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Abstract

Epstein-Barr virus (EBV) is a gamma-herpesvirus that establishes lifelong infection in the 

majority of people worldwide. EBV uses epigenetic reprogramming to switch between multiple 

latency states in order to colonize the memory B-cell compartment and to then periodically 

undergo lytic reactivation upon plasma cell differentiation. This review focuses on recent advances 

in the understanding of epigenetic mechanisms that EBV uses to control its lifecycle and to 

subvert the growth and survival pathways that underly EBV-driven B-cell differentiation versus B-

cell growth transformation, a hallmark of the first human tumor virus. These include the formation 

of viral super-enhancers that drive expression of key host dependency factors, evasion of tumor 

suppressor responses, prevention of plasmablast differentiation, and regulation of the B-cell lytic 

switch.
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Introduction

Human herpesviruses persistently infect immunocompetent hosts through a biphasic 

lifecycle that involves latent infection of a long-lived reservoir cell and occasional lytic 

reactivation. Epstein-Barr virus (EBV) is a ubiquitous human herpesvirus that crosses the 

tonsillar epithelium, infects B-cells and manipulates growth, survival and differentiation 

pathways to reach the memory B-cell compartment, the reservoir for lifelong infection [1]. 
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Recent advances continue to shed light on how EBV manipulates epigenetic pathways to 

reprogram host and viral programs in each of these states.

Whereas the lytic cycle promotes virus production and cell-to-cell spread, latency is critical 

for infected- cell proliferation and survival [2]. Upon B-cell infection, a brief pre-latent state 

occurs, where lytic transcripts are produced, including those encoding the immediate early 

transcription factors Zta and Rta, viral BCL2 homologs BHRF1 and BALF1, and the viral 

IL-10 homolog BCRF1 [3–7]. EBV-encoded miRNAs promote cell cycle and suppress 

apoptosis [8]. Latency IIb follows, with Epstein Barr nuclear antigens (EBNA) 1, 2 and LP, 

vBCL2 and non-coding RNAs (ncRNA) expressed (Figure 1). This program drives B-cell 

hyper-proliferation [4] and transitions to latency III, comprised of six EBNA, two latent 

membrane protein (LMP) and ncRNAs. In vitro, latency III transforms B-cells into 

immortalized lymphoblastoid cell lines (LCL). In vivo, EBV instead switches to latency II in 

immunocompetent hosts upon germinal center entry, where EBNA1, LMP1/2A and ncRNA 

are expressed. Upon memory cell differentiation, EBV restricts expression to EBNA1 and 

ncRNAs by the latency I program [2,9,10]. This progression is thought to result from the 

accumulation of epigenetic silencing marks on viral promoters [11,12] (Figure 1). 

Reactivation from latency requires de-repression of immediate early genes BZLF1 and 

BRLF1.

Here, we review recent advances in the understanding of epigenetic contribution to EBV 

latency states, lytic reactivation, EBV super-enhancers, silencing of tumor suppressors 

BCL2L11 and PRDM1, and in EBNA3-mediated suppression of LMP1/2A-driven 

plasmablast differentiation. Space limitations preclude discussion of equally interesting 

epigenetic mechanisms in EBV-infected epithelial cells [13].

Promoter methylation control latency states

In pre-latency as viral DNA becomes chromatinized, the viral W promoter (Wp) drives 

EBNA expression [14–16]. Zta preferentially activates early gene promoters with methylated 

5’-cytosine residues (5mC) termed meZREs, not widely distributed at this timepoint, 

preventing progeny virus production at this early timepoint [9,17,18]. Progressive EBV 

genome compaction and methylation silences leaky lytic transcription [6,14,15,17], while 

increasing EBNA2 and LP expression activate the C promoter (Cp) to induce EBNA1 and 3 

proteins. EBNA2 and host RBP-Jκ activate the unmethylated LMP promoter (LMPp) to 

induce LMP1 and LMP2A expression, triggering latency III (Figure 2A)[2].

