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Abstract: Luojia 1-01 satellite, launched on 2 June 2018, provides a new data source of nighttime light
at 130 m resolution and shows potential for mapping urban extent. In this paper, using Luojia 1-01 and
VIIRS nighttime light imagery, we compared several methods for extracting urban areas, including
Human Settlement Index (HSI), Simple Thresholding Segmentation (STS) and SVM supervised
classification. According to the accuracy assessment, the HSI method using LJ1-01 data had the best
performance in urban extent extraction, which presented the largest Kappa Coefficient value, 0.834,
among all the results. For the urban areas extracted by VIIRS based HSI method, the largest Kappa
Coefficient value was 0.772. In contrast, the largest Kappa Coefficient values obtained by STS method
were 0.79 and 0.7512 respectively when using LJ1-01 and VIIRS data, while for SVM method the
values were 0.7829 and 0.7486 when using Landsat-LJ and Landsat-VIIRS composite data respectively.
The experimented results demonstrated that the utilization of nighttime light imagery can largely
improve the accuracy of urban extent extraction and LJ1-01 data, with a higher resolution and more
abundant spatial information, can lead to better identification results than its predecessors.
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1. Introduction

Over the past half-century, most regions of the world, especially developing countries, have
experienced a phase of high-speed urbanization [1–3]. In China, since the implementation of the
reform and opening-up policy, the urbanization rate has increased by about 1% per year, from 17.9%
in 1978 to 58.5% in 2017 [4]. The rapid development of urbanization has brought dramatic changes
in urban areas, as well as a series of regional socio-economic and ecological problems caused by
disorderly urban sprawl [5–11]. Therefore, accurate and timely measurement of urban areas, which is
vital for analyzing urbanization dynamics and controlling problems mentioned above, has become an
important topic in urban research [12–16].

As an objective and real-time data source, remote sensing satellite images have been widely
used in urban area mapping and urbanization monitoring. Currently, coarse resolution images, such
as the nighttime light (NTL) data have proven effective in urban extent extraction at regional and
global scales [17–21]. At cloud-free nights, the visible light images of the earth’s surface detected
by remote sensors are remotely sensed NTL images. Unlike daytime remote sensing images, the
city lights recorded by the NTL images are closely related to human activities [22]. Therefore, it
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provides a unique perspective for socio-economic analysis and has been widely used in the fields
of regional economy [23–27], urbanization [28–30], power consumption estimation [31], conflict
assessment [32–34] and so forth. According to previous research, the Defense Meteorological Satellite
Program’s Operational Linescan System (DMSP/OLS) data and the Day/Night Band (DNB) in the
Visible Infrared Imaging Radiometer Suite (VIIRS) on the Suomi National Polar-orbiting Partnership
Satellite are the two most commonly used NTL data sources [35,36]. Launched in the 1970s, the
DMSP/OLS has a rich archive of data but it also has some shortcomings such as coarse spatial
resolution (~2.7 km), blooming effects, saturation in urban cores and lack of on-board calibration,
which may lead to misestimates of urban areas [31,37–39]. While the VIIRS DNB data, as a successor
to the DMSP/OLS, has provided significant improvements such as finer spatial resolution (~740 m),
on-board calibration and wider radiometric measurement range, largely reducing the saturation and
blooming problems of the DMSP/OLS data [40–43].

