were no obvious patterns 

between groups, with the exception being group one that generally had longer times in the 

air and greater distance travelled.

A second analysis is needed to show the effects of network architecture and initial starting 

weights on uncertainty in estimates of variable importance. Models with one, five, or ten 

hidden nodes and 100 separate models for each node level are created. Each model has a 

random set of starting weights for the first training iteration. Importance estimates using 

olden are saved for each model and combined in a single plot to show overall variable 

importance as the median and 5th/95th percentiles from the 100 models for each node level.

Several conclusions from Figure 8 provide further information to interpret the trends in 

Figure 7. First, consistent relationships can be identified such that delays in arrival time are 

negatively related to distance and positively related to departure delays and air time. That is, 

flights arrived later than their scheduled time if flight time was long or if their departure was 

delayed, whereas flights arrived earlier than scheduled for longer distances. No conclusions 

can be made for the other variables because the bounds of uncertainty include zero. Second, 

the range of importance estimates varies between the models (i.e., one node varies between 

±1 and the others between ±3). This suggests that the relative importance estimates only 

have relevance within each model, whereas only the rankings (e.g., least, most important) 

can be compared between models. Third and most important, the level of uncertainty for 

specific variables can be large between model fits for the same architecture. This suggests 

that a single model can provide misleading information and therefore several models may be 

required to decrease uncertainty. Additional considerations described above (e.g., criteria for 

Beck Page 10

J Stat Softw. Author manuscript; available in PMC 2019 January 01.

E
PA

 A
uthor M

anuscript
E

PA
 A

uthor M
anuscript

E
PA

 A
uthor M

anuscript



stopping training, use of training and test datasets) can also affect the interpretation of model 

information and should be considered equally during model development.

5. Conclusions

The NeuralNetTools package provides a simple approach to improve the quality of 

information obtained from a feed-forward MLP neural network. Functions can be used to 

visualize a neural network using a neural interpretation diagram (plotnet), evaluate variable 

importance (garson, olden), and conduct a sensitivity analysis (lekprofile). Although 

visualizing a neural network with plotnet is impractical for large models, the remaining 

functions can simplify model complexity to identify important relationships between 

variables. Methods are available for the most frequently used CRAN packages that can 

create neural networks (caret, neuralnet, nnet, RSNNS), whereas additional methods could 

be added based on popularity of the remaining packages (AMORE, FCNN4R, monmlp, 

qrnn).

A primary objective of the package is to address the concern that supervised neural networks 

are “black boxes” that provide no information about underlying relationships between 

variables (Paruelo and Tomasel 1997; Olden and Jackson 2002). Although neural networks 

are considered relatively complex statistical models, the theoretical foundation has many 

parallels with simpler statistical techniques that provide for evaluation of variable 

importance (Cheng and Titterington 1994). Moreover, the model fitting process minimizes 

error using a standard objective function such that conventional techniques to evaluate model 

sensitivity or performance (e.g., cross-validation) can be used with neural networks. As 

such, functions in NeuralNetTools can facilitate the selection of the optimal network 

architecture or can be used for post-hoc assessment.

Another important issue is determining when and how to apply neural networks given 

availability of alternative methods of analysis. The popularity of the MLP neural network is 

partly to blame for the generalizations and misperceptions about their benefits as modeling 

tools (Burke and Ignizio 1997). Perhaps an overstatement, the neural component is 

commonly advertised as a mathematical representation of the network of synaptic impulses 

in the human brain. Additionally, several examples have shown that the MLP network may 

provide comparable predictive performance as similar statistical methods (Feng and Wang 

2002; Razi and Athappilly 2005; Beck et al. 2014). A neural network should be considered a 

tool in the larger toolbox of data-intensive methods that should be used after examination of 

the tradeoffs between techniques, with particular emphasis on the specific needs of a dataset 

or research question. Considerations for choosing a method may include power given the 

sample size, expected linear or non-linear interactions between variables, distributional 

forms of the response, and other relevant considerations of exploratory data analysis (Zuur et 
al. 2010). NeuralNetTools provides analysis tools that can inform evaluation and selection 

from among several alternative methods for exploratory data analysis.

Acknowledgments

I thank Bruce Vondracek, Sanford Weisberg, and Bruce Wilson of the University of Minnesota for general guidance 
during the development of this package. Thanks to Sehan Lee and Marc Weber for reviewing an earlier draft. 