Chromatin conformation has key roles in maintenance of EBV latency [19]. The looping 

factor CTCF binds to multiple EBV genome sites and is post-translationally regulated by the 

host enzyme Poly(ADPribose) polymerase (PARP1), which colocalize at specific EBV 

genomic sites. PARP1 stabilizes CTCF binding to maintain type III latency chromatin 

configurations [20]. PARP1 and CTCF suppress the BZLF1 promoter [21]. Curiously, 

knockdown of PARP1, but not CTCF promotes viral reactivation, suggesting that PARP1 

may have additional cellular cofactors that act redundantly with or independently of CTCF 

in lytic switch regulation.
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Accumulation of Cp methylation accompanies the shift to latency II, where the Q promoter 

(Qp) instead drives EBNA1, and a CTCF site insulates Qp from spreading repressive marks 

[22] (Figure 2A). Cytotoxic T-cell responses exert selective pressure for this antigenic 

silencing [23], and EBV likely also responds to cellular cues, for example resulting from 

germinal center entry. Progressive LMPp methylation leads to latency I, reducing 

immunogenicity [24]. Cellular cues likely contribute to this reprogramming, perhaps 

resulting from memory cell differentiation, germinal center exit or downmodulation of 

mitogenic transcription factors [4].

Changes in EBV and host genome methylation patterns in latency III have recently been 

linked to the host demethylase ten-eleven translocation 2 (TET2), a tumor suppressor that is 

frequently mutated in hematological cancers [25]. TET2 converts 5-methylcytosine (5mC) 

into 5-hydroxymethylcytosine (5’hmC) to de-repress target gene expression. Whereas TET2 

overexpression results in increased latency III protein expression, TET2 knockdown blocks 

latency III and triggers lytic expression [24,26]. Building on this hypothesis, latency III 

expression drives B-cell activation, and TET2 expression is higher in activated B-cells than 

in germinal center (GC) B-cells. Demethylating agents upregulate latency III transcripts in 

latency I B-cells. Further supporting key methylation roles, EBNA2, RBP-Jκ and EBF1 

induce TET2 expression and then co-occupy key LCL genomic sites with TET2 [24,26].

Epigenetic regulation of EBV lytic reactivation

Reactivation requires immediate early gene de-repression. Zta is homologous to bZIP family 

transcription factors and binds to AP-1-like Z-response elements (ZREs) [27–29]. Alanine-

to-serine substitutions homologous to Zta convert host AP-1 into a TF that binds methylated 

EBV DNA and that activates some EBV early genes [30], underscoring the close 

relationship between AP-1 and ZTA. Similarly, Rta binds R-response elements (RREs) with 

the consensus sequence 5′-GNCCN9GGNG-3′ (where N is any nucleotide). Zta and Rta 

induce one another as well as EBV early genes [27,31]. As such, Zp and Rp tightly control 

Zta and Rta expression, respectively [27].

Importantly, repressive H3K27me3 methylation deposited by polycomb-group proteins 

repress ZREs and RREs. This shielding is important for latency [32], and cellular factors 

such as MEF2D, ZEB1 and ZEB2 also inhibit early lytic replication by recruiting histone 

deacetylases to Zp and by negatively regulating cis-acting Zp elements. However, these 

factors instead enhance lytic induction upon B-cell receptor engagement or TGF-β1 

treatment [27].

Zta or Rta overexpression triggers lytic reactivation and virus production [33,34]. However, 

Zta and Rta lytic-inducing effects are not equal in their binding and activation of methylated 

promoters [35]. Zta only efficiently binds and activates CpG methylated viral promoters, 

while Rta only efficiently binds and activates unmethylated and perhaps CpG methylated 

promoters [27,35]. Adding another layer of depth, 5’hmC modification inhibits promoter 

binding and activation by ZTA [24,36]. Rta binding is unaffected by 5’hmC, yet 5’hmC 

enhances Rta-mediated promoter activation [36] (Figure 2B). TET2 knockdown enhances 

immediate-early expression in latency III cells [26].
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Curiously, Zta expression triggers lytic reactivation only in a subpopulation of B-cells, for 

reasons that are incompletely understood. STAT3, which is activated upon EBV entry, 

contributes to this phenotype, as cells with elevated STAT3 are refractory to reactivation 

[37]. Mechanistically, STAT3 regulates the KRAB-zinc finger proteins SZF1 and ZNF557 to 

silence multiple EBV lytic genes, in part through the enzyme TRIM28, which recruits the 

histone methyltransferase SETDB1, the DNA methyltransferases 3A/B, the NuRD histone 

deacetylase complex and the heterochromatin amplification factor HP1 [38]. Physiological 

EBV reactivation triggers are incompletely understood. Differentiation of latently infected 

memory B-cells into plasma-cells appears to be a major trigger [39]. Further supporting this 

hypothesis, treatment of latently infected cells with the immunomodulatory agent 

lenalidomide stimulates reactivation via enhanced PI3K signaling and activation of the 

downstream AKT and GSK kinases, a pathway also activated by B-cell receptor signaling in 

plasma cell differentiation. Lenalidomide effects on lytic induction are suppressed by PI3K 

inhibition, denoting important PI3K roles in this reactivation pathway [40,41]. Lenalidomide 

also suppresses expression of Ikaros, a host transcription factor positively regulated by 

PI3K-dependent Forkhead-box-O1 (FoxO1) [40]. Lenalidomide decreases FoxO1 and Ikaros 

levels and results in enhanced Zta/Rta expression. Ikaros knockdown suppresses EBV 

reactivation [42] (Figure 2C).