Generally, the urban extent extraction methods using NTL data can be divided into three types, that
is, thresholding-based, classification-based and index-based methods [44–46]. The thresholding-based
method selects suitable values (local or global) to segment images [45,47,48]. As single-threshold has
been proven to be problematic for urban areas at different levels of development, a multiple-threshold
method is widely adopted in urban extent extraction. Shi et al. [49] utilized statistical data from
the government as reference and when the urban areas extracted results and the reference data
produced the minimum difference, the DNB values used for extraction were determined as the optimal
thresholds. Zhou et al. [50] developed a cluster-based method to map urban areas, where a logistic
regression model was used for potential urban clusters and optimal thresholds were estimated by
cluster size and overall NTL magnitude. The classification-based method is to recognize NTL data
as a kind of grayscale image and apply it to various classification algorithms. Jing et al. [51] utilized
the integration of NTL and MODIS data and evaluated the accuracy of four classification algorithms
for urban extent extraction. Xu et al. [52] and He et al. [53] mapped urban areas in China using the
integrated NTL, normalized difference vegetation index (NDVI) and land surface temperature (LST)
support vector machine (SVM) classification method. Nevertheless, the accuracy of classification
methods is largely influenced by the selection of training samples, while solid a priori knowledge is not
always available in the majority of cases. Besides, this process is labor-intensive and time-consuming
and the accuracy of extraction results may suffer from the design of class schemes [54,55]. In the
way of index-based methods, Lu et al. [56] proposed the human settlement index (HSI) by integrating
DMSP/OLS NTL and MODIS NDVI data to extract urban areas in southeastern China. Zhang et al. [57]
developed a vegetation adjusted NTL urban index (VANUI) to study urban structures on the global
scale. Liu et al. [58] proposed a normalized urban area composite index (NUACI), involving the
normalized difference water index (NDWI) and enhanced vegetation index (EVI) to increase the
accuracy of urban extent extraction. However, limited by the spatial resolution of data sources, these
methods are applied at regional or global scales in most cases.

In June 2018, Luojia 1-01 (LJ1-01), a new generation of NTL remote sensing satellite, was launched
in China successfully. It has provided dramatic improvements over its predecessors, in terms of
increased spatial resolution (~130 m), high radiometric quantization (14 bits) with a swath of 250 km.
This new generation of NTL data source brings new possibilities and insights to the study of urban
extent extraction, especially the improvement of image spatial resolution, which may not only increase
the accuracy of urban extent mapping but also show more details of urban structure. Furthermore,
urban extent extraction using LJ1-01 NTL data can to some extent fill the gaps in the field of NTL
remote sensing in local-scale research.

The main purpose of this paper was to assess the accuracy of urban extent extraction at the
city scale using LJ1-01 nighttime light imagery. For comparison, index-based, thresholding-based
and classification-based methods were all adopted in the experiment. Besides, VIIRS DNB imagery
were also utilized to reveal the difference between two kinds of NTL data. Finally, the Google Map
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high-resolution satellite images were used as reference and a visual interpretation method was applied
for accuracy assessment.

2. Study Area and Data

2.1. Study Area

Wuhan, situated in the central part of China, is the capital city of Hubei Province. Wuhan covers
an area of 8494.41 km2 and had a population of 10.89 million by the end of 2017 [59]. Due to the
confluence of the Yangtze River and its greatest branch—the Han River, Wuhan is divided into
three districts, namely Wuchang, Hankou and Hanyang. Wuhan has been known as the “City of
Hundred Lakes”, where urban water area accounts for 1/4 of the total area. It has also been regarded
as the “Thoroughfare to Nine Provinces”, serving as the transportation junction which links the
east and west, as well as the north and the south [60]. Since the implementation of the reform
and opening-up policy in 1978, the whole Chinese society has undergone dramatic socio-economic
development, which accommodates urban expansion. Wuhan has also experienced an impressive
social and economic transformation, such as industrialization and rapid urbanization and has become
one of the fastest-growing cities in China during the past three decades.

2.2. Data

2.2.1. LJ1-01

LJ1-01, launched on 2 June 2018, is the first satellite in the Luojia-1 scientific experimental satellite
series owned by Wuhan University. It is the first remote sensing satellite focusing on nighttime light in
China and also the first low-orbit satellite with earth observation and satellite navigation enhancement
functions. LJ1-01 is a 20 kg-level micro-nano satellite, equipped with a high sensitivity night-light
camera that has a spectral bandwidth of 0.319 µm. It can obtain high-precision nighttime light imagery
with a dynamic range of up to 14 bits at night, with a spatial resolution of 130 meters and a swath of
250 km. It will provide an objective basis for the research of socio-economic parameter estimation,
eco-environmental disaster monitoring, major event assessment, public health and other fields, carrying
out dynamic monitoring of macroeconomic operations in China and the world. The data is free to
download at the High-Resolution Earth Observation System of the Hubei Data and Application Center
(http://59.175.109.173:8888/, accessed in June 2018). Since the radiometric calibration for LJ1-01
imagery is still under improvement, we used digital number (DN) value in this experiment for analysis.
The comparison of parameters for DMSP/OLS, NPP/VIIRS and LJ1-01 NTL data are shown in Table 1.

