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Abstract

Despite major advances in the understanding and treatment of hepatitis C, a preventive vaccine 

remains elusive. The marked genetic diversity and multiple mechanisms of persistence of hepatitis 

C virus, combined with the relatively poor immune response of the infected host against the virus, 

are major barriers. The lack of robust and convenient model systems further hampers the effort to 

develop an effective vaccine. Advances in our understanding of virus- host interactions and 

protective immunity in hepatitis C virus infection provide an important roadmap to develop potent 

and broadly directed vaccine candidates targeting both humoral and cellular immune responses. 

Multiple approaches to generating and testing viral immunogens have met with variable success. 

Several candidates have advanced to clinical trials based on promising results in chimpanzees. The 

ultimate path to a successful preventive vaccine requires comprehensive evaluations of all aspects 

of protective immunity, innovative application of state- of-the-art vaccine technology and properly 

designed vaccine trials that can affirm definitive endpoints of efficacy.

Ever since the early 1970s, hepatitis C was recognized as a form of infectious hepatitis 

distinct from that caused by the already known hepatitis A and B viruses, but the virus’s 

identity remained elusive for many years. The much celebrated cloning and characterization 

of hepatitis C virus (HCV) in 1989 was the first triumphant chapter in the chronicle of 

hepatitis C1 and augured the rapid use of science and technology to advance the goals of 

understanding and treating this viral infection. Subsequent epidemiological and natural 

history studies firmly established the global impact and public health burden of HCV2. In 

the ensuing two decades, we made major strides in understanding the structures and 

functions of HCV gene products, the key steps of the viral life cycle, the interplays between 

the virus and host cells, and the complex host immune responses3,4. These advances led to a 

rapid progress in therapeutic development5,6—since the virus’s discovery, we have 

leapfrogged from interferon monotherapy, with a less than 10% response rate, to molecularly 

targeted direct antiviral agents that can achieve up to 70% of treatment response1,7. These 

areas of major advancement will be discussed by other accompanying reviews in this issue 

of Nature Medicine. Unfortunately, one area of research and development has not kept pace 

with the other accomplishments: prophylactic vaccines. It is ironic that the HCV vaccine has 

lagged behind the rest of the field, considering that vaccination to prevent infection is one of 
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the foundations of combating infectious diseases. This Review highlights and discusses the 

barriers and current progress in developing preventive vaccines for HCV.

Prevention strategies

Historically, vaccination to prevent infection has been the most effective medical strategy to 

control infections of major public health importance. The relatively low cost and high 

benefit of vaccines has made them a cornerstone of modern public health policy. In addition 

to the eradication of smallpox by vaccination several decades ago, the more recent success in 

reducing HBV infection and its complications by vaccination is a testament to the 

effectiveness of a successfully implemented universal vaccination program8. Although one 

might argue that HBV is much more infectious and prevalent than HCV, HCV infection has 

a higher chronicity and worse disease progression compared to HBV infection. In fact, in 

certain countries, such as Egypt, where HCV infection is endemic and decades of public 

health measures have failed to reduce the overall rate of HCV transmission9,10, an effective 

HCV vaccine would have an enormous impact on reducing the disease burden.

Recent advances in the treatment of hepatitis C raise the prospect that a preventive vaccine 

for HCV might not be necessary. This view, however, is shortsighted in light of the 

enormous public health burden and the current state of therapy for this infection. It is well 

known that the current optimal regimen, a triple combination of peginterferon, ribavirin and 

a direct-acting antiviral, has substantial side effects and is applicable to only a minority of 

HCV-infected persons7. Most HCV-infected individuals do not even know they are infected, 

and the disease tends to be insidious until it progresses to the late stage, whereupon patients 

seek medical attention11–13. The high price of therapy (~$50,000) even in wealthy countries 

such as the US and Western Europe makes the prospect of treating millions of people 

daunting. Therefore, it is unlikely that the current treatment paradigm and clinical practice 

will have much impact on the overall disease burden of HCV infection.

From a global perspective, not until the price of the therapy drops substantially, the regimen 

becomes considerably easier and the side effects are appreciably lessened can we 

realistically believe that treatment will make a dent on the worldwide burden of this 

infection. The recent application of antiviral drugs in preventing HIV infection has received 

much attention as an alternative means to prevent viral infection14. However, the success of 

these approaches hinges entirely on the provision of low-cost therapy to the masses and on a 

well-designed strategy to prevent sexual transmission15. These approaches are not possible 

with the current state of therapy for HCV.

Protective immunity

The fundamental tenet of preventive vaccination is to expose the host to a microbe-derived 

immunogen with the hypothesis that the induced immunity will protect the host from 

subsequent infection by the microbe. Much of the success in early vaccine development was 

based on empirical testing of candidate vaccines for effectiveness in preventing infection, 

but recent advances in biomedical sciences have allowed us to further understand the key 

components of protective immunity in vaccine-induced prevention. The comprehensive 
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elucidation of dendritic cell functions, B and T cell immune responses, innate immunity, 

antigen presentation and other fundamental immunologic concepts provide the necessary 

knowledge to systematically decipher how one vaccine works and why another one fails.