The specific mechanism by which Ikaros suppresses EBV lytic reactivation is currently 

incompletely understood [40,42]. Adding to the importance of the role of PI3K in lytic 

reactivation, overexpression of B-lymphocyte-induced maturation protein 1 (Blimp1), a 

cellular master regulator of plasma cell differentiation, induces lytic reactivation [43]. 

Blimp1 expression is partly controlled by PI3K activation, as knockout of PTEN, a cellular 

lipid phosphatase that negatively regulates PI3K, resulted in enhanced Blimp1 expression 

[44] (Figure 2C). Since lenalidomide induces degradation of IRF4, the major B-cell 

transcription activator of Blimp1, further studies are needed to assess specific elements of 

PI3K pathway and additional downstream targets that regulate EBV reactivation, but it 

stands as an important avenue of investigation.

Primary Effusion Lymphoma (PEL) are typically co-infected with EBV and Kaposi 

Sarcoma-Associated Herpesvirus (KSHV). Interestingly, EBV co-infection enhances KSHV 

persistence and tumorigenesis in a humanized mouse model [45]. In this model, co-infection 

results in a plasma-cell like state reminiscent of PEL, with enhanced EBV lytic gene 

expression. Coinfected B-cells express Zta, without detectable late gene expression. KSHV 

may therefore utilize EBV early lytic gene expression to drive cell proliferation and survival 

[45]. Abortive lytic EBV expression was detected in human PEL tumor samples. Open 

questions include whether a lack of methylated 5’-cytosine meZREs at PEL early gene 

promoters underlie the abortive lytic pattern, how KSHV contributes to EBV lytic gene 

expression, and how EBV lytic genes contribute to transformation.

EBNA and LMP1-activated NF-κB Form Viral Super-Enhancers

Super-enhancers (SE) are particularly strong enhancers that are major determinants of cell 

identity and malignant states [46,47]. Compared with typical enhancers, SE have 

significantly larger size, transcription factor density and content and are particularly 
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sensitive to perturbation, such as by BET-bromodomain inhibitors [46]. LCL chromatin 

immunoprecipitation with deep sequencing (ChIP-Seq) analysis identified SE at host 

genomic sites [48]. Using LCL EBNA and LMP1-activated NF-κB ChIP-seq datasets [49], 

two distinct types of viral SE were observed. 888 SE sites are EBNA2 occupied and termed 

EBNA2 SE, whereas 187 SE are co-occupied by EBNA2, LP, 3A and 3C and five NF-κB 

subunits and termed EBV SE [48].

To assign EBV SE-promoter linkages, LCL ChIP-seq and Chromatin Interaction Analysis by 

Paired-End Tag Sequencing (ChIA-PET) datasets [50] were integrated [51]. ChIA-PET 

defines 3-dimensional genome organization positioned by specific transcription factors, such 

as CTCF. EBV SE target 544 promoters at an average distance of 438 kilobases (kb), 

including the host dependency factors CFLAR, IRF4, IRF2 and MYC [51,52]. EBV further 

upregulates key targets by typical enhancers, including by EBNA2- and RBP-Jκ-bound 

enhancers [51,53]. RBP-Jκ is important for IRF4 induction by EBNA2 [54], and EBNA2 

likewise activates typical enhancers upstream and downstream of MYC [55]. EBNA3C 

associates with and stabilizes IRF4 [56].

EBV SE often target multiple host genes, and key genes are targeted by multiple EBV SE. 

For instance, EBV SE 525 and 428 kb upstream each target MYC. While the importance of 

most EBV SE remain to be established experimentally, deletion of either SE significantly 

diminishes MYC expression, LCL growth and survival [48]. It will be interesting to 

determine how EBV upregulates MYC in latency IIb in the absence of LMP1, or in latency 

II where LMPs but not EBNAs 2 and 3 are expressed.