Table 1. Comparison of parameters for different NTL data.

Parameters DMSP/OLS NPP/VIIRS LJ1-01

Available Period 1992–2013 November 2011–present June 2018–present
Country The U.S. The U.S. China

Spatial Resolution 2.7 km 740 m 130 m
Swath 3000 km 3000 km 250 km

Spectrum Range 0.5–0.9 µm 0.5–0.9 µm 0.46–0.98 µm
Radiometric Resolution 6 bits 14 bits 14 bits

Saturation Saturated Not saturated Not saturated

2.2.2. VIIRS DNB

VIIRS DNB Cloud-Free Composites (version 1) are a suite of average radiance composite images,
where the data impacted by stray light, lightning, lunar illumination and cloud-cover have been
excluded. The products are produced in 15 arc-second geographic grids, spanning the globe from
75 N latitude to 65 S. In this research, the VIIRS DNB data was utilized for comparison with LJ1-01
NTL data in urban extent extraction. Data were downloaded from the NOAA National Geophysical

http://59.175.109.173:8888/
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Data Center (https://ngdc.noaa.gov/eog/viirs/download_dnb_composites.html). Since the monthly
composite images of June 2018 have not been released yet, the images of May 2018 were selected for
the experiment.

2.2.3. Landsat 8 OLI

Landsat 8 Operational Land Imager (OLI) Level-2 data for the study area were obtained from
the United States Geological Survey (USGS) website (https://earthexplorer.usgs.gov/). Level-2 data
products, also called surface reflectance products, provide an estimate of the surface spectral reflectance
at a 30-m spatial resolution in the absence of atmospheric scattering or absorption [61]. Since the
Landsat image in June 2018 was partly covered by clouds, the closest cloud-free image in April 2018
was selected for this research. The data was utilized in both HSI and SVM methods to compare their
performance in urban extent extraction.

2.2.4. Other Auxiliary Data

Google Map remote sensing satellite images, with a spatial resolution of 1 m, were utilized as
reference data in the visual interpretation accuracy assessment. The study area under different data
sources are shown in Figure 1.
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3. Methods

3.1. Data Preprocessing

First of all, the data in the study area—Wuhan city, was clipped from the original datasets.
Then, for consistency among different data sources, the LJ1-01 NTL, the VIIRS DNB, the Landsat 8 OLI
products and the Google Map satellite images were all re-projected to Albers Conical Equal Area
projection. After that, a bilinear interpolation algorithm was applied to resample the LJ1-01 NTL and
VIIRS DNB images to the same resolution as that of the Landsat data (i.e., 30 m) and each image has a
size of 3000 × 3000 pixels. In addition, since land-reflected moon light has not been excluded from the
monthly composite products of VIIRS DNB data, it is necessary to remove background noise before
use. In this research, all pixel values in VIIRS imagery were subtracted by 0.5 first, then pixels with
negative DN values were assigned values of zero.

To apply the HSI method developed by Lu et al. [56], the NDVI image was generated first, as
Equation (1) shows. However, this method has been proven to be difficult to separate urban areas
and water bodies accurately [62]. Thus, to enhance the performance of the HSI, the NDWI image was
also generated as a mask to remove water areas from the original HSI result. The NDWI proposed by
Mcfeeters [63] was derived as Equation (2):

NDVI =
NIR − R
NIR + R

(1)

NDWI =
G − NIR
G + NIR

(2)

where NIR, R and G are Landsat 8 OLI surface reflectance images in near-infrared, red and green
band respectively.

3.2. Urban Extent Extraction Based on Different Methods

3.2.1. Human Settlement Index

The Human Settlement Index, proposed by Lu et al. [56], is a method of extracting residential sites
from the integration of nighttime light data and the NDVI index. In theory, NDVI images generated
by Equation (1) have values ranging from −1 to 1. However, as the LJ1-01 NTL data has a dynamic
radiometric range of 14 bits, the DN values in the study area ranging from 0 to 1879. Thus, it is
necessary to match the NTL data with the range of NDVI index.

