Table 7.
Criteria | ADTree | RF | RS | BA | MB | |||||
---|---|---|---|---|---|---|---|---|---|---|
T | V | T | V | T | V | T | V | T | V | |
True positive | 77 | 27 | 73 | 28 | 76 | 28 | 75 | 28 | 80 | 28 |
True negative | 81 | 23 | 77 | 22 | 79 | 21 | 78 | 21 | 78 | 22 |
False positive | 0 | 3 | 8 | 2 | 5 | 2 | 6 | 2 | 1 | 8 |
False negative | 4 | 7 | 4 | 8 | 2 | 9 | 3 | 9 | 3 | 2 |
Sensitivity | 0.951 | 0.794 | 0.948 | 0.778 | 0.974 | 0.757 | 0.962 | 0.757 | 0.964 | 0.933 |
Specificity | 1.000 | 0.885 | 0.906 | 0.917 | 0.940 | 0.913 | 1.000 | 0.913 | 0.987 | 0.733 |
Accuracy | 0.975 | 0.833 | 0.926 | 0.833 | 0.957 | 0.817 | 0.981 | 0.817 | 0.975 | 0.833 |
AUROC | 0.979 | 0.862 | 0.984 | 0.898 | 0.997 | 0.901 | 0.983 | 0.893 | 0.996 | 0.892 |
T, training dataset; V, validation dataset.