Beck Page 11

J Stat Softw. Author manuscript; available in PMC 2019 January 01.

E
PA

 A
uthor M

anuscript
E

PA
 A

uthor M
anuscript

E
PA

 A
uthor M

anuscript



Contributions and suggestions from online users have also greatly improved the utility of the package. Funding for 
this project was supported in part by an Interdisciplinary Doctoral Fellowship provided by the Graduate School at 
the University of Minnesota to M. Beck.

References

Beck M (2018). NeuralNetTools: Visualization and Analysis Tools for Neural Networks. R package 
version 1.5.2, URL https://CRAN.R-project.org/package=NeuralNetTools.

Beck MW, Wilson BN, Vondracek B, Hatch LK (2014). “Application of Neural Networks to Quantify 
the Utility of Indices of Biotic Integrity for Biological Monitoring.” Ecological Indicators, 45, 195–
208. doi:10.1016/j.ecolind.2014.04.002.

Bell G, Hey T, Szalay A (2009). “Beyond the Data Deluge.” Science, 323(5919), 1297–1298. doi:
10.1126/science.1170411. [PubMed: 19265007] 

Bergmeir C, Benítez JM (2012). “Neural Networks in R Using the Stuttgart Neural Network 
Simulator: RSNNS.” Journal of Statistical Software, 46(7), 1–26. doi:10.18637/jss.v046.i07. 
[PubMed: 22837731] 

Bishop CM (1995). Neuronal Networks for Pattern Recognition. Carendon Press, Oxford.

Burke L, Ignizio JP (1997). “A Practical Overview of Neural Networks.” Journal of Intelligent 
Manufacturing, 8(3), 157–165. doi:10.1023/a:1018513006083.

Cannon AJ (2011). “Quantile Regression Neural Networks: Implementation in R and Application to 
Precipitation Downscaling.” Computers & Geosciences, 37(9), 1277–1284. doi: 10.1016/j.cageo.
2010.07.005.

Cannon AJ (2017). monmlp: Monotone Multi-Layer Perceptron Neural Network. R package version 
1.1.5, URL https://CRAN.R-project.org/package=monmlp.

Castejón Limas M, Ordieres Meré JB, González Marcos A, de Pisón Ascacibar FJM, Pernía Espinoza 
AV, Alba Elías F, Perez Ramos JM (2014). AMORE: A MORE Flexible Neural Network Package. 
R package version 0.2–15, URL https://CRAN.R-project.org/package=AMORE.

Cheng B, Titterington DM (1994). “Neural Networks: A Review from a Statistical Perspective.” 
Statistical Science, 9(1), 2–30. doi:10.1214/ss/1177010638.

Csardi G (2015). cranlogs: Download Logs from the RStudio CRAN Mirror. R package version 2.1.0, 
URL https://CRAN.R-project.org/package=cranlogs.

Ellenius J, Groth T (2000). “Methods for Selection of Adequate Neural Network Structures with 
Application to Early Assessment of Chest Pain Patients by Biochemical Monitoring.” International 
Journal of Medical Informatics, 57(2–3), 181–202. doi: 10.1016/s1386-5056(00)00065-4. 
[PubMed: 10961573] 

Feng CX, Wang X (2002). “Digitizing Uncertainty Modeling for Reverse Engineering Applications: 
Regression Versus Neural Networks.” Journal of Intelligent Manufacturing, 13(3), 189–199. doi:
10.1023/a:1015734805987.

Fritsch S, Guenther F (2016). neuralnet: Training of Neural Networks. R package version 1.33, URL 
https://CRAN.R-project.org/package=neuralnet.

Garson GD (1991). “Interpreting Neural Network Connection Weights.” Artificial Intelligence Expert, 
6(4), 46–51.

Gevrey M, Dimopoulos I, Lek S (2003). “Review and Comparison of Methods to Study the 
Contribution of Variables in Artificial Neural Network Models.” Ecological Modelling, 160(3), 
249–264. doi:10.1016/s0304-3800(02)00257-0.

Goh ATC (1995). “Back-Propagation Neural Networks for Modeling Complex Systems.” Artificial 
Intelligence in Engineering, 9(3), 143–151. doi:10.1016/0954-1810(94)00011-s.