The efforts in HBV and HIV vaccine development highlight a contrasting case in point 

regarding the evolving strategies of vaccinology over the last 20 years. The HBV vaccine 

was successfully developed through the classical approach of generating a viral vaccine by 

purifying the virus from infected sources and inactivating it. The results of initial vaccine 

trials were impressive and led to the subsequent implementation of a worldwide HBV 

vaccination program8. In contrast, HIV vaccine development has had a difficult path and has 

stalled with several recent high-profile failures16,17. These challenges led many in the field 

back to the fundamental questions of what protective immunity is and how it can be induced 

by innovative technologies. These two examples are great lessons for the HCV vaccine field. 

The path to a successful HCV vaccine is fraught with challenges and barriers, similar to the 

path of the HIV vaccine. Use of recombinant envelope proteins, similar to the approach for 

HBV vaccine, was met with limited success. However, HCV, unlike HIV, can be cleared 

either naturally or therapeutically from infected per- sons. Therefore, it is imperative to 

define and understand protective immunity in HCV infection before embarking on wide 

clinical testing of putative vaccine candidates.

Protective immunity induced by vaccination results in an alteration of the natural course of 

infection leading to a more favorable clinical outcome (Fig. 1). Sterilizing protection, 

defined by the absence of serologic evidence of infection after exposure, may not be a 

realistic or attainable goal for viruses that cause chronic infection, such as HIV, HCV and 

herpes viruses. Therefore, the goal of an effective vaccine for HCV has shifted from 

sterilizing immunity to immunity that is capable of preventing chronic infection and disease. 

This type of protective immunity can lower the peak viremia and viral set point, with a 

higher likelihood of subsequent viral clearance (for HCV) or a milder disease (for HIV). 

Indeed, the word ‘sterilizing’ is probably a misnomer even for a classical protective vaccine 

such as that for HBV, as many vaccinated persons after exposure may experience subclinical 

infection that cannot be detected by standard serologic and virologic assays18.

Cell-mediated immunity.

Studies in chimpanzees and humans have shown that the majority of HCV infections result 

in chronicity despite the presence of an intact immune status2,19. This high rate of chronicity 

suggests that vaccine development for HCV will be potentially challenging. Evidence for 

protective immunity in HCV infection comes from studies of convalescent chimpanzees and 

humans who were re-exposed to HCV20–22. Although re-infection occurs commonly, it 

usually resolves more rapidly and persists less frequently as compared to primary infection 

in non-immune subjects. There does not seem to be a single correlate of protective 

immunity; how- ever, evidence suggests that a broadly directed CD4+ and CD8+ T cell 

response is linked to virologic control19. In particular, T cell responses that are sustained 

over time and are multifunctional, with interferon-γ (IFN- γ) and interleukin (IL-2) 

production (T helper type 1 (TH1) phenotype) and a high proliferative phenotype, are 

crucial3,19. Viral core and nonstructural gene products, such as NS3 and NS5, are often the 
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targets of protective T cell response3,23,24. Direct evidence for protective immunity mediated 

by CD4+ or CD8+ T cells was demonstrated in chimpanzees by antibody-mediated depletion 

of either T cell population. This depletion resulted in prolonged or persistent HCV 

infection25,26. Another argument in favor of the T cell response being important in protective 

immunity is the strong associations of certain HLA class I and II alleles with infection 

outcomes27.

Humoral immunity.

Although B cell immunity, as represented by neutralizing antibodies, may contribute to host 

defense against HCV, its role in viral clearance is less clear21,28–31. In particular, the 

envelope proteins of HCV are not very immunogenic, as evidenced by a slow and weak 

antibody response during primary infection32,33. The induced antibodies tend to be non-

neutralizing and often interfere with the effectiveness of broadly neutralizing antibodies in 

cell- based assays34. In addition, the antibodies commonly target the variable regions of the 

envelope proteins, which have a high mutational rate35,36. Furthermore, heavy glycosylation 

of the envelope proteins probably hinders the induction and action of neutralizing 

antibodies37. Finally HCV circulates in complex with host lipoproteins and plausibly 

exploits this mechanism to evade binding by neutralizing antibodies38. In this context, the 

preponderance of evidence suggests that T cell immunity has a major role in recovery from 

natural HCV infection and should be a primary target of vaccine-induced immunity3,39–42. 

Humoral immunity, however, may still play a part in viral clearance and should not be 

ignored in vaccine development21,28,30,31.

Innate immunity.

Natural killer (NK) and NKT cells probably contribute to the initial control of viral 

infection19,28, yet there is little evidence that innate immunity can be harnessed for vaccine-

induced immunity against subsequent viral infection. Interestingly, a recent study suggested 

the possible existence of immunologic memory of NK cells43, raising the prospect of 

targeting this arm of immune response in vaccine development.

