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Abstract

The pulmonary endothelial cell forms a critical semi-permeable barrier between the vascular and 

interstitial space. As part of the blood-gas barrier in the lung, the endothelium plays a key role in 

normal physiologic function and pathologic disease. Changes in endothelial cell shape, defined by 

its plasma membrane, determine barrier integrity. A number of key cytoskeletal regulatory and 

effector proteins including non-muscle myosin light chain kinase, cortactin, and Arp 2/3 mediate 

actin rearrangements to form cortical and membrane associated structures in response to barrier 

enhancing stimuli. These actin formations support and interact with junctional complexes and 

exert forces to protrude the lipid membrane to and close gaps between individual cells. The current 

knowledge of these cytoskeletal processes and regulatory proteins are the subject of this review. In 

addition, we explore novel advancements in cellular imaging that are poised to shed light on the 

complex nature of pulmonary endothelial permeability.
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THE PULMONARY ENDOTHELIAL CELL MEMBRANE AND PHYSIOLOGY

The pulmonary blood-gas barrier is unique among all other microvascular beds in vertebrate 

animals including humans (West 1985, West 2013). Efficient gas exchange by simple 

diffusion demands exceptional thinness and vast surface area while maintaining separation 

of the vascular and airspace compartments. The architectural components of this barrier are 

remarkably conserved through evolution with a three layer design strategy composed of an 

epithelium and endothelium separated by extracellular matrix (Maina and West 2005). 

Despite a thickness of only ~0.3 μm (Low 1953), the blood-gas barrier is very strong and 

resistant to the increases in pulmonary capillary pressure necessary to accommodate 

increased cardiac output during strenuous exercise (West and Mathieu-Costello 1992). 

Eventually, disruptions in the pulmonary capillaries due to biomechanical forces were 
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discovered during extreme physiologic conditions in normal lungs and as manifestations of 

cardiopulmonary diseases (West 1985). Lung and systemic vascular inflammation also 

disrupt the pulmonary blood-gas barrier with dysfunction in both the epithelial and 

endothelial cell layers contributing to a loss of functional integrity (Bhattacharya and 

Matthay 2013). A clinical consequence of these pathologic events is the Acute Respiratory 

Distress Syndrome (ARDS), when flooding of the alveolar airspaces with protein-rich 

edema fluid impairs gas exchange and causes life-threatening hypoxemia and end-organ 

failure (Fanelli and Ranieri 2015). Decades of research into the mechanisms underlying 

ARDS development have improved our understanding of this devastating syndrome. 

However, it remains a common and highly morbid condition in the intensive care unit 

(Bellani, Laffey et al. 2016).

The pulmonary endothelial cell (EC) forms a critical structural and biologically active 

component of the separation between vascular and alveolar spaces (Suresh and Shimoda 

2016). Forming the vascular lumen itself, the endothelium is the first to experience and react 

to biomechanical forces in the form of pressure and shear stress (Fisher, Chien et al. 2001, 

Chatterjee, Nieman et al. 2014). During infection and systemic inflammation, the pulmonary 

EC is directly exposed to pathogens, endogenous signaling molecules and leukocytes present 

in the circulation (Goldenberg and Kuebler 2015). The EC also transduces mechanical 

forces from respiration or mechanical ventilation through connections to the basement 

membrane and extracellular matrix at focal adhesions (Infusino and Jacobson 2012, Zebda, 

Dubrovskyi et al. 2012). Finally, a functional pulmonary endothelial cell is essential to 

prevent the leakage of fluid and protein into the interstitial and alveolar spaces (Dudek and 

Garcia 2001). The cell membrane of the pulmonary endothelium is a nexus for these critical 

processes. It senses physical changes in the vascular lumen (Chatterjee and Fisher 2014, 

Tarbell, Simon et al. 2014, Chatterjee, Fujiwara et al. 2015), houses a multitude of receptors 

(Cioffi, Lowe et al. 2009, Mohan Rao, Esmon et al. 2014, Xiao, Liu et al. 2014), forms 

structures critical to cell signaling (Minshall, Sessa et al. 2003, Mineo and Shaul 2006, 

McVey, Tabuchi et al. 2012), and serves as substrate to generate important lipid signaling 

molecules (Anjum, Joshi et al. 2012, Zhang, Mao et al. 2012, Abbasi and Garcia 2013) 

(Figure 1A and B). Research over the last several years provides strong evidence that EC 

membranes are the structural basis and physical explanation for vascular barrier integrity 

(Lee, Ozaki et al. 2006, Ochoa and Stevens 2012, Breslin, Zhang et al. 2015, Choi, Camp et 

al. 2015, Belvitch, Brown et al. 2017); however, the endothelium cannot form an 

impenetrable wall. Tissues require the passage of oxygen, electrolytes, and nutrients, 

delivered by the circulation in exchange for carbon dioxide and other metabolic byproducts. 

The endothelium must carefully balance the opposing characteristics of permeability and 

barrier function. Importantly, endothelial barrier function is not constant throughout the 

pulmonary vasculature with the microvascular EC in capillaries demonstrating significantly 

reduced hydraulic conductance (Parker, Stevens et al. 2006) and increased transendothelial 

electrical resistance (TER) (Mehta and Malik 2006) compared to EC from conduit vessels. 

Fluid and solute can traverse the EC monolayer via the transcellular or paracellular pathway 

(Komarova and Malik 2010). Endothelial transcytosis plays an important role in the 

obligatory exchange of molecules between the interstitial and vascular spaces but may also 

contribute to pathologic disease (Predescu, Predescu et al. 2007). The paracellular route with 
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associated loss of junctional integrity is considered the most critical during pathologic 

vascular leak observed during ARDS (Dudek and Garcia 2001, Stevens, Rosenberg et al. 

2001, Ochoa and Stevens 2012, Kottke and Walters 2016). The cytoskeletal regulation of 

these essential changes in cell shape and membrane dynamics are the focus of this review.

ACTIN STRUCTURE AND FORCE GENERATION

The cytoskeleton consists of microtubules, intermediate filaments, and actin filaments and 

provides structure and strength to the EC membrane (Dudek and Garcia 2001, Ingber 2002, 

Revenu, Athman et al. 2004). Actin is a multi-functional protein found ubiquitously in 

eukaryotic cells. Vertebrates express three main isoforms: alpha-actin in skeletal, cardiac and 

smooth muscle cells, and beta- and gamma-actin in non-muscle cells (Dominguez and 

Holmes 2011). In particular, actin composes approximately 10% of total cellular protein in 

endothelial cells (Patterson and Lum 2001).

In physiological buffer conditions, monomeric globular G-actin binds ATP and can 

polymerize spontaneously in an alternating helical fashion to form double-stranded filaments 

or F-actin in the presence of stabilizing cations, in vitro with calcium and in vivo with 

magnesium (Stossel, Chaponnier et al. 1985, Prasain and Stevens 2009, Pollard 2016). 

Polymerization begins tenuously and slowly with the relatively unstable nucleation of 

dimers and trimers and the addition of a fourth subunit stabilizes the oligomer, upon which 

elongation commences (Stossel, Chaponnier et al. 1985, Pollard 2016). Elongation 

progresses at both ends of the nascent filament, albeit at faster rates on the barbed end than 

the pointed end (for kinetic details, please see Pollard, 2016). ATP hydrolysis occurs 

randomly on filamentous Mg-ATP-actin subunits and the intermediate Mg-ADP-Pi-actin 

exists for approximately six minutes (Pollard 2016). In this state, polymerization still 

progresses as nearly as rapidly as with Mg-ATP-actin. After release of the hydrolyzed 

phosphate, ADP-actin subunits dissociate from both ends of the filament (Lee and Gotlieb 

2002, Lambrechts, Van Troys et al. 2004, Pollard 2016). These kinetics leave filamentous 

actin (F-actin) in a constant state of polymerization and depolymerization called 

treadmilling, a process that generates motility at the leading edge of the EC. Numerous, 

attendant actin-binding proteins associate with both monomers and actin filaments (Pollard 

2016) and functionally regulate nucleation, polymerization, as well as filament capping, 

severing, and crosslinking (Stossel, Chaponnier et al. 1985, Pollard, Blanchoin et al. 2000, 

Pollard 2016). The delicate control of actin polymerization and its resulting structural 

formations build EC membrane architecture and barrier integrity (Prasain and Stevens 2009).

The three structural determinants of EC barrier integrity include (1) actin stress fibers, (2) 

the submembranous cytoskeleton, and (3) the cortical actin ring. Transcellular stress fibers 

and the membrane cytoskeleton, a 100-nm layer adjacent to the plasma membrane, are 

composed of short F-actin filaments (Brenner and Korn 1979, Brenner and Korn 1980, De 

Matteis and Morrow 2000, Rottner and Kage 2017), while, in contrast, the cortical actin ring 

consists of longer filaments bundled into thick cables (Heimann, Percival et al. 1999, De 

Matteis and Morrow 2000). The membrane cytoskeleton and cortical ring are distinct but 

cross-talk extensively via formation of large macromolecular complexes (Weed and Parsons 

2001, Muller, Portwich et al. 2005, Brown, Adyshev et al. 2010, Wang, Bleher et al. 2015). 
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This peripheral actin network plays important roles in cell-cell adhesion and cell-matrix 

tethering to construct membrane shape, cortex architecture, and ultimately EC barrier 

function (Dudek and Garcia 2001, Comerford, Lawrence et al. 2002, Muller, Portwich et al. 

2005, Oldenburg and de Rooij 2014).

While the actin cytoskeleton generates piconewton forces at the barbed end of actin 

filaments from the free energy released by subunit association alone (Kovar and Pollard 

2004), the chief mechanism for cytoskeletal force generation is the association of actin with 

myosin. The ATP-dependent ratcheting of myosin heads against actin filaments produces the 

“powerstroke” necessary to generate contractile tension. Activation of myosin requires 

diphosphorylation of Thr18 and Ser19 on its regulatory myosin light chain by non-muscle 

myosin light chain kinase (nmMLCK), a Ca2+/calmodulin-dependent kinase (Dudek and 

Garcia 2001, Shen, Rigor et al. 2010). Classically, the development of transcellular tension 

by stress fiber formation and contraction results in cell rounding and barrier disruption 

(Garcia, Verin et al. 1996, Bogatcheva, Garcia et al. 2002), but a growing body of literature 

purports that these same tensile forces, combined with differential membrane anchoring and 

precise directional control, also create membrane extensions, protrusions, and other complex 

compartmentalized structures (Carvalho, Tsai et al. 2013, Kapus and Janmey 2013, Rao and 

Mayor 2014, Arumugam and Bassereau 2015).

ENDOTHELIAL CELL MEMBRANE MORPHOLOGY AND BARRIER 

FUNCTION

In the 1960s, Manjo and Palade performed electron microscopy of rat vasculature after 

exposure to inflammatory mediators and discovered openings between individual endothelial 

cells at the sites of interendothelial junctions (Majno and Palade 1961). This study provided 

early evidence of the endothelial cell and EC membrane structure as the determinant 

physical barrier that maintains vascular integrity. Furthermore, these images highlighted the 

breakdown of this barrier as a primary pathologic mechanism resulting in inflammatory 

edema. The notion that cell shape and endothelial cell gap formation build functional barrier 

integrity was further explored by several investigators over the ensuing decades, which 

elucidated a more complete understanding of the cell membrane in vascular leak (Brett, 

Gerlach et al. 1989, Malik, Lynch et al. 1989, Meyrick, Hoover et al. 1989, Goldblum, Ding 

et al. 1994, Garcia and Schaphorst 1995). The intricate cellular mechanisms responsible for 

EC shape and movement of the lipid membrane remain an important topic of active 

investigation (Mehta, Ravindran et al. 2014, Kasa, Csortos et al. 2015).

By itself the outer EC lipid membrane exhibits complex biochemistry and changes its 

composition and physical properties in response to the local environment while relying on 

an underlying protein scaffolding and specific structural domains to define the cell boundary 

and connections to neighboring cells (Yamamoto and Ando 2015, Ayee and Levitan 2016, 

Zhang, Naik et al. 2018). Submembranous cytoskeletal dynamics with consequent force 

generation physically move the plasmalemma toward potential connection points which 

ultimately construct the EC barrier (Baldwin and Thurston 2001, Dudek and Garcia 2001, 

Birukova, Arce et al. 2009, Wang, Bleher et al. 2015). Quiescent endothelial cells in a 

Belvitch et al. Page 4

Curr Top Membr. Author manuscript; available in PMC 2019 October 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



confluent monolayer as well as those EC activated by the endogenous signaling molecule 

sphingosine-1-phosphate (S1P), arrange actomyosin filaments into a cortical ring in the cell 

periphery (Schaphorst, Chiang et al. 2003, McVerry and Garcia 2004, Birukova, Arce et al. 

2009, Belvitch and Dudek 2012, Abbasi and Garcia 2013), wherein the cortical actin ring 

provides centrifugal force to support and stabilize the EC membrane outwardly to allow 

contact with neighboring cells and the basement membrane (Dudek and Garcia 2001, 

Viswanathan, Ephstein et al. 2016). These peripheral actin structures plus the 

submembranous cytoskeleton participate in constructing intercellular adherens junctions, 

tight junctions, and focal adhesions by binding directly to and stabilizing junctional proteins 

as well as recruiting additional signaling molecules (Belvitch and Dudek 2012, Vogel and 

Malik 2012, Sukriti, Tauseef et al. 2014). Furthermore, the cortical actin ring facilitates the 

formation of lamellipodia, sheet-like lateral protrusions of the cell membrane, induced by 

rapid, branched actin polymerization and filament network formation (Blanchoin, Amann et 

al. 2000, Brown, Adyshev et al. 2010, Doggett and Breslin 2011) (Figure 1C). Motile 

lamellipodia close intercellular gaps and initiate construction of cellular junctions, events 

which directly establish barrier integrity (Lee, Ozaki et al. 2006, Adderley, Lawrence et al. 

2015, Breslin, Zhang et al. 2015, Choi, Camp et al. 2015, Belvitch, Brown et al. 2017). For a 

detailed review of lamellipodia in EC junctions and barrier integrity please see the chapter 

by Alves et al. in this volume (Alves, Motawe, et al. 2018).

Changes in plasma membrane shape, protrusion and retraction produced by the cytoskeleton 

require a physical connection between these cellular elements. This interaction is dynamic 

and complex (Bezanilla, Gladfelter et al. 2015, Koster and Mayor 2016). The concept of the 

lipid membrane as a loose sheet draped over a filamentous network of multiple components 

including actin, septin, spectrin and microtubules (Bezanilla, Gladfelter et al. 2015) is a 

simplified version of reality but these networks do provide a backbone of physical support to 

the outer lipid membrane. In addition, along with extracellular matrix, intracellular 

junctions, intramembrane proteins and cholesterol, cytoskeletal filaments function to prevent 

the free diffusion of membrane lipids and organize the membrane into distinct domains 

specialized for various cell processes (Trimble and Grinstein 2015). The complex and 

dynamic interplay between the membrane and cell cytoskeleton is a two-way street with 

extensive cross-talk and feedback between these components which necessarily involves 

many structural and regulatory proteins (Arumugam and Bassereau 2015, Koster and Mayor 

2016). New high resolution imaging, molecular and biochemical techniques have begun to 

explore many of these phenomena (Arumugam and Bassereau 2015) and will also be 

highlighted at the end of this review.

The phospholipid composition of the cell membrane serves a mechanistic role for the cross-

talk between membrane composition and cortical actin structures. Phosphatidylinositol and 

its phosphorylated products are critical regulatory and signaling molecules (Di Paolo and De 

Camilli 2006). Phosphatidylinositol-4,5-bisphosphate (PIP2) is an important precursor of 

intracellular second messengers generated by phospholipases (Berridge and Irvine 1989), 

but which also has direct signaling roles with actin related proteins as well (Lassing and 

Lindberg 1985, Yin and Janmey 2003). PIP2 is generated locally within cell membranes by 

the combined action of phosphoinositide kinases and phosphatases and its presence in the 

membrane alone produces changes in actin architecture (Legate, Takahashi et al. 2011, 
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Ueno, Falkenburger et al. 2011). Furthermore, cytoskeletal responses to cellular mechanical 

strain are modulated by a PIP2-dependent process (Li and Russell 2013). Plasma membrane 

PIP2 is essential to the dynamic formation and growth of cortical actin networks by 

inhibiting the proteins gelsolin, cofilin, villin, and profilin that disrupt actin filaments 

through severing or depolarization (Yin and Janmey 2003).

Contractile and protrusive cytoskeletal forces are linked to the lipid membrane by a family 

of closely related proteins. Near the cell membrane the actin cytoskeleton forms a distinctive 

branched network formation stabilized by crosslinking of actin fibers to junctional proteins 

(Morone, Fujiwara et al. 2006, Prasain and Stevens 2009). Ezrin, radixin and moesin, 

collectively referred to as ERM proteins, are also important mediators of the cytoskeletal-

membrane interaction. These highly conserved proteins connect the CD44 molecule in the 

lipid membrane directly with actin filaments (Yonemura, Hirao et al. 1998). Ezrin, the best 

studied ERM protein, is normally folded in an inactive state with the N-terminus bound to 

the membrane. Upon interaction with membrane PIP2 the protein opens allowing the C-

terminus to interact with cortical actin (Bosk, Braunger et al. 2011). Additionally, the ERM 

proteins are able to bind transmembrane receptors and link their activation to downstream 

signaling events (Neisch and Fehon 2011). Recently, differential activation and regulation of 

these proteins has been implicated in pulmonary endothelial barrier function (Koss, Pfeiffer 

et al. 2006, Guo, Wang et al. 2009, Bogatcheva, Zemskova et al. 2011, Adyshev, Dudek et 

al. 2013, Zhang, Wu et al. 2014, Kovacs-Kasa, Gorshkov et al. 2016).

MEMBRANE-RELATED SIGNALING AND BARRIER FUNCTION

Multitudes of membrane associated receptors (Breen 2007, Comellas and Briva 2009, 

Tauseef, Knezevic et al. 2012, Ni, Epshtein et al. 2014, Ebenezer, Fu et al. 2016), channels 

(Cioffi, Lowe et al. 2009, Earley and Brayden 2015), and adhesive contacts (Zebda, 

Dubrovskyi et al. 2012) are instrumental for the pulmonary EC ability to sense and react to 

the local environment with changes in permeability. Both barrier disruptive and stabilizing 

molecules initially signal through receptors bound in the plasma membrane (Dudek and 

Garcia 2001). Alterations in the extracellular matrix also modulate endothelial barrier 

function with stiffer substrates associated with decreased barrier integrity (Mambetsariev, 

Tian et al. 2014, Karki and Birukova 2018). Finally, the lung endothelium is unique in that it 

is exposed to both shear stress from the pulmonary circulation (Fisher, Chien et al. 2001) as 

well as cyclical mechanical stretch from inflation and deflation of alveolar units (Fisher, 

Chien et al. 2001, Birukov, Jacobson et al. 2003, Gulino-Debrac 2013). Both types of 

mechanical stimuli cause changes in EC permeability (Birukov, Jacobson et al. 2003, 

Gulino-Debrac 2013). Mediators of increased vascular permeability share common 

intracellular signaling cascades, effector proteins, and structural changes to produce 

centripetal forces, loss of junctional integrity and cell rounding. Similarly, barrier enhancing 

mediators share common machinery to generate cell spreading, enhanced junctional 

complexes and interendothelial gap closure. In the next section we will discuss barrier 

disruptive and protective agents with a focus on the role of cell membranes and membrane 

associated proteins.
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Thrombin Induced Barrier Disruption

The endothelial responses induced by the serine protease thrombin, a central regulator in 

coagulation and inflammatory processes, serve as an ideal model to investigate barrier 

function. Multiple studies in vitro and in vivo implicate thrombin in vascular leak through 

EC rounding and contraction (Coughlin 2001, Finigan 2009). Thrombin initiates EC barrier 

disruption by binding to the membrane bound protease activated receptor (PAR-1), a peptide 

receptor that carries its own ligand. Thrombin induces proteolysis of the extracellular 

extension between Arg41 and Ser42 to generate PAR1 ligand which binds the receptor and 

initiates its downstream signaling events (Coughlin 2000). PAR-1 is a seven transmembrane 

G protein-coupled receptor with alpha subunits G12 and −13 responsible for cytoskeletal 

rearrangements through Rho activation and MLC phosphorylation (Vouret-Craviari, Boquet 

et al. 1998, Dudek and Garcia 2001) (Figure 1A). Activation of the downstream Rho kinase 

results in phosphorylation of MLC phosphatase, inactivating the enzyme (Amano, Chihara et 

al. 1997, Essler, Amano et al. 1998, Wojciak-Stothard and Ridley 2002). The combination of 

reduced MLC phosphatase activity and promotion of MLC phosphorylation tip the balance 

in favor of actin-myosin interaction and transcellular stress fiber formation (Amano, Chihara 

et al. 1997).