Hartigan JA, Wong MA (1979). “Algorithm AS 136: A K-Means Clustering Algorithm. Journal of the 
Royal Statistical Society C, 28(1), 100–108. doi:10.2307/2346830.

Hornik K (1991). “Approximation Capabilities of Multilayer Feedforward Networks.” Neural 
Networks, 4(2), 251–257. doi:10.1016/0893-6080(91)90009-t.

Jain AK, Duin RPW, Mao JC (2000). “Statistical Pattern Recognition: A Review.” IEEE Transactions 
on Pattern Analysis and Machine Intelligence, 22(1), 4–37. doi:10.1109/34.824819.

Beck Page 12

J Stat Softw. Author manuscript; available in PMC 2019 January 01.

E
PA

 A
uthor M

anuscript
E

PA
 A

uthor M
anuscript

E
PA

 A
uthor M

anuscript

https://CRAN.R-project.org/package=NeuralNetTools
https://CRAN.R-project.org/package=monmlp
https://CRAN.R-project.org/package=AMORE
https://CRAN.R-project.org/package=cranlogs
https://CRAN.R-project.org/package=neuralnet


Kell DB, Oliver SG (2003). “Here Is the Evidence, Now What Is the Hypothesis? The Complementary 
Roles of Inductive and Hypothesis-Driven Science in the Post-Genomic Era.” BioEssays, 26(1), 
99–105. doi:10.1002/bies.10385.

Kelling S, Hochachka WM, Fink D, Riedewald M, Caruana R, Ballard G, Hooker G (2009). “Data-
Intensive Science: A New Paradigm for Biodiversity Studies.” BioScience, 59(7), 613–620. doi:
10.1525/bio.2009.59.7.12.

Klima G (2016). FCNN4R: Fast Compressed Neural Networks for R. R package version 0.6.2, URL 
https://CRAN.R-project.org/package=FCNN4R.

Kuhn M (2008). “Building Predictive Models in R Using the caret Package.” Journal of Statistical 
Software, 28(5), 1–26. doi:10.18637/jss.v028.i05. [PubMed: 27774042] 

Lek S, Delacoste M, Baran P, Dimopoulos I, Lauga J, Aulagnier S (1996). “Application of Neural 
Networks to Modelling Nonlinear Relationships in Ecology.” Ecological Modelling, 90(1), 39–52. 
doi:10.1016/0304-3800(95)00142-5.

Lek S, Guégan JF (2000). Artificial Neuronal Networks: Application to Ecology and Evolution. 
Springer-Verlag, Berlin. doi:10.1007/978-3-642-57030-8.

Maier HR, Dandy GC (2000). “Neural Networks for the Prediction and Forecasting of Water 
Resources Variables: A Review of Modelling Issues and Applications.” Environmental Modelling 
and Software, 15(1), 101–124. doi:10.1016/s1364-8152(99)00007-9.

McCulloch WS, Pitts W (1943). “A Logical Calculus of the Ideas Imminent in Nervous Activity.” 
Bulletin of Mathematical Biophysics, 5(4), 115–133. doi:10.1007/bf02478259.

Michener WK, Jones MB (2012). “Ecoinformatics: Supporting Ecology as a Data-Intensive Science.” 
Trends in Ecology and Evolution, 27(2), 85–93. doi:10.1016/j.tree.2011.11.016. [PubMed: 
22240191] 

Olden JD, Jackson DA (2002). “Illuminating the “Black Box”: A Randomization Approach for 
Understanding Variable Contributions in Artifical Neural Networks.” Ecological Modelling, 
154(1–2), 135–150. doi:10.1016/s0304-3800(02)00064-9.

Olden JD, Joy MK, Death RG (2004). “An Accurate Comparison of Methods for Quantifying Variable 
Importance in Artificial Neural Networks Using Simulated Data.” Ecological Modelling, 178(3–
4), 389–397. doi:10.1016/j.ecolmodel.2004.03.013.

Özesmi SL, Özesmi U (1999). “An Artificial Neural Network Approach to Spatial Habitat Modelling 
with Interspecific Interaction.” Ecological Modelling, 116(1), 15–31. doi:10.1016/
s0304-3800(98)00149-5.

Paruelo JM, Tomasel F (1997). “Prediction of Functional Characteristics of Ecosystems: A 
Comparison of Artificial Neural Networks and Regression Models.” Ecological Modelling, 98(2–
3), 173–186. doi:10.1016/s0304-3800(96)01913-8.

