Table 8.
Criteria | ADTree | RF | RS | BA | MB | |||||
---|---|---|---|---|---|---|---|---|---|---|
T | V | T | V | T | V | T | V | T | V | |
True positive | 81 | 18 | 81 | 19 | 78 | 18 | 81 | 18 | 81 | 18 |
True negative | 82 | 20 | 82 | 20 | 82 | 20 | 82 | 20 | 82 | 20 |
False positive | 8 | 4 | 8 | 3 | 11 | 4 | 8 | 4 | 8 | 4 |
False negative | 7 | 1 | 7 | 2 | 7 | 2 | 7 | 2 | 7 | 2 |
Sensitivity | 0.920 | 0.947 | 0.920 | 0.905 | 0.918 | 0.900 | 0.920 | 0.900 | 0.920 | 0.900 |
Specificity | 0.911 | 0.833 | 0.911 | 0.870 | 0.882 | 0.833 | 0.911 | 0.833 | 0.911 | 0.833 |
Accuracy | 0.916 | 0.884 | 0.916 | 0.886 | 0.899 | 0.864 | 0.916 | 0.864 | 0.916 | 0.864 |
AUROC | 0.967 | 0.903 | 0.987 | 0.937 | 0.972 | 0.926 | 0.974 | 0.926 | 0.988 | 0.934 |
T, training dataset; V, validation dataset.