Unexpectedly, a pivotal correlate of protective immunity came from the unrelated field of 

genome-wide association studies. Several single nucleotide polymorphisms (SNPs) in the 

IL28B (interferon- λ −3) locus were recently shown to be highly associated (~P < 10−30) 

with recovery from acute HCV infection or with treatment-induced viral clearance44–47. 

IFN-λ, like IFN-α, is part of intrinsic innate immunity, is rapidly induced in response to 

HCV infection48 and represents the first responder in host antiviral response. This 

observation points to a crucial role of innate immunity in the control of HCV infection. 

Although the functional significance of this genetic association remains to be elucidated, 

such knowledge in protective immunity can potentially be harnessed for a new vaccine 

approach. For example, if activation of IFN- λ is crucial for HCV control, a strategy can be 

devised to target its robust induction by a vaccine candidate.

Protective immunity in the chimpanzee model.

Many of the chimpanzee studies mentioned above, although elegantly conducted, have 

several caveats for vaccine development. Although chimpanzees are genetically close to 
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humans, they are divergent from humans in several gene clusters, some of which contain 

genes involved in immunologic responses to infection49. Therefore, it is not surprising that 

chimpanzees respond quite differently from humans to chronic viral infection in terms of 

pathology, disease progression and viral clearance, including in HIV, HBV and HCV 

infection50,51. In addition, chimpanzees used for experimental studies are bred in captivity 

and represent a relatively inbred population, whereas human populations are much more 

evolutionarily divergent and biologically diverse. Therefore, the results from the chimpanzee 

studies need to be interpreted with caution, especially those related to protective immunity51. 

Despite these limitations, the chimpanzee is the only animal model that is suitable for 

preclinical testing of HCV vaccines and will continue to be valuable for HCV vaccine 

development.

Biological barriers and solutions to HCV vaccine development

HCV genetic diversity.

HCV has a high genetic diversity and is classified into seven major genotypes, which differ 

by more than 30% sequence diversity. HCV circulates in infected individuals as multiple 

closely related but distinct viruses, referred to as a ‘quasispecies’ population, with sequence 

variations up to 10% (ref. 52). The viral polymerase’s lack of a proofreading capacity 

accounts for the high mutational rate of 10−5–10−4 nucleotides per replication cycle, which 

is an order of magnitude higher than that for HIV and HBV53. HCV has two envelope 

glycoproteins, gpE1 and gpE2, and gpE2 has a highly variable region, hypervariable 

region-1, which is under constant immunologic pressure because it is a main target of the 

host antibody response32,36. Other regions of the envelope proteins that are also targets of 

antibody response probably exist and can be subject to immunologic selection. In addition, 

cellular immunity targeting the envelope proteins can contribute to immunologic escape54.

HCV can rapidly mutate its envelope proteins to escape the neutralizing antibody response 

in humans, which accounts for the lack of an effective antibody response in HCV 

infection35,36,55. The coexistence of viremia and envelope-specific antibodies that are 

neutralizing for another viral species, but not the prevailing one, is often observed in HCV-

infected individuals55. Escape mutations in T cell epitopes have also been described in HCV-

infected persons54. The patterns and types of T cell escape mutations are often determined 

by the host genetic background, as T cell epitopes are recognized in the context of specific 

HLA molecules56. Interestingly, HLA-B27 confers a protective effect in HCV infection 

because of a genotype-specific conserved immunodominant CD8+ T cell epitope57.

The vastly mutable nature of HCV not only contributes to its high persistence rate but also 

makes vaccine design difficult. Nevertheless, there are regions of viral gene products that are 

highly conserved, such as regions on the core proteins NS3 and NS5B, probably because of 

the functional integrity of these regions52. Effective targeting of these regions could 

minimize the problem of genetic diversity, but the question remains as to how to target them. 

For T cell–based vaccines, these conserved sequences can be genetically engineered as part 

of a candidate vaccine because the T cell epitopes are presented to cell-mediated immunity 

as linear and discontinuous targets58.
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Targeting conserved B cell epitopes proves to be more difficult. First, the target would have 

to be in the envelope proteins because of the functionality of antibody-mediated immunity, 

but the virus can mutate the envelope proteins quickly to escape humoral immunity32,35,36. 

The difficulties in inducing broadly neutralizing antibodies, as discussed above, are major 

impediments to exploiting antibody responses for protective immunity. Furthermore, 

neutralizing anti- bodies may be targeting conformational epitopes with discontinuous 

sequences, and correctly designing antigens with this type of epitope may be difficult. HCV, 

like other viruses capable of causing chronic infection in humans, has evolved to be less 

visible to the repertoire of human immune responses59,60.

Despite these caveats, if we fully understand the structure and function of the viral envelope 

proteins in the context of virion structure, cell binding and entry mechanism, we can design 

antigens that mimic certain critically conserved domains on the virus and induce broadly 

active neutralizing antibodies with high potency. These potentially conserved structures can 

be either on the native virion surface or buried deep in the virus but become exposed during 

viral entry. Envelope-specific antibodies capable of neutralizing HCV infection at the post–

cell-binding stage have been described61. Such an approach is currently under way to target 

conserved structural intermediates of HIV during its entry and fusion process62, but this 

strategy is not possible for HCV now as the three-dimensional structures of the virus and 

envelope proteins remain unknown63.

The relatively weak immunogenicity of HCV envelope proteins, as discussed above, can be 

overcome with a highly immunogenic formulation that is designed to induce a strong B cell 

response and production of antibodies. Improvements in vaccine formulation and 

development of potent adjuvants can confer high immunogenicity to previously poor 

antigens64.

Regardless of the HCV vaccine design, the strategy to minimize escape mutations is to raise 

the genetic barrier for mutations by targeting multiple antigenic determinants. An 

immunogen that induces a broad and strong immunity against both B and T cell epitopes 

may be essential to avoid escape mutations and counter genetic diversity.

Mechanism of persistence.

As the host and HCV battle to control the outcome of the infection (Box 1), HCV is able to 

distort the activation of T cells, resulting in ineffective cell-mediated immunity19,65. HCV, 

through a yet-unknown mechanism, fails to properly activate the CD4+ T cell response and 

causes a rapid immune exhaustion phenotype of CD8+ T cells as the infection endures19,65. 

Once the infection progresses to the chronic phase, the host may no longer be capable of 

mounting an effective and vigorous immune response to eliminate the virus. Spontaneous 

viral clearance is rare in chronically infected individuals66. These immune evasion 

mechanisms may have important implications in vaccine development for HCV. An effective 

vaccine will need to prime the immune system in a sufficiently broad and highly reactive 

manner against the first sign of HCV infection before the virus has the chance to gain a 

foothold in the body and unleash its many immune escape mechanisms. In particular, rapid 

and accelerated activation of TH1 responses and neutralizing antibodies targeting 

conservative regions of the virus may be crucial in designing an HCV vaccine67,68.
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Model systems.

An important barrier that has plagued the field of HCV research even before the virus was 

identified is the lack of convenient experimental model systems, ranging from cell culture to 

animal models. Not until 2005 was there a robust cell culture system (HCVcc) to propagate 

the virus69. Before 2005, many surrogate model systems, such as HCV replicons, 

pseudoviruses (HCVpp), recombinant viral proteins and virus-like particles were developed 

to study various aspects of HCV biology70 and to test the neutralizing potential of antibodies 

induced by various candidate vaccines71,72. HCVpp or HCVcc containing the structural 

proteins of various HCV genotypes are available for testing of cross-genotype neutralizing 

activities of antibodies73. Primary human hepatocyte culture has also been established as a 

valuable tool to study HCV infection48,74. Although these in vitro systems are useful in 

examining the humoral response generated by HCV vaccine candidates, they have not been 

extended successfully to studying the T cell response.

The lack of animal models remains a major obstacle to HCV vaccine development51. The 

only acceptable infectious animal model is the chimpanzee. However, the high cost and 

scarce supply of chimpanzees limits the statistical power of studies, precluding definitive 

conclusions. Although HCV vaccine testing is considered acceptable in chimpanzees by the 

US Institute of Medicine report on the use of chimpanzees for biomedical research, the 

likely increasing scrutiny of chimpanzee research will further dampen research efforts in 

HCV vaccines75. Other primate species, such as macaques and rhesus monkeys, are not 

susceptible to HCV76. Chimeric mouse models, in which mice are engrafted with human 

hepatocytes, support robust HCV infection and replication and can be used to study HCV- 

neutralizing antibodies, virus-receptor interactions and therapeutic interventions51. However, 

owing to their underlying immunodeficiency, these mice cannot be used to study active 

adaptive immunity or determinants of chronicity. Efforts to improve this model and to 

potentially create transgenic mice susceptible to HCV infection are ongoing77,78. A few 

other small-animal models have been reported, but their usefulness and reproducibility 

remain unclear51.

Animal models, although useful in vaccine development, may not accurately reflect vaccine 

response and efficacy in humans. Therefore, a logical strategy for vaccine development may 

be to transition expediently into phase 1 studies for evaluation of immunogenicity followed 

by phase 2 studies of the best candidates.

Approaches to HCV vaccine development

Strategies for HCV vaccine development have ranged from the traditional approach of 

producing recombinant envelope proteins to complex engineering of viral vectors directing 

the expression of multiple viral antigens (Table 1). The rationale for these varied approaches 

has been driven by the changing prevailing belief of what constitutes protective immunity in 

HCV infection and how best to achieve it. The success of the HBV vaccine, based on 

induction of neutralizing antibodies by purified or recombinant HBV surface antigen, had an 

early impact on the first generation of HCV vaccine in the form of recombinant HCV 

envelope proteins68. Initial testing in chimpanzees showed protection from HCV infection 

in some of the animals68; however, humoral immunity, although present in HCV-infected 
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humans, has been questioned regarding its role in viral clearance and protective immunity. 

Despite this concern, the absence of a role for the antibody response in viral clearance 

during natural infection does not necessarily mean that antibody-associated protection 

should not be considered in vaccine-induced immunity. This logic extends to the possibility 

that HCV probably evolves to avoid or minimize humoral immunity for its survival. Thus, if 

this arm of immunity can be creatively activated for production of broadly neutralizing 

antibodies against conserved epitopes, as previously discussed, an Achilles’ heel of HCV 

may be exposed for vaccine-induced protective immunity. This paradigm is also being 

explored in HIV vaccine development, as the strategy of inducing T cell–mediated immunity 

fails to provide a clear answer62.

Candidate vaccines.

As the concept that T cell–mediated immunity is more crucial for protective immunity in 

HCV infection emerges, emphasis has shifted to the generation of T cell–based vaccines. 

This trend is further supported by the hypothesis that a vaccine against an insidious virus, 

such as HIV, HCV or herpes virus, needs to induce potent T cell immunity79. Viral vectors 

including adenovirus, vaccinia virus, modified vaccinia Ankara (MVA), fowl pox virus and 

other viruses, as well as novel yeast vectors, have been used to deliver various HCV 

structural and nonstructural antigens for induction of T cell–mediated immunity (Fig. 

2)67,80–83. Adenoviral vectors seem to be the most promising delivery vehicle because they 

can induce robust CD4+ and CD8+ T cell responses with a predominant TH1 phenotype. 

They also have a long track record in HIV vaccine development84. Viral proteins such as 

core, NS3 and NS5 are commonly used in vaccine design, as they are the prime targets of T 

cell–mediated immunity during natural infection3. The two envelope proteins, gpE1 and 

gpE2, are often included as well, in the hope of inducing both neutralizing antibodies and T 

cell response. DNA immunization, although not as potent in humans as originally conceived, 

has been shown to be more immunogenic with alter- native delivery methods85. It is being 

used mainly as a prime-boost regimen to enhance immunogenicity67,81,86. Peptide-based 

vaccines targeting specific T cell epitopes have been developed for HCV therapy, but the 

induced immunity is often weak and unlikely to be effective in either therapy or 

prevention87.

Regarding cell-mediated immunity, vaccination to prime CD4+ T cells may be a simpler and 

more direct path, given that CD4+ T helper cells are necessary for the induction of both 

antibodies and cytotoxic CD8+ T cells, the two crucial arms of effector immune responses in 

antiviral immunity. The HCV-specific CD4+ T cell response can be induced by expressing 

viral gene products enriched in CD4+ epitopes, such as NS3, using DNA, viral vectors or 

other recombinant DNA technologies. A broad CD4+ T cell response primed by a candidate 

vaccine could react promptly to HCV infection and activate both antibody and cytotoxic T 

cell responses to eliminate the virus before it has a chance to unleash its various evasion 

mechanisms. Genotype-specific constructs might be generated and combined as a 

multivalent vaccine to provide broad protection against infection with diverse HCV strains, 

and such a vaccine could be used in various geographic regions. Mutational escape of HCV 

is less of a concern for the CD4+ T cell response than for antibody or CD8+ T cell 
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responses88. Inclusion of multiple CD4+ T cell epitopes and sequences will also minimize 

the problem of mutational escape.

Generation of virus-like particles (VLPs) by expressing the structural proteins of HCV may 

be an alternative strategy to induce both the humoral and cellular arms of immune 

responses89. VLPs have been shown to cross-prime both major histocompatibility complex 

class I and II pathways because of the structural uniqueness of these particles90. Multivalent 

HCV-like particles can be generated to address the problem of high genetic diversity. VLP-

based vaccines have been developed successfully for other viral infections91,92. The HBV 

vaccine is actually a VLP vaccine because the recombinant HBV surface antigen, which is 

produced in either yeast or mammalian cells, self-assembles to form HBV-like structures and 

is a potent inducer of antibody and T cell responses93. The VLP is also a unique platform for 

delivering other antigens of interest and is being explored as an alternative technology for 

vaccine development94.

Adjuvants.

Strategy to enhance the immunogenicity of vaccine by adjuvant has been an important 

addition to vaccine development (Fig. 2). Chemical adjuvants based on lipid formulations 

seem to be more potent than the classical adjuvant alum95 and, when combined with specific 

antigens, can induce strong humoral immunity as well as T cell immune responses, 

including the CD8+ T cell response64. New biological adjuvants targeting specific 

immunologic pathways, such as Toll-like receptors (TLR7 and TLR9), are potent inducers of 

immune response96 and have been tested in clinical trials97. Lipid- based adjuvants may also 

activate TLRs. Additionally, cytokines that are potent activators of specific immune cells 

have been tested and have shown promise in animal models98. Adjuvants may be crucial for 

protein- or peptide-based vaccines because of the weaker immunogenicity of recombinant 

HCV proteins, although they may not be necessary for viral vector–based vaccines because 

of the vectors’ inherent potency (Table 1).

Current landscape of HCV vaccines

Chimpanzee studies.

The protective effects of several antibody- and T cell–based vaccines have been tested in 

chimpanzees (Table 1). Whereas some showed promise in preventing acute infection and 

chronicity, the number of chimpanzees per study was too small to make any definitive 

conclusions. A recent meta-analysis of the chimpanzee studies comparing various 

parameters among all the naive, vaccinated and re-challenged animals revealed that many of 

the vaccines, either antibody- or T cell–based, induced strong immune responses that 

seemed to rapidly control HCV replication; however, the levels of induced T cell response 

did not correlate with vaccine potency and effectiveness99. Interestingly, vaccines that 

contained HCV structural proteins were more effective than those containing nonstructural 

proteins, the inclusion of which might actually be detrimental in inducing protective immune 

response99. The antibody vaccine proved better in preventing persistence. These unexpected 

observations are tempered by the caveat of divergent experimental conditions and small 

sample sizes in this meta-analysis. In a few studies, sterilizing immunity was observed in 
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some vaccinated animals, but only against challenge with a homologous or closely related 

HCV strain68,99. Although cross-protection has been reported in convalescent chimpanzees 

re-exposed to HCV of another genotype20, it was not addressed in these studies. Whether 

broad protection induced by either antibody- or T cell–based vaccines is attain- able remains 

an unanswered question and an important challenge. Considering the genetic diversity of 

HCV, broadly targeting HCV vaccines are necessary.

Human trials.

Despite the uncertainty in what constitutes the best vaccine-induced protective immunity, 

two candidate HCV vaccines that showed promise in chimpanzee studies have advanced to 

clinical trials. One of the vaccine candidates contains recombinant envelope glycoproteins 

E1 and E2 of HCV-1 and is formulated with a potent adjuvant, MF59. In a phase 1 study of 

human volunteers (ClinicalTrials.gov NCT00500747), it induced strong antibody responses 

that neutralized in vitro infectivity by HCV-1 as well as a genotype 2 virus, although to a 

lesser extent72,100,101. Further development of this candidate vaccine is currently on hold. 

The other candidate is a T cell–based vaccine (ClinicalTrials.gov NCT01070407) based on 

two serologically distinct adenoviral vectors, one a rare human adenovirus, Ad6, and the 

other a chimpanzee adenovirus, Ad3Ch3 (refs. 67,102), both of which have low 

seroprevalence rates in the human population. HCV nonstructural genes spanning the NS3-

NS5B sequences were incorporated into the viral vectors. Both vaccines induced strong TH1 

cell responses that targeted multiple regions and that were sustained up to 1 year. 

Neutralizing antibodies and T cell responses against the adenovirus were also detected after 

the priming and probably limited the boosting effect of a second immunization. To overcome 

this problem, a different viral vector, MVA, is currently being tested in a prime-boost 

regimen with the AdCh3 vector (ClinicalTrials.gov NCT01436357) in a phase 1/2 study to 

assess the safety, efficacy and immunogenicity of the AdCh3-MVA regimen as a 

prophylactic vaccine in about 300 intravenous drug users.

Clinical trial design and implementation

The success of developing a preventive HCV vaccine rests not only on identifying the 

optimal immunization regimen but also on devising the best strategy to test vaccine efficacy 

in clinical trials (Fig. 3). Much of the current work on HCV vaccines has been done with 

HCV genotype 1, but a large proportion of HCV-infected people in the world are infected 

with other genotypes. Without knowing enough about the cross-reactive protective immunity 

induced by a vaccine of one genotype, it will be difficult to select the best candidate. 

Designing a preventive HCV vaccine trial is also a challenge. In a general population with a 

HCV prevalence of 1–2%, as is the case in the US and other Western countries, a trial would 

have to enroll an enormous number (>100,000 people) of subjects to show efficacy. An 

alternative trial design would be to target a high-risk population with a high exposure rate, 

such as intravenous drug users, sex workers, health- care workers and public servants, or 

people with sexual contacts with HCV-infected persons. A high-endemic area, such as 

Egypt, would be an appropriate place to conduct a vaccine trial9; unfortunately, the most 

prevalent HCV genotype there is specific for this region (genotype 4 in Egypt), and the study 

result may not be applicable to other countries. In addition, developing countries such as 
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Egypt often lack infrastructural support and may have intrinsic ethical and regulatory 

concerns.

Several factors for specific populations are crucial in designing a vaccine trial103, such as 

HCV prevalence, exposure frequency (how often the subjects are exposed), infectivity (the 

risk of infection with each exposure) and chronicity (the percentage of infected individuals 

that progresses to persistent infection). Determination of a sample size would also depend on 

the acceptable vaccine efficacy, which should be at least 50% reduction of infection rate. 