Razi MA, Athappilly K (2005). “A Comparative Predictive Analysis of Neural Networks (NNs), 
Nonlinear Regression and Classification and Regression Tree (CART) Models.” Expert Systems 
and Applications, 29(1), 65–74. doi:10.1016/j.eswa.2005.01.006.

R Core Team (2018). R: A Language and Environment for Statistical Computing. R Foundation for 
Statistical Computing, Vienna, Austria URL https://www.R-project.org/.

Recknagel F (2006). Ecological Informatics: Scope, Techniques and Applications. 2nd edition. 
Springer-Verlag, Berlin. doi:10.1007/3-540-28426-5.

Ripley BD (1996). Pattern Recognition and Neural Networks. Cambridge University Press, 
Cambridge.

Rumelhart DE, Hinton GE, Williams RJ (1986). “Learning Representations by BackPropagating 
Errors.” Nature, 323(6088), 533–536. doi:10.1038/323533a0.

Saeys Y, Inza I, Larrañaga P (2007). “A Review of Feature Selection Techniques in Bioinformatics.” 
Bioinformatics, 23(19), 2507–2517. doi:10.1093/bioinformatics/btm344. [PubMed: 17720704] 

Swanson A, Kosmala M, Lintott C, Simpson R, Smith A, Packer C (2015). “Snapshot Serengeti: High-
Frequency Annotated Camera Trap Images of 40 Mammalian Species in African Savanna.” 
Scientific Data, 2, 150026. doi:10.1038/sdata.2015.26. [PubMed: 26097743] 

Venables WN, Ripley BD (2002). Modern Applied Statistics with S. 4th edition. SpringerVerlag, New 
York URL http://www.stats.ox.ac.uk/pub/MASS4.

Beck Page 13

J Stat Softw. Author manuscript; available in PMC 2019 January 01.

E
PA

 A
uthor M

anuscript
E

PA
 A

uthor M
anuscript

E
PA

 A
uthor M

anuscript

https://CRAN.R-project.org/package=FCNN4R
https://www.R-project.org/
http://www.stats.ox.ac.uk/pub/MASS4


Wickham H (2009). ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag, New York URL 
http://ggplot2.org/.

Wickham H (2017). nycflights13: Data about Flights Departing NYC in 2013. R package version 
0.2.2, URL https://CRAN.R-project.org/package=nycflights13.

Zell A, Mamier G, Vogt M, Mache N, Hübner R, Döring S, Herrmann KU, Soyez T, Schmalzl M, 
Sommer T, Hatzigeorgiou A, Posselt D, Schreiner T, Kett B, Clemente G, Wieland J, Gatter J 
(1998). SNNS: Stuttgart Neural Network Simulator, User Manual, Version 4.2. University of 
Stuttgart and WSI, University of Tübingen, URL http://www.ra.cs.uni-tuebingen.de/SNNS/.

Zuur AF, Ieno EN, Elphick CS (2010). “A Protocol for Data Exploration to Avoid Common Statistical 
Problems.” Methods in Ecology and Evolution, 1(1), 3–14. doi:10.1111/j.2041-210x.
2009.00001.x.

Beck Page 14

J Stat Softw. Author manuscript; available in PMC 2019 January 01.

E
PA

 A
uthor M

anuscript
E

PA
 A

uthor M
anuscript

E
PA

 A
uthor M

anuscript

http://ggplot2.org/
https://CRAN.R-project.org/package=nycflights13
http://www.ra.cs.uni-tuebingen.de/SNNS/


Figure 1: 
Examples from the plotnet function showing neural networks as a standard graphic (1a) and 

using the neural interpretation diagram (1b). Labels outside of the nodes represent variable 

names and labels within the nodes indicate the layer and node (I: input, H: hidden, O: 

output, B: bias).

Beck Page 15

J Stat Softw. Author manuscript; available in PMC 2019 January 01.

E
PA

 A
uthor M

anuscript
E

PA
 A

uthor M
anuscript

E
PA

 A
uthor M

anuscript



Figure 2: 
Examples from the plotnet function showing a neural network with a separate skip layer 

between the input and output layers. The skip layer (2a) and primary neural network (2b) 

can be viewed separately with plotnet by using skip = TRUE or skip = FALSE.

