Skip to main content
. 2018 Nov 5;18(11):3780. doi: 10.3390/s18113780
Algorithm 1 Improved Robust AdaBoost classifier with RBFSVM: RAB-RBFSVM+.
Input: Training datasets s=xi,yii=1m with labels y1,+1.
  • 1:

    initialize: Normalize training datasets; Initialize weights of datasets via Equation (46), σstep via Equation (41); σini12;m1;err1;N100;I0_trI;

  • 2:

    whilem<N&err0do

  • 3:

     Train a RBFSVM base classifier ht on the weighted training datasets and get the misclassification flag of samples Im.

  • 4:

     Compute training errors using Equation (28)

  • 5:

     Compute diversity value using Equations (39) and (40)

  • 6:

     Compute misclassification times of samples: Im_tr=Im1_tr+Im

  • 7:

     Compute possibility of noise samples via Equations (42)–(44)

  • 8:

     Decrease σ by σm

  • 9:

    if σ>σstep&err0 then

  • 10:

      Catch the right σ which minimize the error: σm, and go to step 3

  • 11:

    end if

  • 12:

    σ=σm

  • 13:

     Repeat step 3-7

  • 14:

     Set the weight of component classifier via Equation (34)

  • 15:

     Update the weight of samples via Equation (45)

  • 16:

    end while

Output: Combine classifiers via Equations (32) and (33)