The role of intracellular calcium is critical to EC barrier disruption (Mehta, Ahmmed et al. 

2003, Tauseef, Knezevic et al. 2012). Calcium serves as an early and master regulatory 

signal for a number of downstream events critical for cytoskeletal rearrangement (Cioffi, 

Barry et al. 2010). Thrombin activation of the PAR-1 receptor generates inositol triphosphate 

(IP3) to induce calcium release (Sun, Geyer et al. 2017). Exposure to an inflammatory 

stimulus increases intracellular calcium in two discrete phases. The first phase is transient 

and results from depletion of stores in the endoplasmic reticulum (ER). The next phase of 

calcium influx occurs through plasma membrane channels which result in restoration of the 

ER stores and sustains ongoing signaling events over a longer time period (Sundivakkam, 

Natarajan et al. 2013). The membrane associated transient receptor potential (TRP) family 

of channels are the most important regulators of endothelial calcium concentrations 

(Dietrich, Kalwa et al. 2010). The canonical or TRPC channels are the most studied in 

endothelial cells and have six transmembrane domains with a pore forming unit between 

domains 5 and 6 (Mehta, Ahmmed et al. 2003, Singh, Knezevic et al. 2007). TRP channels 

form as either homo- or heterotetramers. Of the various TRPC channels, TRPC1 and TRPC6 

are highly expressed in the endothelium (Curry and Glass 2006). RhoA regulates influx of 

calcium through activation of TRPC1 (Mehta, Ahmmed et al. 2003). TRPC6 knock-out mice 

are protected from LPS-induced vascular leak and inflammation (Tauseef, Knezevic et al. 

2012).

The rise of intracellular calcium concentration activates the calcium/calmodulin-dependent 

non-muscle myosin light chain kinase (nmMLCK), a critical regulator of actomyosin-

mediated force generation (Dudek and Garcia 2001, Shen, Rigor et al. 2010). Similar to 

MLCK isolated from smooth muscle, the C-terminal half of the 1914 amino acid enzyme 

contains the catalytic and calmodulin-binding, KRP-binding, and myosin-binding domains 

(Garcia, Lazar et al. 1997). The endothelial specific nmMLCK also contains a unique N-

terminal region with multiple regulatory sites including tyrosine phosphorylation sites for 
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Src and c-Abl (Dudek, Chiang et al. 2010) (Garcia, Davis et al. 1995, Verin, Gilbert-

McClain et al. 1998). Non-muscle MLCK diphosphorylation of MLC on Thr18/Ser19 

stimulates the ATP-driven power stroke of myosin heads on actin filaments to generate 

tensile force along stress fibers (Garcia and Schaphorst 1995, Schnittler 2016).

S1P Barrier Enhancement: Role of Membrane Lipid Rafts

Sphingosine 1-phosphate (S1P) is an endogenous, angiogenic phospholipid with potent EC 

barrier enhancing effects (Wang and Dudek 2009). Numerous in vitro and in vivo studies 

have implicated S1P signaling as an important mediator of pulmonary endothelial 

permeability in the pathogenesis of lung injury (Garcia, Liu et al. 2001, Li, Uruno et al. 

2004, Tauseef, Kini et al. 2008, Zhang, Xu et al. 2010) (McVerry, Peng et al. 2004, Peng, 

Hassoun et al. 2004, Camerer, Regard et al. 2009, Sammani, Moreno-Vinasco et al. 2010). 

Circulating S1P is typically bound to proteins such as HDL (Argraves, Gazzolo et al. 2008) 

and its physiologic concentration ranges from approximately 0.3–1.1 μM (Venkataraman, 

Thangada et al. 2006, Hammad, Pierce et al. 2010) (Figure 1A). Erythrocytes and platelets 

serve as repositories of S1P by differential expression of regulatory enzymes important in 

S1P synthesis (Ito, Anada et al. 2007). When activated by inflammatory stimuli, these cells 

release S1P into the circulation (Yatomi, Ruan et al. 1995, Camerer, Regard et al. 2009). The 

plasma membrane is crucial for S1P production. Breakdown of the structural membrane 

component sphingomyelin to ceramide, catalyzed by sphingomyelinases, is an early step in 

S1P synthesis. Ceramidase subsequently deacetylates ceramide to produce sphingosine 

which is then phosphorylated to generate S1P. This reversible phosphorylation by 

sphingosine kinases and the irreversible action of S1P lyase which degrades S1P to 

phosphoethanolamine and hexadecanal combine to closely regulate S1P levels (Hait, 

Oskeritzian et al. 2006, Tani, Ito et al. 2007).

S1P functions as both an intracellular and extracellular signaling molecule. A family of five 

G protein-coupled receptors (S1PR1–5) with differential expression patterns mediate S1P 

external signaling effects (Rosen, Gonzalez-Cabrera et al. 2009, Abbasi and Garcia 2013, 

Mahajan-Thakur, Bohm et al. 2015). S1P receptors 1–3 are highly expressed in the vascular 

endothelium and impact a number of EC processes (Blaho and Hla 2014). An expansive 

body of literature strongly implicates S1PR1 signaling in enhanced endothelial barrier 

function, particularly in the pulmonary vasculature (Camerer, Regard et al. 2009, Ephstein, 

Singleton et al. 2013, Ni, Epshtein et al. 2014, Li, Chen et al. 2015, Cai, Bolte et al. 2016, 

Camp, Chiang et al. 2016). S1PR1 is closely associated with Gi in a pertussis toxin-sensitive 

manner (Garcia, Liu et al. 2001, Dudek, Camp et al. 2007, Sammani, Moreno-Vinasco et al. 

2010) (Figure 1A). In contrast, S1PR2 and S1PR3 are primarily barrier disruptive but have 

varied responses dependent on the S1P concentration (Singleton, Dudek et al. 2006, Lee, 

Gordon et al. 2009, Sammani, Moreno-Vinasco et al. 2010, Du, Zeng et al. 2012). 

Furthermore, S1PR3 has been identified as a novel biomarker in human lung injury patients 

(Sun, Singleton et al. 2012). Interestingly, this study found S1PR3 is released by activated 

endothelial cells via membrane-derived extracellular vesicles (EVs) and circulates in its 

nitrated form in plasma. For more information regarding the larger role of these EC-derived 

membrane structures in the lung vasculature, please see the EV review elsewhere in this 

volume (Bauer and Letsiou. 2018). In vitro studies confirmed that S1PR3-containing 
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extracellular vesicles reduce endothelial barrier function (Sun, Singleton et al. 2012). 

Subsequent genetic studies revealed promoter variants with diminished S1PR3 expression 

were associated with protection from lung injury (Sun, Ma et al. 2013). Intracellular S1P is 

involved in many cell signaling processes as an important second messenger (Strub, 

Maceyka et al. 2010). Extracellular S1P can also induce its own intracellular generation 

through a sphingosine intermediary (Zhao, Kalari et al. 2007) and intracellular S1P can 

independently activate multiple pathways associated with EC barrier enhancement (Usatyuk, 

He et al. 2011).

The EC membrane plays a key role in several peripheral cell signaling and structural events 

initiated shortly after ligation of the S1P receptor, including the formation of membrane-

associated lipid rafts or caveolin-enriched microdomains (CEM). Enriched in the regulatory 

protein caveolin-1, cholesterol, and glycosylated sphingolipids, these structures are distinct 

nanoscale environments within the plasma membrane (Schnitzer, Oh et al. 1995, Minshall, 

Sessa et al. 2003, Lingwood and Simons 2010). They can remain attached to the larger 

plasmalemma, communicate with the extracellular space through a variably sized neck 

structure, or detach completely to become either intracellular vesicles or extracellular 

signaling vesicles (Nabi and Le 2003, Quest, Leyton et al. 2004, Jin and Zhou 2009, 

Chidlow and Sessa 2010). In the S1P response, CEM closely approximate signaling 

molecules and cytoskeletal effector proteins to promote downstream functional changes in 

cytoskeletal dynamics that improve barrier function (Singleton, Dudek et al. 2005) (Figure 

1B). Both S1PR1 and S1PR3 are recruited to lipid rafts 5–10 min following S1P treatment in 

addition to signaling molecules including PI3 kinase, the Rac GEF Tiam1, c-Abl tyrosine 

kinase, and focal adhesion kinase (FAK) (Singleton, Dudek et al. 2005). The cytoskeletal 

regulators α-actinin1/4 and filamin A/C as well as cytoskeletal effector proteins cortactin 

and nmMLCK are also found in CEM. Multiple tyrosine phosphorylation events occur in 

lipid rafts (Zhao, Singleton et al. 2009, Dudek, Chiang et al. 2010) and protein-specific 

knockdown of FAK, nmMLCK, cortactin, filamin A, or filamin C attenuate the S1P 

response (Singleton, Dudek et al. 2005, Zhao, Singleton et al. 2009), highlighting the 

importance of these specialized membrane structures.

Pulmonary EC barrier enhancement by S1P depends strongly on actin dynamics. This is 

exemplified by the ability of cytochalasin B, the actin depolymerizing agent, or latrunculin, 

an inhibitor of actin polymerization, to completely abolish S1P-induced barrier enhancement 

(Garcia, Liu et al. 2001). The disruptor of microtubules, nocodazole decreases baseline EC 

barrier function as measured by TER but does not inhibit the increase in resistance seen after 

S1P stimulation (Garcia, Liu et al. 2001). Actin polymerization following S1P is focused in 

the cell periphery and actin fibers are found in close association with phosphorylated MLC, 

an indication that mechanical force generation plays an important role in barrier protection 

as it does following barrier disruption by thrombin (Garcia, Liu et al. 2001, Dudek, Jacobson 

et al. 2004, Brown, Adyshev et al. 2010). This arrangement of actin translates into 

measurable biophysical changes in the cell membrane that can be quantified as an elastic 

modulus by atomic force microscopy (AFM). This technique and its implications for 

investigation of EC barrier function are discussed later in this review. Following S1P, the 

elastic modulus significantly increases at the periphery of the cell, indicating a stiffening of 
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the membrane and its underlying structures to promote EC barrier function (Arce, Whitlock 

et al. 2008, Wang, Bleher et al. 2015).

S1P receptor ligation activates the Rho family of small GTPases including RhoA, Rac, 

ROCK, and Cdc42 and provides a link from membrane signaling to dynamic actin 

rearrangement. Rho family proteins are involved in both barrier enhancing and disruptive 

processes with Rac signaling most closely associated with cortical ring formation and 

lamellipodial development (Garcia, Liu et al. 2001, Wojciak-Stothard and Ridley 2002, 

Gorshkova, He et al. 2008). Activation of Rac in a G protein-dependent manner results in 

downstream actin rearrangement through the p21-associated Ser/Thr kinase (PAK) (Garcia, 

Liu et al. 2001). While traditionally associated with barrier disruption (Dudek and Garcia 

2001, Minshall and Malik 2006), Rho kinase activity is also required for maximal S1P 

barrier enhancement as chemical inhibition results in a 30% attenuation of the S1P response 

(Garcia, Liu et al. 2001, Xu, Waters et al. 2007).

PROTEIN REGULATION OF CORTICAL ACTIN

A number of cytoskeletal regulatory and effector proteins are associated with the formation 

of the cortical actin ring and the generation of lamellipodia (Dudek, Jacobson et al. 2004, 

Garcia-Ponce, Citalan-Madrid et al. 2015) (Figure 1C). The principal driver of cytoskeletal 

force generation is the ATP-dependent ratcheting of actin and myosin, a process catalyzed 

by the calcium/calmodulin-dependent enzyme non-muscle myosin light chain kinase 

(nmMLCK) (nmMLCK) (Dudek and Garcia 2001, Shen, Rigor et al. 2010). Non-muscle 

MLCK function is most closely associated with transcellular actin stress fibers, centripetal 

tension, and the formation of interendothelial gaps (Garcia and Schaphorst 1995, Stevens, 

Garcia et al. 2000, Vandenbroucke, Mehta et al. 2008, Vogel and Malik 2012). However, 

numerous studies also implicate nmMLCK in S1P-induced barrier protection (Dudek, 

Jacobson et al. 2004) and its location in peripheral membrane structures leading to 

strengthened barrier integrity (Chiang, Camp et al. 2009, Zhao, Singleton et al. 2009, 

Brown, Adyshev et al. 2010). These seemingly contradictory roles may relate to changes in 

S1P concentration targeting alternate S1P receptors (Singleton, Dudek et al. 2006, Lee, 

Gordon et al. 2009, Sammani, Moreno-Vinasco et al. 2010, Du, Zeng et al. 2012) but also 

highlight the importance of the subcellular localization of cytoskeletal effector proteins in 

regulation of barrier function.

Cortactin (CTTN) is another actin-binding protein with a long-established role in regulating 

cytoskeletal dynamics to maintain the EC barrier (Dudek, Jacobson et al. 2004, Jacobson, 

Dudek et al. 2006, Arce, Whitlock et al. 2008, Schnoor, Lai et al. 2011, Choi, Camp et al. 

2015, Garcia Ponce, Citalan Madrid et al. 2016). CTTN function is critical to many cellular 

processes including motility, host-pathogen interactions, endocytosis, and junctional 

assembly by linking signaling cascades with dynamic cytoskeletal rearrangement (Weed and 

Parsons 2001, Cosen-Binker and Kapus 2006). A modular regulatory molecule, CTTN 

contains a unique actin-binding domain composed of a series of unstructured tandem repeats 

which induce architectural changes of the intact actin filament (Shvetsov, Berkane et al. 

2009). Additionally, a proline-rich α-helix domain contains numerous serine and tyrosine 

phosphorylation sites important for differential activation of CTTN (Zhao, Singleton et al. 
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2009, Oser, Mader et al. 2010). The CTTN C-terminus consists of a Src homology 3 domain 

(SH3), a site of interaction with numerous other effector molecules (Zarrinpar, 

Bhattacharyya et al. 2003, Cosen-Binker and Kapus 2006). CTTN rapidly locates to the cell 

periphery and associates with cortical actin following a barrier enhancing stimulus such as 

S1P (Dudek, Chiang et al. 2010, Garcia-Ponce, Citalan-Madrid et al. 2015). Barrier 

enhancing conditions are also associated with CTTN translocation to lamellipodia where it 

plays a significant role in the development and protrusion of these critical structures (Brown, 

Adyshev et al. 2010, Choi, Camp et al. 2015). Specifically, CTTN serves to stabilize the 

polarized array of actin filaments which form a distinct cross-linked actin network and 

serves as a nucleation promotion factor (NPF) for the branched actin polymerization that 

occurs in lamellipodia (Ammer and Weed 2008). Impaired CTTN expression or functional 

inhibition of the SH3 domain significantly attenuates S1P-induced barrier protection 

(Dudek, Jacobson et al. 2004, Lee, Ozaki et al. 2006).

CTTN and nmMLCK directly interact through the SH3 domain of CTTN (Dudek, Birukov 

et al. 2002, Dudek, Jacobson et al. 2004). The maximal S1P barrier enhancement is 

attenuated when this interaction is inhibited (Dudek, Jacobson et al. 2004). Proline-rich 

regions between amino acids #972–979 and #1019–1025 in nmMLCK conform well to 

consensus SH3 domain recognition motifs (Sparks, Rider et al. 1996) and were identified as 

the putative sites of the CTTN-nmMLCK interaction by using blocking antibodies and 

interfering peptides (Dudek, Birukov et al. 2002). These studies demonstrated a reduction in 

nmMLCK binding to F-actin in the absence of CTTN but no loss of enzyme activity (Dudek, 

Birukov et al. 2002). Subsequent work by our group employed nmMLCK constructs in 

which two key proline residues were mutated to alanine at each of the putative CTTN 

binding sites (Belvitch, Adyshev et al. 2014). Proline deficiency resulted in an increased 

association with CTTN in nmMLCK fragments and increased kinase activity in the full-

length constructs. Fluorescent imaging studies identified more robust stress fiber formation 

and EC membrane retractions after treatment with thrombin in cells transfected with a 

mutant GFP-nmMLCK construct as compared to wild-type nmMLCK. These studies 

provide strong evidence that the nmMLCK-CTTN interaction is a critical regulator of both 

cytoskeletal and membrane events associated with barrier function.

The protrusive force necessary to extend the membrane edge into interendothelial space 

depends on branched actin polymerization (Blanchoin, Amann et al. 2000, Pollard and 

Borisy 2003). The actin-related protein complex 2/3 (Arp 2/3) initiates the formation of new 

actin filaments through nucleation on the side of existing filaments at a characteristic 

seventy degree angle from the mother strand (Pollard 2007). The structure of Arp 2/3 

mimics that of actin itself with subunits 2 and 3 being homologous to actin monomers 

(Nolen, Littlefield et al. 2004). After binding to the mother strand, crystallization studies 

indicate Arp2 and Arp3 move from an inactive end-to-end or “splayed” conformation to an 

in-line or “short-pitch” arrangement. This active conformation closely approximates the 

structure of an actin dimer and initiates the polymerization of a daughter strand (Rouiller, 

Xu et al. 2008). Transition of Arp 2/3 from the inactive to active state requires the 

participation of additional proteins termed nucleation promotion factors or NPFs. These 

regulators are necessary to bring actin monomers, existing filaments, and the Arp 2/3 

complex itself into close approximation allowing polymerization to proceed (Higgs and 
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Pollard 2001, Uruno, Liu et al. 2001). The proteins WASP and Scar/WAVE (WASP family 

veroprolin homologue) are well-studied, potent NPFs. Interestingly, the interaction of these 

proteins with the membrane-embedded PIP2 itself (Higgs and Pollard 2000), or as a 

consequence of the second messenger function of PIP2 (Ho, Rohatgi et al. 2004, Koronakis, 

Hume et al. 2011), activates the proteins and induces Arp2/3 polymerization. As expected, a 

number of NPFs, including the aforementioned CTTN, are observed in membrane lipid rafts 

closely associated with EC lamellipodia during barrier enhancing conditions (Cosen-Binker 

and Kapus 2006, Zhao, Singleton et al. 2009). CTTN interacts with Arp 2/3 through its N-

terminal acidic domain and is required for the endothelial barrier enhancement produced by 

S1P (Uruno, Liu et al. 2001, Li, Uruno et al. 2004). Arp 2/3 function is also implicated in 

the maintenance and repair of junctional complexes via its role in membrane protrusions 

(DeMali, Barlow et al. 2002, Abu Taha and Schnittler 2014, Abu Taha, Taha et al. 2014).

We recently investigated the effects of the Arp 2/3 complex on functional measures of 

pulmonary EC barrier integrity. The small molecule inhibitor CK-666 binds between Arp2 

and Arp3 subunits and blocks the complex’s transition from the inactive to active 

conformation (Nolen, Tomasevic et al. 2009, Hetrick, Han et al. 2013). Pulmonary EC 

treated with this inhibitor demonstrate significantly decreased barrier function as measured 

by transendothelial electrical resistance (TER) at baseline, a reduced S1P response, and 

delayed recovery of barrier function after thrombin (Belvitch, Brown et al. 2017). These 

functional changes were correlated with increased interendothelial gaps and significant 

differences in the depth of individual lamellipodia, as measured by immunofluorescence and 

high-resolution confocal microscopy respectively, providing direct evidence of the critical 

role of endothelial cell shape and membrane dynamics in barrier integrity.

JUNCTIONAL COMPLEXES LINK MEMBRANE TO CYTOSKELETON

Centripetal force generation by the actin cytoskeleton is linked to the cell membrane through 

cell-cell and cell-matrix adhesion molecules (Figure 1C). Intracellular connections are 

primarily formed by two junctional complexes, adherens junctions (AJ), and tight junctions 

(TJ), which provide both mechanical stability and transduction of extracellular signals into 

the cell (Vestweber 2000). Focal adhesions (FA) are protein complexes that regulate contact 

between the basal cell membrane and extracellular matrix (Romer, Birukov et al. 2006, 

Belvitch and Dudek 2012, Zebda, Dubrovskyi et al. 2012). Adherens junctions (AJ) are 

arguably the most critical cell-cell adhesion molecules forming the endothelial barrier 

(Dudek and Garcia 2001, Vandenbroucke, Mehta et al. 2008, Komarova and Malik 2010, 

Vogel and Malik 2012, Gulino-Debrac 2013, Sukriti, Tauseef et al. 2014). Vascular 

endothelial (VE)-cadherin is the primary structural molecule of the AJ complex located 

where membranes from two individual cells are closely apposed (Dejana, Corada et al. 1995, 

Dejana, Bazzoni et al. 1999, Bazzoni and Dejana 2004). These endothelial-specific 

membrane proteins are composed of extracellular, juxtamembrane, and C-terminal domains. 

The extracellular domain mediates the adhesive properties through homologous binding with 

VE-cadherin extending from neighboring cells in a calcium-dependent manner 

(Lampugnani, Resnati et al. 1992). Blocking antibodies directed at the extracellular domain 

increase paracellular permeability and alter vascular development (Corada, Liao et al. 2001). 

The intracellular domain links AJs to the actin cytoskeleton through the family of anchoring 
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proteins known as catenins (Bazzoni and Dejana 2004). Beta and γ-catenin (i.e. 

plakoglobin) competitively bind α-catenin which in turn binds F-actin (Ben-Ze’ev and 

Geiger 1998). Conditional inactivation of the gene encoding β-catenin results in changes to 

actin structural organization, decreased intracellular adhesion and vascular fluid leakage 

(Cattelino, Liebner et al. 2003). The actin-binding proteins vinculin and actinin also bind α-

catenin and strengthen the AJ-cytoskeletal structural complex (Knudsen, Soler et al. 1995, 

Nieset, Redfield et al. 1997, Watabe-Uchida, Uchida et al. 1998). The VE-cadherin 

juxtamembrane domain binds to a fourth catenin, p120, which is a target of Src kinase and 

plays an important role in regulation of AJ stability (Anastasiadis and Reynolds 2000, 

Thoreson, Anastasiadis et al. 2000). P120 is a negative regulator of the contractile RhoA 

GTPase (Noren, Liu et al. 2000). Binding of non-phosphorylated p120 to the juxtamembrane 

domain protects VE-cadherin from degradation (Iyer, Ferreri et al. 2004). Interestingly, both 

increased and decreased expression of p120 result in endothelial barrier disruption (Iyer, 

Ferreri et al. 2004). Intracellular tension is an important factor for stable binding of VE-

cadherin to the actin cytoskeleton, when tensile force is applied to the junctional complex, 

the α-catenin association to β-catenin and F-actin increases and thus stabilizes cell-cell 

adhesion (Drees, Pokutta et al. 2005, Yamada, Pokutta et al. 2005, Buckley, Tan et al. 2014, 

Leckband and de Rooij 2014).

EC barrier disruption is closely tied to a loss of AJ stability mediated through VE-cadherin/

catenin signaling. Tyrosine phosphorylation of VE-cadherin, β-catenin, plakoglobin, and 

p120 results in disorganization of AJ proteins (Dejana, Orsenigo et al. 2008) and detachment 

of VE-cadherin from the actin cytoskeleton (Komarova, Kruse et al. 2017). Multiple studies 

have demonstrated phosphorylation of VE-cadherin followed by internalization as a key step 

in increased endothelial permeability (Mukherjee, Tessema et al. 2006, Dejana, Orsenigo et 

al. 2008, Yang, Yao et al. 2015). Specific residues on the cytoplasmic tail of VE-cadherin are 

implicated in EC permeability changes induced by inflammatory mediators (Orsenigo, 

Giampietro et al. 2012) and lymphocyte migration (Turowski, Martinelli et al. 2008). In 

response to the reactive oxygen H2O2 which is commonly released during inflammation, the 

heterotrimeric G protein Gα13 binds to VE-cadherin and promotes Src phosphorylation on 

Tyr658 (Gong, Gao et al. 2014). This phosphorylation event prevents VE-cadherin-p120 

binding and triggers subsequent AJ disassembly followed by internalization (Nanes, 

Chiasson-MacKenzie et al. 2012). Overexpression of p120-catenin also prevents VE-

cadherin internalization by antagonizing Src-dependent phosphorylation of the 

juxtamembrane domain (Alcaide, Martinelli et al. 2012). This VE-cadherin-p120 interaction 

and related phosphorylation events leading to VE-cadherin internalization may serve as a 

master regulatory signal from diverse upstream signaling processes to ultimately regulate 

cell-cell adhesion and endothelial permeability (Dejana, Orsenigo et al. 2008, 

Vandenbroucke St Amant, Tauseef et al. 2012, Haines, Beard et al. 2015, Zhang, Feng et al. 

2016).

Tight junctions (TJs) make up about 20% of endothelial junctional proteins and are located 

in apical regions or localized with AJ. They are more developed in the arterial or capillary 

vessels as opposed to venules (Kevil, Okayama et al. 1998). The protein components of TJs 

include the transmembrane adhesion molecules, occludin, claudin, and junctional adhesion 

molecules (JAMs) (Bazzoni 2006). Occludin is specific to TJs of the epithelium and 
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endothelium (Furuse, Hirase et al. 1993) with adhesive properties activated after association 

with the cytoplasmic structural protein zonula occludens-1 (ZO-1) (Furuse, Itoh et al. 1994). 

Interestingly, occludin-null mice form normal TJs and do not exhibit intestinal barrier 

defects but exhibit inflammatory and other histologic abnormalities in several tissues, 

suggesting a complex role in signaling (Saitou, Furuse et al. 2000). Claudins are a group of 

24 membrane-spanning adhesion molecules with claudin-5 being endothelial-specific 

(Tsukita and Furuse 2000). In an example of cross-talk between endothelial junctional 

complexes, VE-cadherin assembly in AJs upregulates expression of claudin-5 through 

sequestration of the transcriptional repressor β-catenin in the cell membrane, thereby 

preventing β-catenin action in the nucleus (Bazzoni and Dejana 2004, Taddei, Giampietro et 

al. 2008). Claudins are important determinants of paracellular transit in both epithelium and 

endothelium and claudin knockout mice are more susceptible to inflammatory lung injury 

(Kage, Flodby et al. 2014, Tamura and Tsukita 2014). Simvastatin is known to increase 

claudin-5 protein expression and reduce vascular leak in a murine lung injury model (Chen, 

Sharma et al. 2014). JAMs support TJ assembly, regulate endothelial permeability, and 

leukocyte transendothelial migration (Luissint, Nusrat et al. 2014, Reglero-Real, Colom et 

al. 2016). Both occludin and claudins are anchored to the actin cytoskeleton via ZO-1 which 

binds with α-catenin and the actin scaffolding protein spectrin (Muller, Portwich et al. 

2005). Interruption of the TJ-actin interaction through ZO-1 depletion in ECs induces 

reorganization of actomyosin structures, tight junction disruption, and a loss of cell-cell 

mechanotransduction (Tornavaca, Chia et al. 2015), processes critical to barrier function. 

The TJ protein ZO-1 also binds cadherins and thus provides a structural connection between 

TJ, AJ, and the cytoskeleton (Hartsock and Nelson 2008).

The anchoring of microvascular ECs to the underlying matrix is an important determinant of 

permeability and is mediated by multiprotein transmembrane structures known as focal 

adhesions (FAs) (Wu 2005). Integrins are the primary structural proteins in focal adhesions. 

These transmembrane proteins span the gap between the cytoskeleton and extra cellular 

matrix by binding directly to various matrix proteins, such as fibronectin and collagen, and 

indirectly to cytoskeletal elements via cytoplasmic linker proteins (Wu 2007, Kuo 2014) 

(Figure 1C). Structurally, FAs balance barrier-disruptive contractile forces and barrier-

protective tethering forces through connections to the actin cytoskeleton (Birukova, Shah et 

al. 2016). Functionally, FAs facilitate two-way signaling between the intracellular space and 

extracellular matrix (Dejana 2004, Wang and Dudek 2009, Komarova and Malik 2010, 

Wang, Bittman et al. 2015). Extracellular integrin domains have heterodimeric receptors 

containing α and β subunits and, to date, 24 different subtypes have been identified (Lu and 

Wang 2014). One hundred eighty proteins have been identified as components of integrin 

mediated cell-ECM adhesion (Zaidel-Bar, Itzkovitz et al. 2007, Zaidel-Bar and Geiger 

2010). Disruption of integrin-mediated cell-ECM adhesion causes cell detachment from the 

matrix (Dejana, Lampugnani et al. 1990, Dejana, Bazzoni et al. 1999) and inhibition of 

integrin binding to fibronectin, leading to increases in endothelial permeability (Wu, 

Ustinova et al. 2001).

The cytoplasmic integrin domains interact with the cytoskeleton either directly or indirectly 

through intracellular linker proteins including paxillin, talin, vinculin, and α-actinin (Petit 

and Thiery 2000, Hodivala-Dilke, Reynolds et al. 2003). Paxillin is a focal adhesion 
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scaffolding protein that functions to recruit multiple structural and signaling molecules 

(Turner 2000). Paxillin differentially regulates endothelial barrier responses to growth 

factors via modulation of Rac-Rho signaling (Birukova, Cokic et al. 2009). Tyrosine 

phosphorylation of paxillin by focal adhesion kinase (FAK) activates the Rho family of 

GTPases leading to the formation of filopodia, lamellipodia, and stress fibers (Birukova, 

Alekseeva et al. 2008). FAK, a cytoplasmic tyrosine kinase, is a central regulator in integrin-

mediated singal transduction, and will be discussed in more detail below (Parsons, Slack-

Davis et al. 2008). LPS induces paxillin phosphorylation at Y31 and Y118 via c-Abl 

tyrosine kinase to increase EC permeability (Fu, Usatyuk et al. 2015). Vinculin is a globular 

protein with five helical head domains (D1–D5) connected to the vinculin tail domain (Vt) 

by a flexible linker region (Bakolitsa, Cohen et al. 2004). The tail domain has binding sites 

for F-actin, paxillin, and PIP2, and the head domain, D1, has binding sites for talin, α-

actinin, and α-catenin. Vinculin plays an important role in transmitting mechanical forces 

and orchestrating mechanical signaling events (Birukova, Shah et al. 2016). Vinculin’s 

association with talin and the actin cytoskeleton is important for the force-induced 

strengthening of FA, recruitment of additional FA proteins such as paxillin, and anchoring 

contractile stress fibers (Goldmann, Auernheimer et al. 2013)

On the cytoplasmic side of the cell membrane, integrins also act as signaling molecules and 

recruit FAK to FAs upon activation by vascular endothelial growth factor (Avraham, Lee et 

al. 2003), neutrophils (Guo, Wu et al. 2005), transforming growth factor β1 (Lee, Kayyali et 

al. 2007) and hepatocyte growth factor (Chen, Chan et al. 1998). FAK is a non-receptor 

tyrosine kinase which has N- and C-terminal domains. The C-terminal focal-adhesion 

targeting (FAT) domain serves as a signaling and protein binding site for other cytoplasmic 

proteins (Schaller 2001, Parsons 2003, Schlaepfer, Mitra et al. 2004, Wu 2005). Six tyrosine 

residues (Y397, Y407, Y576, Y577, Y861, Y925) are observed as critical phosphorylation 

sites, which result in differential responses to varying stimuli (Schlaepfer, Hauck et al. 