Beck Page 16

J Stat Softw. Author manuscript; available in PMC 2019 January 01.

E
PA

 A
uthor M

anuscript
E

PA
 A

uthor M
anuscript

E
PA

 A
uthor M

anuscript



Figure 3: 
A pruned neural network from RSNNS (Bergmeir and Benítez 2012) using the “optimal 

brain surgeon” algorithm described in Zell et al. (1998). The default plotting behavior of 

plotnet is to omit pruned connections (3a), whereas they can be viewed as dashed lines by 

including the prune_col argument (3b).

Beck Page 17

J Stat Softw. Author manuscript; available in PMC 2019 January 01.

E
PA

 A
uthor M

anuscript
E

PA
 A

uthor M
anuscript

E
PA

 A
uthor M

anuscript



Figure 4: 
Variable importance for three models using Garson’s algorithm for relative importance 

(garson, Figures 4a, 4c and 4e; Garson 1991; Goh 1995) and Olden’s connection weights 

algorithm (olden, Figures 4b, 4d and 4f; Olden et al. 2004). Garson’s algorithm shows 

importance as absolute values from 0–1, whereas Olden’s algorithm preserves sign and 

magnitude. Importance values for Olden’s algorithm are from the summed product of model 

weights and are not rescaled.

Beck Page 18

J Stat Softw. Author manuscript; available in PMC 2019 January 01.

E
PA

 A
uthor M

anuscript
E

PA
 A

uthor M
anuscript

E
PA

 A
uthor M

anuscript



Figure 5: 
Sensitivity analysis of a neural network using the Lek profile method to evaluate the effects 

of explanatory variables. Figure 5a groups unevaluated explanatory variables at quantiles 

(minimum, 20th, 40th, 60th, 80th, and maximum percentiles) and Figure 5b groups by 

cluster means (six groups). Values at which explanatory variables are held constant for each 

group are shown in Figures 6a and 6b.

Beck Page 19

J Stat Softw. Author manuscript; available in PMC 2019 January 01.

E
PA

 A
uthor M

anuscript
E

PA
 A

uthor M
anuscript

E
PA

 A
uthor M

anuscript



Figure 6: 
Bar plots for values of unevaluated explanatory variables in each group in Figures 5a and 5b. 

Figure 6a shows default quantile groupings set at the minimum, 20th, 40th, 60th, 80th, and 

maximum percentiles. For example, variables are held at negative values for group 1 (i.e., 

stacked bars with negative heights) for the minimum value, whereas group 6 holds variables 

at their maximum (largest positive heights). Figure 6b shows the cluster centers for each 

variable in each group. Groups in Figure 6b are random because the input variables are from 

a standard normal distribution.

Beck Page 20

J Stat Softw. Author manuscript; available in PMC 2019 January 01.

E
PA

 A
uthor M

anuscript
E

PA
 A

uthor M
anuscript

E
PA

 A
uthor M

anuscript



Figure 7: 
Results from a simple MLP model of arrival delay for December airline flights versus 

departure delay (dep_delay), departure time (dep_time), arrival time (arr_time), travel time 

between destinations (air_time), and distance flown (distance). The three plots show the NID 

from plotnet (7a), variable importance with garson and olden (7b), and sensitivity analysis 

with variable groupings from lekprofile (7c). Interpretations are provided in the text.

Beck Page 21

J Stat Softw. Author manuscript; available in PMC 2019 January 01.

E
PA

 A
uthor M

anuscript
E

PA
 A

uthor M
anuscript

E
PA

 A
uthor M

anuscript



Figure 8: 
Uncertainty in variable importance estimates for three neural networks to evaluate factors 

related to arrival delays for flights departing New York City. Three model types with one, 

five, and ten nodes were evaluated with 100 models with different starting weights for each 

type.

Beck Page 22

J Stat Softw. Author manuscript; available in PMC 2019 January 01.

E
PA

 A
uthor M

anuscript
E

PA
 A

uthor M
anuscript

E
PA

 A
uthor M

anuscript


	Abstract
	Introduction
	Theoretical foundation and existing R packages
	Package structure
	Visualizing neural networks
	Evaluating variable importance
	Sensitivity analysis

	Applied example
	Conclusions
	References
	Figure 1:
	Figure 2:
	Figure 3:
	Figure 4:
	Figure 5:
	Figure 6:
	Figure 7:
	Figure 8:

