Skip to main content
. 2018 Oct 16;8(22):11111–11121. doi: 10.1002/ece3.4578

Table 1.

Results of the linear regression for species richness

Estimate SE t Value p Value
Intercept −3.1025 1.1786 −2.632 0.01042*
Railway 0.8460 1.4784 0.572 0.5690
Road 1.4523 0.6401 2.269 0.0264*
Road and railroad 2.2935 1.9720 1.163 0.2487
Road and trail 2.0156 0.9591 2.102 0.0392*
Trail 1.8593 0.6730 2.763 0.0073**
Trampling 1.8765 1.3598 1.380 0.1719
B‐A‐H‐L 1.2261 3.5420 0.346 0.7303
B‐A‐P‐A 0.8342 16.5798 0.050 0.9600
High–Low 1.2948 1.1976 1.081 0.2834
Near–Far 1.5465 1.0801 1.432 0.1566
Presence–Absence 2.9193 0.9915 2.944 0.0044**
Adjusted R 2 0.3039 F statistic 4.215, df 11,70
p Value 8.66 × 10 5

The model had the form Call: lm(formula = metanalysis$Z.transform ~metanalysis$path.type + metanalysis$comparison, weights = metanalysis$fixed.weight). Note that for the lm function, the order of the variables is not relevant.

a

p < 0.05.

b

p < 0.01.

p < 0.001.