First, pixels with zero values were masked out and a natural logarithmic transformation was
adopted to the LJ1-01 NTL images to maintain the rich details in the nighttime light. Then, the data
was normalized as Equation (3):

NTLnor =
NTL − NTLmin

NTLmax − NTLmin
(3)

where NTLnor is the normalized value of the LJ1-01 NTL image, NTLmax and NTLmin are the
minimum and maximum values in the LJ1-01 NTL image respectively. Then the HSI was generated as
Equation (4):

HSI =
(1 − NDVI) + NTLnor

(1 − NTLnor) + NDVI + NTLnor × NDVI
(4)

After that, regions with DN values greater than 0 in the NDWI image were regarded as water
bodies, the mask was generated and the corresponding regions in the HSI image were removed.
Lastly, multiple thresholds (from 0.25 to 1.2 with an interval of 0.05) were applied to extract urban
areas from the HSI image.
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The processing of VIIRS DNB data was exactly the same as that of LJ1-01 data mentioned above.
The logarithm transformation and normalization algorithm were adopted first, then the HSI was
generated, with water bodies removed by NDWI. Lastly, multiple thresholds were applied to extract
urban areas from the HSI image.

3.2.2. Simple Thresholding Segmentation

In order to compare with the result of the HSI method in Section 3.2.1, the Simple Thresholding
Segmentation (STS) method was also adopted in this research using LJ1-01 NTL and VIIRS DNB data
respectively [64]. Since it was difficult to determine the optimal threshold for urban extent extraction,
multiple thresholds have been tested and finally, 1 to 20 with an interval of 1 have been selected as
threshold values to extracted urban areas from the two kinds of NTL imagery.

3.2.3. SVM Supervised Classification

As mentioned in the Introduction section, thresholding-based, classification-based and
index-based methods are the three most commonly used methods for urban extent mapping. Thus, in
this research, the SVM supervised classification method was also adopted for comparison [65,66].
First, the normalized difference built-up index (NDBI) was generated. The NDBI index was proposed
by Zha et al. [67] for urban built-up areas extraction using Landsat TM data. When applied to Landsat
8 OLI data, it was derived as [68]:

NDBI =
SWIR1 − NIR
SWIR1 + NIR

(5)

where SWIR1 and NIR are Landsat 8 OLI surface reflectance images in shortwave infrared 1 and
near-infrared band respectively. Then, in addition to Landsat band 1~7, the generated NDBI image
was also added as an additional band to enhance the information of built-up areas in Landsat data.
The image was classified into five land-cover types presented in the study area, that is, bare soil,
water bodies, vegetation, built-up land in high reflectance and built-up land in low reflectance.
For each land-cover type, over 1000 pixels were selected as training samples based on interpretation of
high-resolution images from Google Earth and separability for all the type-pairs were greater than
1.8. After performing the SVM classification, bare soil, water bodies and vegetation in the results were
merged into non-urban areas, while the built-up land covers were recognized as urban areas.

In order to compare the results using different datasets, NTL data was also utilized in this
experiment for classification-based urban extent extraction. The resampled LJ1-01 and VIIRS nighttime
light imagery was added to Landsat band 1~7 as an additional band respectively and the Landsat-LJ
and Landsat-VIIRS composite data were generated. Then the SVM classifier was applied using the
same training samples as above. Lastly, the extraction results went for accuracy assessment, which
will be presented in Section 3.3.

3.3. Accuracy Assessment

A visual interpretation method was utilized to quantify the performance of different urban
extent extraction methods presented in Section 3.2. Google Map remote sensing satellite imagery was
recognized as reference data, that is, “ground truth” data, with a spatial resolution of 1 m.

First, 800 randomly sampled points in the study area were generated. Then each point was
labeled as “urban area” or “non-urban area” by visual interpretation using Google Map satellite
images. After that, extracted urban areas obtained in Section 3.2 were recognized as “labeling results”
and the confusion matrix was established for each method to perform the accuracy assessment.

