Skip to main content
. 2018 Nov 1;18(11):3717. doi: 10.3390/s18113717

Table 2.

Producer’s accuracy (PA), user’s accuracy (UA), F1 score (F1), test overall accuracy (OA) and kappa coefficient (kappa) of Support Vector Machine (SVM), CNN, U-Net and ASPP-Unet models based on WorldView-2 (WV2) test image patches, and training OA of each model based on the 50 WV2 training image patches.

WV2 SVM CNN U-Net ASPP-Unet Res_ASPP_Unet
PA
(%)
UA
(%)
F 1 PA
(%)
UA
(%)
F 1 PA
(%)
UA
(%)
F 1 PA
(%)
UA
(%)
F 1 PA
(%)
UA
(%)
F 1
Vegetation 91.9 91.1 0.915 92.4 93.2 0.928 91.8 93.3 0.926 91.7 94.1 0.929 91.8 94.3 0.930
Water 98.9 55.9 0.714 97.8 90.8 0.942 97.5 79.4 0.875 98.5 87.7 0.928 90.2 91.0 0.906
Road 45.6 52.4 0.488 67.7 74.4 0.709 71.8 74.5 0.731 78.0 70.1 0.738 78.5 79.9 0.792
Building 58.9 49.1 0.536 83.5 71.9 0.773 83.1 81.3 0.822 81.3 84.5 0.830 85.1 85.9 0.856
Shadow 67.7 86.7 0.796 81.1 87.8 0.843 81.8 81.7 0.817 79.0 80.3 0.796 89.0 74.9 0.814
Others 41.1 72.7 0.525 13.1 79.2 0.224 0 0 0 0 0 0 39.2 84.4 0.536
Test OA (%) 71.4 83.6 84.7 85.2 87.1
kappa 0.606 0.774 0.788 0.793 0.820
Training OA (%) 79.3 89.5 85.5 86.4 87.6