Depending on the value assigned to each of the above parameters, Strictland et al.103 

calculated that about 500–10,000 people are needed for a vaccine trial in a high-risk 

population. This number is not insurmountable but certainly poses a challenge for testing a 

large number of candidate vaccines. Therefore, selection of a candidate vaccine for clinical 

trial will require considerable prudence.

A realistic goal for vaccine efficacy should be prevention of chronic infection. Thus, 

chronicity as an endpoint needs to be clearly defined. Chronic HCV infection cannot be 

simply defined according to the classical definition of chronic HBV infection: persistence of 

active viral replication for more than 6 months. During acute HCV infection, the viremic 

level can fluctuate markedly from nondetectability to a high level (>106 IU ml−1)104, and 

viral clearance may not occur until 1 year later, indicating that a longer trial duration—at 

least 2 years—is necessary. More frequent blood sampling of the study cohort are required 

to capture those with transient viremia without antibody seroconversion, which has been 

reported105. In the same vein, correlates of protective immunity need to be clearly 

determined and monitored in any clinical trials of prophylactic HCV vaccines. Surrogate 

immune markers have to be developed for efficacy evaluation and validation in enrolled 

subjects. Standardization of methodology should be applied to all trials. Extensive 

immunological studies of both humoral and cellular immune response will be crucial to 

advance the development of effective vaccines.

Another issue relates to the ethic of withholding therapy, which has a high success rate in 

acute HCV infection (up to 90% with interferon- based therapy). The commonly accepted 

practice is to treat acutely infected individuals after a close follow-up of 6–9 months106. 

Thus, a vaccine trial design will have to address this issue and may need to include a larger 

number of subjects. Finally, how vaccination strategy should be implemented once an 

effective vaccine becomes available is a complicated issue that will require open discussions 

among public health officers, clinicians, researchers and patient groups, and it will also 

depend on the country where the vaccine will be deployed. Careful cost-benefit analyses107 

need to be scrutinized extensively before public policies can be issued. Targeting high-risk 

groups as discussed above will probably have the most impact, but universal vaccination 

may be appropriate in countries with a high HCV prevalence. Implementation of a mass 

vaccination program in developing countries will be a major challenge, as it continues to be 

for HBV.
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Conclusions

Although the burden of hepatitis C might be slowly conquered by steadily improving 

therapies, the endgame would not be complete without the successful development and 

implementation of an effective preventive vaccine. To achieve such a goal, the intricate 

interplays and mechanisms of action between the virus and host at the molecular, cellular 

and immunologic levels early during infection need to be elucidated. What triggers or 

prevents a successful immune response, leading to viral clearance or persistence, 

respectively, holds the key to designing a successful vaccine with induced immunity that is 

broadly targeted, cross-protective and long lasting. Robust animal models are urgently 

needed. Advances in vaccinology will provide a technology platform upon which effective 

preventive HCV vaccines can be built. Currently, adenovirus-based vector vaccines seem to 

be the most potent vaccines capable of inducing a broad, robust, lasting and multifunctional 

immune response that mimics natural protective immunity. Accumulating knowledge in 

developing preventive vaccines can also be translated to potentially new therapies based on 

immunologic strategies. Finally, funding and commitment on the part of public and private 

sectors are sorely needed to galvanize this effort. Technology and scientific innovation will 

not be the limiting factors. It will require the collective will and wisdom of the scientific 

community, together with public health agencies and pharmaceutical industry, to bring this 

once daunting medical challenge to a proper ending.
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Box 1 Mechanisms of HCV persistence

Unlike HBV and HIV, HCV is not capable of persisting in infected cells as a dormant 

integrated form. Its infection persists despite a functional immune response (see 

accompanying Perspective by Gale et al.114). For this reason, HCV has to evolve multiple 

mechanisms to evade and counteract host immune response. In addition to passively 

mutating its genome in response to immune pressure, HCV commands several active 

strategies to achieve a high rate of chronic infection. At the virus level, it can hide from 

the antibody response and pass from cell to cell without being exposed to the circulating 

antibodies by complexing with lipoproteins115. At the cellular level, the virus can block 

intrinsic innate immunity by inhibiting interferon induction and action (see 

accompanying Perspective by Gale et al.114). The gpE2 envelope protein has been shown 

to attenuate NK, T and B cell activties by interacting with CD81 on these cells116–118. 

HCV can also exert an anti-apoptotic effect on infected cells to sustain viral replication 

and evade killing by the activated CD8+ T cell response119–121. HCV has been shown 

to interfere with antigen presentation of dendritic cells and antiviral functions of NK and 

NKT cells, although this effect remains controversial65.
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Figure 1. 
Natural course of HCV infection and types of protective immunity. Top, the course of acute 

HCV infection and the induced adaptive immune responses to control HCV infection. 