The confusion matrix is a specific table that is often used to describe the accuracy of classification
results [69]. Generally, rows in the confusion matrix correspond to classes, while columns correspond
to predicted classes (or vice versa). Several metrics are often used as performance assessment measures
based on confusion matrix, that is, Producer’s Accuracy (PA), User’s Accuracy (UA), Overall Accuracy
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(OA) and Kappa Coefficient (KC). PA measures the omission error, indicating the probability that an
urban pixel is correctly identified. UA measures the commission error, indicating the probability that a
labeled urban pixel is truly urban. OA indicates the proportion of pixels that are correctly identified
and lastly, KC indicates the agreement between “labeling results” and “ground truth” by combining
both types of errors, which can provide a more comprehensive assessment [70,71]. These metrics are
computed as:

PAk =
xkk
xk+

(6)

UAk =
xkk
x+k

(7)

OA =
∑ xkk

N
(8)

KC =
N ∑ xkk − ∑ xk+x+k

N2 − ∑ xk+x+k
(9)

where xkk is the number of pixels that are correctly identified, xk+ is the total number of pixels that
belong to class k, x+k is the total number of pixels identified as class k and N is the total number of
pixels in the dataset.

4. Results

Figures 2–6 show some of the urban extent extraction results based on different methods. Figures 2
and 3 show urban areas of Wuhan extracted by the HSI method using LJ1-01 and VIIRS data
respectively, while Figures 4 and 5 show urban areas extracted by STS method using LJ1-01 and
VIIRS data respectively. And urban areas shown in Figure 6 were extracted by SVM method using
Landsat only, Landsat-LJ composite and Landsat-VIIRS composite data. By comparing different results,
it can be found that urban extent extracted by the HSI method using LJ1-01 and VIIRS data were
generally similar. In the results derived from the STS method, a lot of spatial information within the
city was lost, especially when using VIIRS data. While in contrast, the urban extent extracted by SVM
method were overestimated in suburban areas especially when using Landsat data only.
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Figure 6. Extracted urban areas of Wuhan by SVM method using: (a) Landsat data only; (b) Landsat
and LJ1-01 composite data; (c) Landsat and VIIRS composite data.

The accuracy assessment for the performance of different methods are presented in Figure 7.
It can be found that the urban extent extracted by the HSI method using LJ1-01 data with a threshold
of 0.65 showed the largest KC value, 0.834, among all the results. Compared with other methods,
the HSI method using LJ1-01 data had the best performance, with all KC values larger than 0.797
when the thresholds were between 0.5 and 0.75. In terms of the HSI method using VIIRS data, the
KC values increased gradually from 0.2434 with the increase of the thresholds, reached the maximum
value of 0.772 when the threshold was 0.95 and then began to slowly decline. In contrast, the KC value
obtained by STS method showed different change trends from HSI method. When using LJ1-01 data,
the KC values remained at a relatively higher level around 0.77 when the thresholds were between
3 and 12, then began to decrease with the increase of the thresholds. When using VIIRS data, the
change trend was similar but the maximum KC value only reached 0.7512, which was lower than using
LJ1-01 data. As for the SVM method, the KC values for using Landsat only, Landsat-LJ composite and
Landsat-VIIRS composite data were 0.6427, 0.7829 and 0.7486 respectively.
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Figure 7. Accuracy assessment of urban extent extraction for: (a) HSI method using LJ1-01 data;
(b) HSI method using VIIRS data; (c) STS method using LJ1-01 data; (d) STS method using VIIRS data;
(e) SVM method.

In terms of PA, the HSI method using LJ1-01 and VIIRS data both maintained significantly high
PA values when the thresholds were less than 0.7 and they also had similar change trends. In contrast,
the PA values of the STS method using LJ1-01 and VIIRS data were relatively low and dropped sharply
with increasing thresholds. In terms of UA, all the methods that used LJ1-01 data kept at a relatively
high level and the SVM method using Landsat-LJ composite data had the best result. In the matter of
OA, LJ1-01 data still had better performance than VIIRS data. The largest OA values for HSI, STS and
SVM method when using LJ1-01 data were 0.9313, 0.915 and 0.9213 respectively, all larger than those
of VIIRS data used ones.

5. Discussion

5.1. The Advantages of NTL Data in Urban Area Extraction

In this research, we compared several commonly used methods for extracting urban areas,
including NTL based and non-NTL based methods. The experimental results demonstrated that the
adding of NTL to Landsat data can improve the accuracy of urban extent extraction results.

