Table 1.
Estimate | SE | t Value | p Value | |
---|---|---|---|---|
Intercept | −3.1025 | 1.1786 | −2.632 | 0.01042* |
Railway | 0.8460 | 1.4784 | 0.572 | 0.5690 |
Road | 1.4523 | 0.6401 | 2.269 | 0.0264* |
Road and railroad | 2.2935 | 1.9720 | 1.163 | 0.2487 |
Road and trail | 2.0156 | 0.9591 | 2.102 | 0.0392* |
Trail | 1.8593 | 0.6730 | 2.763 | 0.0073** |
Trampling | 1.8765 | 1.3598 | 1.380 | 0.1719 |
B‐A‐H‐L | 1.2261 | 3.5420 | 0.346 | 0.7303 |
B‐A‐P‐A | 0.8342 | 16.5798 | 0.050 | 0.9600 |
High–Low | 1.2948 | 1.1976 | 1.081 | 0.2834 |
Near–Far | 1.5465 | 1.0801 | 1.432 | 0.1566 |
Presence–Absence | 2.9193 | 0.9915 | 2.944 | 0.0044** |
Adjusted R 2 | 0.3039 | F statistic | 4.215, df 11,70 | |
p Value | 8.66 × 10− 5 |
The model had the form Call: lm(formula = metanalysis$Z.transform ~metanalysis$path.type + metanalysis$comparison, weights = metanalysis$fixed.weight). Note that for the lm function, the order of the variables is not relevant.
p < 0.05.
p < 0.01.
p < 0.001.