1999). Autophosphorylation of FAK on Y397 creates a high-affinity binding site for the Src 

family kinases, which further phosphorylate FAK on other tyrosine residues and play an 

important role in integrin signaling (Xing, Chen et al. 1994, Cary, Klinghoffer et al. 2002). 

Phosphorylation of Y925 induces conformational changes to reveal Grb2-SH2 domain 

binding sites, which in turn mediate the Ras pathway and activate ERK1/2 (Schlaepfer, 

Hanks et al. 1994). SH2 domain-containing protein tyrosine phosphatase 2 (SHP2) increases 

pulmonary endothelial integrity by FAK phosphorylation at Y397 and Y925 (Chichger, 

Braza et al. 2015). Integrins signal through FAK to regulate small GTPases Rho and Rac. 

These cytoskeletal signaling proteins along with PAK play a role in modulating cell 

adhesion, migration, actin polymerization, and MAP kinase signaling (Parsons 2003). The 

group of N-terminal four-point-one, ezrin, radixin, moesin binding (FERM) domain proteins 

inhibit FAK activity by directly binding the catalytic domain (Frame, Patel et al. 2010) and 

blocking multiple FAK phosphorylation sites including the Src target, Y397. FAK-deficient 

cells migrate poorly in response to chemotactic signals (Sieg, Hauck et al. 2000) while 

overexpression of FAK enhances cell migration (Cary, Chang et al. 1996). 

Lipopolysaccharide (LPS) increases FAK expression in neonates and increases FAK 

phosphorylation in adult mice (Ying, Alvira et al. 2018). FAK-deficient EC have enhanced 

cell-cell attachment and enhanced endothelial barrier function (Arnold, Goeckeler et al. 
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2013). Inhibition of FAK by the pharmacologic FAK inhibitor PF-228 attenuates endothelial 

barrier disruption and is currently being studied in clinical trials as a potential therapeutic 

agent for non-small cell lung cancers (Howe, Xiao et al. 2016, Lederer, Zhou et al. 2018). 

S1P-dependent phosphorylation of FAK on Y576 leading to endothelial barrier enhancement 

depends upon Gi signaling, phospholipase C activity, and intracellular calcium levels. FAK 

phosphorylation leads to Gi protein dissociation from α and βγ subunits to further stimulate 

phospholipase C. This S1P-dependent increase in intracellular calcium sustains this crucial 

signaling pathway (Lee, Lee et al. 2000). EC treated with the S1P analog tysiponate 

significantly increased focal adhesion formation and phosphorylation of FAK, while 

pharmacologic inhibition of FAK significantly attenuated EC barrier enhancement induced 

by tysiponate (Wang, Bittman et al. 2015).

Recently, the importance of crosstalk between junctional complexes has been revealed. In 

particular, mechanotransduction events by both integrins and cadherins regulate their spatial 

relationships, signaling, and intracellular forces connected through the actin cytoskeleton 

(Mui, Chen et al. 2016). Furthermore, differential phosphorylation of vinculin has been 

shown to regulate force transduction from AJs through increasing its association with 

cadherins (Bays, Peng et al. 2014) while not affecting its role in FAs. Finally, 

mechanotransduction through VE-cadherin complexes triggers local actin and vinculin 

recruitment as well as cytoskeletal remodeling (Barry, Wang et al. 2015). This crosstalk 

between junctional proteins and cytoskeletal force generation serves as an important link in 

the EC’s ability to both sense and then respond to its local environment.

The complex cellular processes that determine EC barrier function are both diverse and 

interconnected. The cytoskeleton, plasma membrane, and associated proteins coordinate 

their activity at the right time and right place within the cell to effect physiologic changes in 

barrier integrity. Historically, our knowledge of this intricate process is the result of 

countless biochemical assays combined with cellular imaging techniques. While highly 

informative, these methods require many inferences on the part of the investigator and have 

left several gaps unfilled. The ideal investigation of endothelial barrier integrity would allow 

the observer to precisely localize protein activity while simultaneously characterizing 

changes in actin structure and membrane dynamics in an individual living cell. The last 

decade has seen tremendous advancement in the acquisition, processing and analysis of 

protein and membrane images. In this last section, we will explore new imaging techniques 

that hold significant promise for advancing our understanding of how cortical actin 

dynamics intersect with membrane structure to regulate endothelial permeability.

NEW INSIGHTS INTO CYTOSKELETAL AND MEMBRANE IMAGING

Since Antonie Philips van Leeuwenhoek first revealed “animalcules” to the world, scientists 

have continued to probe the mysteries of the cell with microscopes. Today we have a wealth 

of fluorescent molecules and microscopy techniques to probe the function of individual 

molecules within the comparatively vast cell. These techniques measuring changes in the 

spatial localization of or emitted fluorescence intensity from fluorophores at last enable us to 

comprehend biochemistry as it happens in live cells. Despite the complexity of current 

advanced microscopes, they obey the same principles of optics physics as do basic 
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fluorescence microscopes [for detailed reviews, please see (Lichtman and Conchello 2005, 

Sanderson, Smith et al. 2014)]. A light source beam is focused via an objective lens onto a 

specimen stained with or expressing a fluorescent molecule. The focused beam excites the 

fluorophore, which then emits a photon at a slightly lower energy level as the fluorophore 

relaxes to its ground state. The emitted photon is captured and focused by the objective lens 

and travels to a detection source, be it our eyes, a digital camera, photomultiplier tube, or 

other advanced detector. The limit to what objects can be resolved by a basic fluorescence 

microscope is governed by Abbe’s Equation, which states that the lateral resolvable distance 

between two minute objects equals the excitation wavelength divided by twice the numerical 

aperture of the objective lens (d = λex/2NA). The resolvable axial distance between two 

small objects is d = 2λex/NA2. Depending on the objectives and wavelengths used, lateral 

resolution averages to ~200 nm and axial to ~ 600–700 nm (Liu, Toussaint et al. 2018). 

Today these restrictions are overcome via super-resolution microscopy techniques, detailed 

in the succeeding section.

Super-Resolution Microscopy

The benefits of super-resolution microscopy on the pulmonary endothelial cytoskeleton have 

yet to be fully realized but its potential is tremendous. In other cell types, super-resolution 

microscopy has uncovered subdiffraction details of focal adhesions, actin cortex density, 

myosin filament organization, and intercellular adherens junctions (Shelden, Colburn et al. 

2016). Exposing these structures in the pulmonary endothelium will shed light on the exact 

structural biology and formation of cortical actin bands or stress fibers, how these structures 

generate tension, and sustain barrier integrity by revealing the intricate connections of the 

submembranous cytoskeleton to adherens junctions. For example, many disease-associated 

single nucleotide polymorphisms have been found in key cytoskeletal regulatory proteins 

such as nmMLCK and cortactin (Choi, Camp et al. 2015, Wang, Brown et al. 2018). Super-

resolution microscopy can uncover their structural defects and mechanistic cause of 

pathology.

The primary modes of super-resolution microscopy are stimulated emission depletion 

microscopy (STED), single molecule localization techniques [ground-state depletion 

microscopy (GSD), stochastic optical reconstruction microscopy (STORM), photo-activated 

localization microscopy (PALM)], and structured illumination microscopy (SIM). Figure 2 

illustrates the fundamental mechanistic principles for these modalities.

In STED, two lasers illuminate—a central, Gaussian, diffraction-limited excitation laser 

surrounded by a red-shifted excitatory laser, made hollow (doughnut-shaped) by a small 

phase plate placed at its center, raised to sufficient power to quench outlying fluorophores by 

stimulated emission (Figure 2A), leaving only a central, sub-diffraction area of fluorophores 

emitting photons and transitioning normally and reversibly between their ground and excited 

states (Hein, Willig et al. 2008, Blom and Widengren 2017). The diameter of the central 

focal area and thus resolution depends upon the power of the depletion laser, but lateral 

resolution can reach <50 nm (Hein, Willig et al. 2008, Wegel, Gohler et al. 2016, Blom and 

Widengren 2017, Vicidomini, Bianchini et al. 2018). A recent advancement in STED is the 

3D time-gated STED (gSTED), which utilizes pulsed excitation combined with continuous 
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wave laser depletion and time-gated detection (Vicidomini, Bianchini et al. 2018). Another 

hollow depletion laser in the z dimension improves axial resolution to 100–150 nm (Hein, 

Willig et al. 2008, Wildanger, Medda et al. 2009). Examples of STED application to the 

endothelial cytoskeleton include the detailed structure of podosomes consisting of a 

polygonal arrangement of vinculin around cortactin and actin foci ~900 nm in diameter 

linked by interconnecting F-actin cables, as well as the simultaneous incorporation of non-

muscle myosin II A and B into heteropolymers in nascent filaments and segregation later 

during maturation of the cellular contractile system in human umbilical vein EC (Shutova, 

Spessott et al. 2014, Daubon, Spuul et al. 2016, Spuul, Daubon et al. 2016). At endothelial 

intercellular junctions, STED microscopy demonstrated differential VE-cadherin clustering 

under varying degrees of shear-flow stress (Seebach, Donnert et al. 2007). VE-cadherin was 

observed to cluster roundly at 63 nm in diameter, distributed randomly along intercellular 

junctions, and formed progressively denser linear clusters with concomitant increases in 

diameter to 80 nm under low flow conditions. These clusters are hypothesized to provide the 

mechanical resistance to sustain barrier integrity under conditions of shear-flow stress.