During the acute phase of HCV infection, replication of the virus is unchecked and attains 

high-level viremia within a short period of time. Liver enzymes, such as alanine cell 

aminotransferase (ALT), become elevated. As the host immune response is activated, either 

viral clearance occurs or viral level drops and persists at a lower level as the viral set point 

during the chronic phase, which can be associated with elevated ALT. The classical vaccine 
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strategy of inducing sterilizing immunity is to prevent acute infection and has been highly 

effective in viral infections that cause acute and severe disease. The mechanism of sterilizing 

protection mediated by vaccine-transient viremia after exposure to HCV that is below the 

limit of detection (middle)108.In contrast, cell-mediated immunity is crucial for viral 

clearance in the case of recovery or control of viral replication during the chronic phase of 

infection (bottom)79. Anti-HCV Ab, HCV-specific antibody.
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Figure 2. 
Targets and mechanisms of vaccine-induced immunity in prevention of HCV infection. 

Various vaccine candidates targeting different aspects of host immune responses are 

illustrated. Protein-based vaccine targets B cell immunity and, if produced either in unique 

form or with potent adjuvant, can cross-prime to the T cell pathway. Viral vectors or DNA 

plasmids induce predominantly T cell responses. They can also prime B cell immunity if the 

expressed antigens include HCV envelope proteins. VLPs can also target both B and T cell 

immune responses. B cell immunity, via neutralizing antibodies, can either neutralize 

circulating virus—usually in complex with lipoprotein—or virus at the entry step.T cell–

mediated immunity can either directly eliminate viral-infected cells via cytocidal 

mechanisms or produce antiviral cytokines such as IFN-γ. IFN-α and IFN-λ can be 

produced by activated dendritic or other immune cells to inhibit viral replication. Innate 

immune cells, such as NK or NKT cells, may also be activated by vaccine to produce 

Liang Page 21

Nat Med. Author manuscript; available in PMC 2018 November 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



antiviral cytokines or exert direct cytotoxic effector function. MHC, major 

histocompatibility complex; TCR, T cell receptor.
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Figure 3. 
Diagram of steps for vaccine trial design and important parameters to monitor during study. 

PBMCs, peripheral blood mononuclear cells.
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Table 1

Prophylactic HCV vaccine studies in chimpanzees and humans

Vaccine Targeted immunity Animal testing Clinical trial Ref.

Recombinant
protein

gpE1 and gpE2
Adjuvant: MF59 and MF75

Humoral immunity Immunogenic in small 
animals;
protects chimpanzees 
from acute or
chronic infection

Phase 1a; 
neutralizing
antibodies and 
CD4+

T cell responses

68,100,101

Core
Adjuvant: Iscomatrix

Cell-mediated immunity Immunogenic in small 
animals and
rhesus macaques

Phase 1a; CD4+ 

and
CD8+ T cell 
responses

109,110

gpE1
Adjuvant: alum

Humoral immunity Immunogenic in small 
animals;
protects chimpanzees 
from acute or
chronic infection

Phase 1a; 
antibodies and
CD4+ T cell 
responses;
no longer in 
development

111

Core, NS3, NS4 and NS5
Adjuvant: Iscomatrix

Cell-mediated immunity Immunogenic in small 
animals; no
protection from acute or 
chronic
infection

None 101

HCV-like particles 
containing
core, gpE1 and gpE2
Adjuvant: AS01B

Humoral and cell-mediated
immunity

Immunogenic in small 
animals;
protects chimpanzees 
from chronic
infection

None 89

DNA and viral
vector

DNA prime and adeno 
expressing
core and NS3–NS5

Cell-mediated immunity Immunogenic in small 
animals;
protects chimpanzees 
from chronic
infection

Phase 1/2 (NS3–
NS5);
CD4+ and CD8+ T 
cell
responses

67,102

DNA prime and adeno 
virus
expressing core, E1, E2 and 
NS3–
NS5 Adjuvant: IL-12 
plasmid

Humoral and cell-mediated
immunity

Immunogenic in small 
animals;
protected chimpanzees 
from chronic
infection

None 86

DNA prime and MVA 
expressing
core, E1, E2 and NS3, or
NS3–NS5

Humoral and cell-mediated
immunity

Immunogenic in small 
animals;
reduced peak viremia 
but did not
protect chimpanzees 
from chronic
infection

Phase 1/2 as 
therapeutic
vaccine; CD4+ 

and CD8+

T cell response

81,83

VV expressing core, E1, 
E2, p7,
NS2 and NS3

Humoral and cell-mediated
immunity

Immunogenic in small 
animals;
protected chimpanzees 
from chronic
infection

None 80

DNA expressing E2 Humoral and cell-mediated
immunity

Immunogenic in small 
animals;
protected chimpanzees 
from chronic
infection

None 112

DNA/recombinant
protein

DNA prime and protein 
boost
(core, E1, E2 and NS3)
Adjuvant: alum

Humoral and cell-mediated
immunity

Immunogenic in small 
animals;
protected chimpanzees 
from chronic
infection

None 113

Only chimpanzee studies with two or more chimpanzees are listed.
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