Urban areas shown in Figure 6a were extracted by the SVM method using Landsat data only,
while urban areas shown in Figure 6b,c were extracted by the same method, except that the data were
replaced with Landsat-LJ composite and Landsat-VIIRS composite data respectively. As can be seen
from the results, with the integration of NTL data, the overestimation in urban suburbs has been
largely reduced and the number of small patches has also decreased. According to Figure 7, after
adding VIIRS and LJ1-01 data, the KC values of SVM method increased from 0.6427 to 0.7486 and
0.7829 respectively, while the values of PA, UA and OA metrics all increased in varying degrees.

For a more intuitive comparison of NTL based and non-NTL based methods, urban extent
extraction results with the largest KC values for HSI and STS method are presented in Figure 8a,b
respectively, while Figure 8c presents the result of SVM method using Landsat data only, along with
the Google Map satellite image in Figure 8d for comparison. It can be clearly seen that the HSI
method (LJ1-01 data used, threshold = 0.65) had the best extraction result of urban extent, while the
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SVM method using only Landsat data had the worst. Specifically, the STS method (LJ1-01 data used,
threshold = 5) shows a large overestimation in urban cores, while SVM method contrarily shows an
underestimation in urban cores and overestimation in urban suburbs, resulting in a large number of
redundant small patches. This is consistent with the accuracy assessment results in Figure 7. The values
of OA and KC metrics both exhibited the same decreasing trends among these three results, that is,
HIS > STS > SVM. This finding demonstrates that the SVM method using only Landsat data to extract
urban extent may not be accurate enough. It is difficult to separate bare soils from urban land, which
may cause overestimation in urban suburbs. The utilization of NTL data, which is able to represent
luminous built-up areas at night, can greatly improve the accuracy of urban extent extraction.
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using Landsat data only; (d) Google Map satellite image for comparison.

5.2. The Advantages of LJ1-01 Data Compared with VIIRS

In this research, we also compared the performance of different NTL data in urban extent
extraction. LJ1-01 NTL and VIIRS DNB images were utilized to contrast two main nighttime light data
sources. Figure 9a,b displays the urban extent extraction results with the largest KC values for the HSI
method using LJ1-01 and VIIRS data respectively and the results with the largest KC values for STS
method are shown in Figure 9c,d. It can be seen that HSI methods using both LJ1-01 and VIIRS data
were effective in urban extent extraction. In addition to human settlements, the luminous bridges and
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roads at night can also be identified accurately. However, the urban areas extracted based on VIIRS
data were more fragmented with a large number of small patches and many urban pixels have not been
identified. In contrast, the LJ1-01 based HSI method exhibited better performance, which extracted
urban extent more accurately with less fragments and patches. This result is supported by the accuracy
assessment according to Figure 7. The largest KC value for VIIRS based HSI method was 0.772, while it
increased to 0.834 for the LJ1-01 based method. In terms of other metrics, the PA value increased from
0.871 to 0.9493, the UA value from 0.8043 to 0.824 and the OA value from 0.9075 to 0.9313 for VIIRS
and LJ1-01 data. Moreover, it can be seen from Figure 9c,d that when applying the STS method, the
extracted urban extent based on LJ1-01 data contained more urban spatial information than the VIIRS
data. This finding can be obtained from the accuracy assessment in Figure 7 as well. The largest KC
value for LJ1-01 based STS method, 0.79, was higher than that for the VIIRS based method. In terms
of the SVM method, the PA, UA, OA and KC values using Landsat-LJ composite data were 0.7235,
0.9813, 0.9213 and 0.7829 respectively, all of which were larger than the corresponding values using
Landsat-VIIRS composite data. The above results demonstrate that the LJ1-01 NTL data, which has a
higher spatial resolution, can bring more abundant spatial details in urban extent extraction and lead
to better identification results compared with VIIRS DNB data.
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5.3. Prospects for the Future

According to the experiments and analysis above, we have concluded that LJ1-01 NTL data, with
a spatial resolution of 130 m, contains more abundant spatial information of urban heterogeneity and
can lead to a more accurate result when used in urban extent extraction. However, there are still some
limitations in the application of LJ1-01 NTL data, which is worth more efforts in the future.