STORM, PALM, and GSD are single molecule localization microscopy (SMLM) 

techniques. All rely on the stochastic switching of fluorescent molecules between a 

fluorescing state and a dark state (Figure 2B); for specifics regarding each technique, please 

see (Nollmann and Georgieva 2015, Shelden, Colburn et al. 2016, Sahl, Hell et al. 2017). At 

any time, only a very small minority of molecules fluoresce with the distance between 

fluorescing molecules greater than the resolution limit of the microscope. In this case, every 

detected fluorescent spot comes from a single molecule. Thousands of diffraction-limited 

(wide-field) images are captured, each image with a different population of fluorescing 

molecules, and the center of mass position and intensity of each single fluorescence spot is 

fitted at subdiffraction precision for each image acquired (Sauer and Heilemann 2017). All 

of these images are reassembled into one final super-resolved image that can achieve lateral 

resolutions of ~20–50 nm (Wegel, Gohler et al. 2016) and axial resolutions of 50–100 nm 

(Sahl, Hell et al. 2017). 3D-STORM has imaged submembranous actin rings around 

fenestrations in rat liver sinusoidal EC (Monkemoller, Oie et al. 2015) and showed that α-

actinin-4 governed the clustering of CD147 along membrane protrusions surrounding 

adherent Neisseria meningitides bacteria on human bone marrow EC (Maissa, Covarelli et 

al. 2017). Interferometric PALM studies discovered a stratified architecture of adhesions, 

wherein vinculin extends ~30 nm to bridge the cadherin-catenin compartment to the F-actin 

compartment with its attendant regulators zyxin and VASP (Bertocchi, Wang et al. 2017). 

Wang et al. employed interferometric PALM to resolve HUVEC F-actin filaments to a 

remarkable 15 nm in the Z dimension (Wang and Kanchanawong 2016). Recently, GSD 

revealed that syndecan-4 knock-down in aortic EC reduced actin filament branching and 

resulted in much longer and thicker filopodia than in wild-type EC while also uncoupling 

vinculin from actin filaments, which led to reduced adhesion to fibronectin and laminin 

substrates (Cavalheiro, Lima et al. 2017).

The technique commonly used on the cytoskeleton has been SIM, very likely because any 

fluorophore can be used and it depicts the very fine, continuous cytoskeletal network with 

generally higher signal-to-noise ratio than STED or SMLM (Figure 2C); for a thorough 

comparison, see (Wegel, Gohler et al. 2016). SIM can be employed with a diffraction-
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limited microscope either in wide-field or total internal reflection fluorescence microscopy 

mode. The technique achieves subdiffraction resolution by placing an interference grating in 

an illumination aperture and, in 2D SIM three, or in the case of 3D SIM, five sinusoidal 

high-frequency interference images with Moiré fringes are captured, each at a different 

phase step (Lu-Walther, Kielhorn et al. 2015). The gratings are rotated 60° (2D SIM) or 36° 

(3D SIM) and more images are captured (Demmerle, Innocent et al. 2017). Finally a 

subdiffraction image is calculated in Fourier space from the combined rotation series, 

usually 9–15 images depending on whether two or three illumination beams are used (Lu-

Walther, Kielhorn et al. 2015). Resolution depends heavily on the grid frequency, number of 

rotation angles, and prominent specimen features (Heintzmann and Huser 2017). Generally, 

a final lateral resolution of ~100–150 nm and ~280–350 nm axially is achieved, although 

this has recently been enhanced to 88 nm laterally with a Hessian deconvolution algorithm 

(Demmerle, Innocent et al. 2017, Huang, Fan et al. 2018). Recent faster implementations of 

SIM have made it an excellent technique for live cells (Lu-Walther, Kielhorn et al. 2015). In 

particular, Huang et al. captured Lifeact-EGFP dynamics in human umbilical vein EC in 

6,800 images at sub-millisecond exposures at a maximum speed of 188 Hz with significantly 

fewer artifacts than the reconstructed images by the conventional Wiener algorithm (Huang, 

Fan et al. 2018). Structural features that were previously unresolved in live cells include 

individual non-muscle myosin II isoforms A and B co-assembling in heterotypic filaments 

featuring two puncta spaced 300 nm apart along transverse arcs, ventral stress fibers, and 

subnuclear stress fibers (Beach, Shao et al. 2014) Additionally, focal adhesions composed of 

300 nm linear subarrays within which paxillin, vinculin, and zyxin colocalize have been 

described (Hu, Tee et al. 2015). More recently, SIM revealed that claudin forms dynamic 

strand patches that can break and re-anneal between fibroblasts and ZO-1 can stabilize these 

claudin strands (Van Itallie, Tietgens et al. 2017). Interestingly, claudin associates with actin 

through ZO-1, although claudin binding to actin is intermittent and highly dynamic rather 

than continuous (Van Itallie, Tietgens et al. 2017). The authors speculated that intermittent 

binding between claudin and actin allowed for flexibility in coupling between claudins (Van 

Itallie, Tietgens et al. 2017).

Correlative Super-Resolution Microscopy and Atomic Force Microscopy

Much detail on the mechanobiology of the pulmonary endothelial cytoskeleton has recently 

been revealed by atomic force microscopy (AFM) (Arce, Whitlock et al. 2008, Dudek, 

Chiang et al. 2010, Wang, Bleher et al. 2015, Wang, Bleher et al. 2017, Wang, Wang et al. 

2018). Now this technique paired with super-resolution microscopy can correlatively probe 

the spatiotemporal mechanodynamics of the cytoskeleton in EC with nanometer resolution 

(Hauser, Wojcik et al. 2017). AFM provides a detailed topography of a cell at atomic 

resolution and detects changes in elasticity or rigidity at the cell surface by deflection of an 

exquisitely sensitive, scanning cantilever, as depicted in Figure 3A. Its deflections are 

detected by shifts in laser beam light reflected from the back of the cantilever to a 

photodiode detector. AFM paired with super-resolution microscopy techniques have been 

applied correlatively to the cytoskeleton of various epithelial and fibroblast cells but not yet 

to pulmonary EC as of this writing.
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In correlative AFM-super-resolution microscopy, AFM and optical microscopy are 

commonly performed sequentially. Harke employed STED to generate an image map to 

target AFM to a particular region of interest and successfully correlated the local topology 

and elasticity with the positions of fluorescent tubulin filaments in fixed COS-7 cells (Harke 

2012). In a subsequent study, Chacko et al. correlated STED and stochastic optical 

resolution microscopy (STORM) with AFM and detected a partial correlation between fixed 

HeLa cell topology height and cellular elasticity with microtubule filaments, admitting some 

interference by other unlabeled cytoskeletal filaments (Chacko, Canale et al. 2013). 

Odermatt et al. performed AFM and PALM sequentially on live CHO-K1 cells. First, high-

speed AFM was performed to track the topology of the cell’s leading edge over time 

(recordings < 1 min), followed by PALM (recording ~ 4 min) of paxillin-mEos2 at the 

leading edge which captured the nanoscale evolution of focal adhesions at an active 

lamellipodial protrusion of known topography (Odermatt, Shivanandan et al. 2015). In a 

study with direct clinical relevance, Sharma et al. used correlative AFM followed by STED 

microscopy to determine that cisplatin induces a dose-dependent increase in stiffness 

coupled with strong peripheral banding of actin in lamellae adjacent to lamellipodia in an 

ovarian cancer cell line. Such properties are not present in cisplatin-resistant ovarian cancer 

cells, which instead exhibit a lower cell stiffness similar to untreated cells and exhibit 

radially aligned actin filaments from the nucleus to the lamella (Sharma, Santiskulvong et al. 

2012). More recently, the polarization of actin and migration of live murine astrocytes was 

interrogated with STED immediately followed by AFM (Figure 3B). In the same live 

astrocyte, the presence of polarized actin filaments near the migrating edge strongly 

correlated with AFM topological images and increased membrane stiffness (Curry, Ghezali 

et al. 2017).

Simultaneous AFM and super-resolution microscopy has been achieved by two groups thus 

far. The Ando group combined HS-AFM with total internal reflection fluorescence 

microscopy (TIRFM) with single molecule capability (Fukuda, Uchihashi et al. 2013). 

Precise positional correlation was verified between TIRFM and HS-AFM images of 

rhodamine-labelled actin filaments in live astrocytes. Video recordings between the two 

types of microscopy were synchronized and the hand-over-hand movement of tail-truncated 

myosin V-Cy3 was tracked on a single actin filament in vitro. Concurrent but independently, 

Yu and colleagues (2013) constructed their own AFM-STED system equipped with a super-

continuum pulsed laser to supply both fluorescence excitatory and depletion beam 

illumination with a picoseconds delay between both excitatory and depletion pulses. AFM 

topological and STED images of actin filaments in filopodia of fixed CaSki cells were 

acquired virtually simultaneously pixel-by-pixel (Yu, Yuan et al. 2013). Application of these 

two techniques simultaneously to live cells has not been reported as of this writing, but faster 

positional scanners that correlate AFM tips and illumination lasers are being constructed and 

will significantly advance simultaneous imaging of mechanotransduction by HS-AFM with 

super-resolved fluorescent molecular dynamics (Fukuda, Uchihashi et al. 2013, Qin, Li et al. 

2017). Application of these techniques to pulmonary EC carrying mutations or disease-

associated single nucleotide polymorphisms may elucidate the cellular pathobiology of 

asthma and acute lung injury (Gao, Grant et al. 2007, Xiong, Wang et al. 2017, Wang, 

Brown et al. 2018).
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Intravital Microscopy

The advent of intravital lung microscopy now makes possible visualization of pulmonary 

pathobiology in a physiological context with consequences affecting the whole tissue 

(Looney and Bhattacharya 2014). The development of transgenic mice expressing Lifeact 

and fluorescence resonance energy transfer (FRET) biosensors enables imaging of intact 

tissue and realizes the concept of in vivo cell biology, viewing biochemical signaling in its 

native physiological environment (Riedl, Flynn et al. 2010, Direnberger, Mues et al. 2012, 

Johnsson, Dai et al. 2014, Nobis, Herrmann et al. 2017). In the pulmonary endothelium, 

these tools have the potential to reveal real-time physiological signaling and cytoskeletal 

perturbations in asthma, infection or sepsis, and acute lung injury.

Intact lung tissue scatters confocal laser illumination and makes imaging beyond the surface 

impossible (Follain, Mercier et al. 2017). The utilization of pulsed lasers at infrared 

wavelengths that focused laser light only at the focal plane led to the development of two-

photon (2P) microscopy and made imaging inside tissue feasible. In conventional confocal 

microscopy, single excitation photon absorption produces a single red-shifted photon 

emission whereas in 2P microscopy, the simultaneous absorption of two photons with half 

the energy each can excite the same fluorophore. Hence, the photon density must be 

concentrated in both time and space by pulsed lasers and objective lenses with very high 

numerical aperture. Tissue penetration by 2P lasers occurs via several properties: (1) the 

nonlinear properties of 2P absorption confine the excitation to a small volume; (2) infrared 

light is poorly absorbed and scattered by biological tissue; (3) excitation occurs exclusively 

at the focal plane, obviating the need for pinholes. These properties result in tissue 

penetration by several hundred micrometers, strong signal-to-noise ratio, and reduced 

phototoxicity (Follain, Mercier et al. 2017, Sewald 2018). The development of the thoracic 

vacuum window made intravital 2P microscopy in mouse lung feasible (Looney, Thornton et 

al. 2011). Its utilization realized 2P imaging of mouse lung and revealed spatiotemporal 

cellular dynamics of lung immunity, mechanics, and microcirculation (Looney and 

Bhattacharya 2014).

Most of the 2P intravital microscopy (2P-IVM) in lung generally has focused on 

immunology and tumor invasion (Lelkes, Headley et al. 2014, Looney and Bhattacharya 

2014, Entenberg, Rodriguez-Tirado et al. 2015, Kamioka, Takakura et al. 2017). In the last 

decade, most of the pulmonary endothelial imaging has focused on the glycocalyx, 

apoptosis, and endothelial interactions with platelets, leukocytes, and neutrophils (Kuebler 

2011, Yang, Yang et al. 2013, Brown, Hunt et al. 2014, Lelkes, Headley et al. 2014, Looney 

and Bhattacharya 2014, Gill, Rohan et al. 2015, Park, Choe et al. 2018). Surprisingly very 

little 2P-IVM has been employed to examine the pulmonary endothelial cytoskeleton 

specifically, regardless of potential revelations in acute lung injury, infection, and asthma/

disease progression (Gao, Grant et al. 2007, Wang, Brown et al. 2018). Transgenic mice 

expressing Lifeact-mRuby or –EGFP with verified expression in lung have been available 

since 2010 and 2P imaging of Lifeact-GFP in neutrophils and acinar cells in transgenic mice 

has been reported (Riedl, Flynn et al. 2010, Weigert, Sramkova et al. 2010, Lammermann, 

Afonso et al. 2013); however, 2P-IVM studies of the pulmonary endothelium have not yet 

been applied to Lifeact-expressing transgenic mice. The cytoskeletal dynamics of actin in 
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EC activated by thrombin or S1P are very well established in vitro; now utilization of 

Lifeact-expressing transgenic mice to interrogate endothelial cytoskeletal dynamics via these 

signaling pathways is warranted. Subcellular resolution image analysis in live lung has been 

documented and, therefore, imaging subcellular cytoskeletal structures is feasible 

(Entenberg, Rodriguez-Tirado et al. 2015). Moreover, disease application with these 

transgenic mice can reveal cytoskeletal perturbations via insult by inflammation and/or 

infection.

Several signaling FRET biosensors for Rac1 (Johnsson, Dai et al. 2014), RhoA (Nobis, 

Herrmann et al. 2017), PKA (Yamauchi, Kamioka et al. 2016), cGMP (Thunemann, Schmidt 

et al. 2014), and a FRET Ca2+ indicator (Direnberger, Mues et al. 2012) transgenic mouse 

lines now exist that can be used to interrogate signaling in the submembranous cytoskeleton 

of the pulmonary endothelium. Two-photon IVM FRET in lung has been accomplished by 

Kamioka et al. (2017) wherein Erk activity was detected by phosphorylation of the 

EKAREV Erk biosensor, which induces a conformational change that brings ECFP and 

YPet into FRET-generating proximity (Kamioka, Sumiyama et al. 2012, Kamioka, Takakura 

et al. 2017). Two-photon IVM FRET imaging and expression of the Erk biosensor in 

leukocytes and other polymorphonuclear cells was employed to localize Erk activity in the 

vasculature around alveoli. ECFP was excited at 840 nm and both ECFP and YPet 

fluorescence emission were captured and ratioed. Erk was activated strongly in 

polymorphonuclear cells around tumor emboli in mouse lung (Kamioka, Takakura et al. 

2017). The in vivo application of these transgenic mice to investigate of RhoA-mediated 

endothelial barrier disruption, Rac1-mediated cortical actin ring formation, regulation of 

vascular permeability by PKA, and vasodilation by cGMP, and calcium activation of 

nmMLCK, will begin to reveal the native physiological regulation of pulmonary endothelial 

cytoskeletal architecture. The forces generated in this architecture can be imaged once 

mechanotransduction FRET biosensors, such as in vinculin, α-catenin, and VE-cadherin, are 

finally incorporated into transgenic mice in the near future (Hirata and Kiyokawa 2016, 

Dorland and Huveneers 2017).

Most recently, a permanent window for IVM of murine lung has been constructed 

(Entenberg, Voiculescu et al. 2018). The lung adheres to the window without any reported 

inflammation or tissue damage over a two-week period. The window can be immobilized on 

an inverted microscope stage and imaged with a 2P laser and 20×/0.95 NA objective lens. 

Fiduciary markers on the window facilitate registration and visualization of the same 

vasculature day-to-day. Motion of subcellular organelles and VE-cadherin-labelling of 

endothelial cells has been captured, as has transendothelial migration of tumor cells 

(Entenberg, Voiculescu et al. 2018). Now the tools to probe signaling and cytoskeletal 

visualization exist for in vivo subcellular biology of the pulmonary endothelium and their 

utilization and revelations await.

CONCLUSION

Pulmonary endothelial permeability is integral to normal physiologic function but is also 

responsible for devastating pathologic disease. The fine-tuned regulation of the blood-gas 

barrier depends on the EC membrane to form a physical partition between the vascular and 
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interstitial spaces. The concepts outlined in this review highlight the importance of cortical 

actin and dynamic cytoskeletal rearrangements, directed by numerous regulatory proteins, in 

determination of barrier integrity. Continued work on actin-related proteins, such as 

cortactin, nmMLCK, and Arp 2/3, should improve our understanding of these complex 

processes and may help identify therapeutic targets to reduce vascular leak and 

inflammatory lung injury. Exploration of the connection between cytoskeletal force 

generation and movement of the lipid membrane is in many ways just beginning. These 

studies demand precise spatiotemporal characterization of protein activity and subsequent 

structural changes within the cell. The recent advancements in super-resolution, atomic 

force, and intravital microscopy techniques are beginning to facilitate these investigations 

and complement the wealth of biochemistry that has already been described. A focus on the 

endothelial cell membrane, its dynamic structure, and mechanisms of regulation are sure to 

bring new and exciting discoveries to the world of vascular biology in the years to come.
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Figure 1. Barrier regulation by cytoskeletal and membrane structures.
Pulmonary endothelial barrier integrity is the result of coordinated cell processes involving 

receptors, signaling molecules, junctional complexes and protein-regulated cytoskeletal 

rearrangements leading to changes in membrane dynamics. (A) Activation of specific 

transmembrane receptors are critical to initiate barrier disruptive (PAR-1) or protective 

(S1PR1) signaling events. (B) Ligation of the S1PR1 receptor recruits signaling molecules 

and cytoskeletal effector proteins to lipid rafts. Phosphorylation of cortactin and myosin 

light chain kinase results in rapid cytoskeletal changes. (C) The formation of a cortical actin 

ring provides structural stability and anchoring for multiple membrane-bound junctional 

complexes which become activated, strengthening connections to neighboring cells and the 

extra cellular matrix. Branched actin polymerization, regulated by Arp 2/3 and cortactin, 

generates protrusive force on the plasma membrane, forming sheet-like projections or 

lamellipodia which close gaps between individual cells and further enhance membrane 

junctions.
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Figure 2. Super-resolution microscopy techniques.
The fluorescence and optical principles for three super-resolution microscopy techniques are 

shown with demonstrated lateral resolution noted in parentheses. (A) Stimulated emission 

depletion microscopy (STED): Effectively reduces the volume of the point spread function 

(PSF) of an objective lens, which is the three-dimensional diffraction volume of emitted 

light transmitted by an objective lens from an infinitesimally small point source of light in 

the specimen. A red-shifted laser with hollow beam (depletion laser) quenches fluorophores 

on the periphery of the PSF, leaving a small central subdiffraction volume of excited 

fluorophores that emit photons. Adapted from Blom and Widegren, 2017. (B) Single 

molecule localization microscopy (SMLM): Encompasses several related techniques that 

obtain many thousands of images of a given sample in which only a very small number of 

fluorophores are fluorescing at a given time. Precise localization of the geometric centers of 

individual fluorophores within the thousands of collected images can then be used to 

reconstruct a super-resolution image. (C) Structured illumination microscopy (SIM): A 

moveable diffraction grating is placed in the illumination aperture of the excitation beam 

path of a laser-illuminated wide-field microscopy set-up to generate a sinusoidal pattern of 

light with resulting Moiré fringes. The high frequency illumination stripes and high 

frequency object organization create even higher spatial frequencies below the diffraction 

limit. Multiple raw images must be collected at different diffraction orientations to 

reconstruct the final super-resolved image. (D) Actin cytoskeleton of COS-7 cells labeled 

with phalloidin-AlexaFluor 488 using SIM and STED and phalloidin-AlexaFluor647 using 

SMLM. Boxed areas note higher resolution areas of the lamella and lamellipodium in each 

optical section. Reprinted with permission from Wegel et al., 2016.
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Figure 3. Combined super-resolution and atomic force microscopy.
(A) Components of a typical atomic force microscope (AFM) are depicted. AFM employs 

an exquisitely sensitive cantilever upon which a laser beam is reflected and a photodetector 

senses laser beam deflections to map the cell surface at atomic resolution of 0.1 nm in both 

lateral and axial dimensions. Adapted from Shan and Wang, 2015. (B) Representative image 

of a live murine astrocyte obtained by sequential, correlated STED-AFM microscopy. Super-

resolution STED images (top inset) reveal polarized F-actin in the lamella and near the 

leading edge. Actin labelled with SiR-actin can be seen with corresponding thick filaments 

in AFM images (bottom panel) associated with focal adhesions (arrows). Reprinted with 

permission from Curry, Ghezali et al. 2017.
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