As a new nighttime light imagery source, the Luojia 1-01 satellite was launched in June 2018,
which means that only images from June 2018 to now can be obtained for the time being. The lack of
multi-temporal images makes LJ1-01 NTL data temporarily unable to be applied to long-term urban
dynamic monitoring. However, if LJ1-01 NTL data can be integrated with other nighttime light data
which has similar spatial resolution and long-time archived images, such as the International Space
Station (ISS) imagery, this problem can be alleviated to a certain extent. The ISS imagery is a kind of
multispectral photograph taken by astronauts in space using digital cameras, which has both daytime
and nighttime archives [72]. All the photographs can be freely downloaded at “Gateway to Astronaut
Photography of Earth” (https://eol.jsc.nasa.gov/), which is run by the National Aeronautics and Space
Administration (NASA). Compared with other commonly used nighttime light data, the ISS imagery
has several advantages, such as higher spatial resolution, three spectral bands in the visible range
and variable overpass times [73]. It has an abundant data archive since last century and during the
past decade, the quality of its imagery, especially nighttime light imagery has increased dramatically.
However, for most global cities, its high-quality imagery archiving is not enough to do research on
urban dynamic monitoring. With the release of LJ1-01 data, the integration of LJ1-01 and ISS nighttime
light images may provide a solution to this problem. By integrating various types of high-resolution
NTL data for a consistent observation, we can identify urban expansion areas between different periods
in a fine scale, as well as better understand the dynamic patterns of urban land expansion. Moreover,
further analysis in other geographical regions or at a global scale is to be performed. By combining
high-resolution NTL data from different sources and other remote sensing data, an accurate extraction
of urban extent in different periods and regions can be achieved. Therefore, a continuing mapping of
urban dynamics at the global scale will also be possible in the future.

6. Conclusions

In this research, we compared different methods of urban extent extraction in Wuhan city,
including a Human Settlement Index using both LJ1-01 and VIIRS images, Simple Thresholding
Segmentation using both LJ1-01 and VIIRS images and SVM supervised classification using Landsat
and NTL composite data. The performance of different methods was assessed by reference samples
from visual interpretation of Google Map satellite images. The results demonstrate that the HSI
method using LJ1-01 NTL data had the best performance in urban extent extraction, which can not
only accurately extract human settlements but also identify luminous bridges and roads at night.
In addition, it presented the largest Kappa Coefficient value, 0.834, among all the results when the
threshold was 0.65, while other metrics remained at a high level. The relevant findings of this research
are as follows:

(1) Compared with non-NTL methods, the addition of NTL data can largely improve the accuracy
of the extraction results. For SVM classification method, the values of all accuracy assessment metrics
have increased in varying degrees after adding LJ1-01 and VIIRS data respectively. By comparing the
urban extent extraction results which have the largest KC values for different methods, we can find
out that non-NTL based SVM classification method is likely to cause overestimation in urban suburbs,
while NTL based methods exhibited better performance according to the accuracy assessment.

(2) LJ1-01 NTL data, which contains more spatial details, can lead to better identification results
than VIIRS DNB data in urban extent extraction. The urban areas extracted by the VIIRS based
HSI method were fragmented with a large number of small patches, while the LJ1-01 based method
identified urban land more accurately. The same finding can be obtained from the accuracy assessment.
The largest KC value for the VIIRS based method was 0.772, while it increased to 0.834 for the

https://eol.jsc.nasa.gov/
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LJ1-01 based method. As for the STS and SVM methods, the LJ1-01 NTL data also presented better
performance compared with VIIRS DNB data.

(3) LJ1-01, as a new generation of nighttime light imagery, has provided higher spatial resolution,
wider radiometric measurement range and richer urban dynamic information over its predecessors.
It displays a great potential for urban extent extraction at city scale and is bound to be more widely
used in urban mapping. However, the current lack of multi-temporal images temporarily limits its
application in urban dynamic monitoring. By integrating LJ1-01 with other high-resolution nighttime
light imagery, we may find a solution to this problem. Moreover, the integration of high-resolution
nighttime light imagery and other remote sensing data may provide a possibility to map urban extent
in different periods and regions and then monitor urban dynamics continuously at the global scale in
the future.
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