How do EBV SE target promoters by long-range interactions? Conditional EBNA2 or 3 

allele studies suggest that EBV nuclear antigens may be DNA looping factors. Conditional 

inactivation of either EBNA2, 3A or 3C significantly reduces EBV SE looping to MYC [48]. 

EBNA2 recruits the SWI/SNF remodeler BRG1 ATPase to MYC-targeting enhancers, and 

BRG1 is necessary for their interaction with the MYC promoter [55]. EBNA2 drives 

cooperative and combinatorial binding of the EBF1 and RBP-Jκ, which then co-occupy 

newly induced binding sites with EBNA2 [57]. EBNA3 can instead repress or prevent the 

establishment of chromatin hubs through modulating enhancer-promoter loop formation 

[58]. Noncoding RNAs Pol II-transcribed from EBV SE also have roles in EBV SE looping 

to MYC [59].

How EBNA-LP contributes to EBV SE remains to be understood. Recombinant EBV 

deficient for EBNA-LP transforms B cells from adult donors at reduced efficiency as 

compared with wildtype EBV and could not fully transform umbilical cord B cells, which 

died by two weeks post-infection, suggesting epigenetic cell states define EBNA-LP roles 

[60]. Effects on EBNA2, RBP-Jκ and EBF1 recruitment to viral genome latency promoters 

were observed. EBNA-LP can also coactivate with the host histone acetyltransferase EP300 

[61], an effect that remains to be investigated in the context of EBV SE.

Positive feedback loops enforce expression of key SE targets, such as host microRNA 

miR-155HG, which is induced by multiple EBV SE and by EBV-SE target IRF4 [51,53]. 

Similarly, IRF4 and EBNA3C downmodulate BCL6 [62]. ChIP-seq analysis of SE 
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landscapes in pre-latency, latency IIb, II and I phases would undoubtedly reveal interesting 

shared and unique targets.

EBNA3A, 3C, IRF4 and BATF Epigenetic Regulation of Tumor Suppressor 

BCL2L11

EBV induces IRF4 and BATF [52], which are key regulators of B-cell differentiation and 

activation. Genome-wide Clustered Regularly Interspaced Short Palindromic Repeats 

(CRISPR) screens identified BATF and IRF4 as key EBV-induced host dependency factors 

necessary for LCL, but not EBV+ Burkitt cell survival [52]. CRISPR screens similarly 

implicated IRF4 as a key PEL dependency factor [63]. The IRF4 DNA motif is enriched at 

LCL human genome sites occupied by EBNA3C or EBNA3A [64–66], suggesting that EBV 

may often use IRF4 to target B-cell sites.

BATF and IRF4 bind cooperatively to DNA sites with an AP1-interferon composite element 

(AICE). BATF and IRF4 are each critical for EBV repression of the tumor suppressor 

BCL2L11, which encodes the pro-apoptosis factor BIM [52]. Elegant studies identified 

EBNA-3A, 3C and polycomb as necessary for BCL2L11 suppression [55,67]. How these 

factors silence BCL2L11 is incompletely understood. Since they co-occupy a B-cell 

genomic site upstream of the BIM promoter [52], we hypothesize that an IRF4/BATF 

complex anchors EBNA3A, 3C and polycomb complexes that epigenetically silence 

BCL2L11.

LCL BCL2L11 knockout (KO) was insufficient to rescue subsequent IRF4 CRISPR KO 

[52], suggesting additional important LCL IRF4 roles. IRF4 or BATF KO downmodulated 

expression of c-Myc and its target genes. Since IRF4, BATF and EBNA3A/C co-occupy 

multiple sites within the EBV SE that loop to MYC, they may have roles in recruiting 

EBNA3s to these sites and/or SE looping.

EBNA3A, 3C, IRF4 and BATF Epigenetic Regulation of PRDM1

IRF4 upregulates PRDM1, which encodes the master plasma cell differentiation regulator 

Blimp1. Since Blimp1 is expressed at low levels in LCLs, how then does EBV block Blimp1 

upregulation? EBV null for EBNA3A/3C induces Blimp1 and plasmablast differentiation. 

EBNA3A/C are necessary to suppress plasmablast differentiation within the first 12 days 

post-infection, but not thereafter, suggesting that they drive epigenetic commitment to the B-

blast fate [68]. Curiously, although Blimp1 and plasma cell differentiation trigger lytic 

reactivation, lytic antigens are not observed in this model. Further studies are required to 

identify host and/or viral factors that maintain EBV latency in this setting. Infection of 

humanized mice with EBNA3A- or EBNA3C-null EBV did not induce plasmablast 

differentiation, indicating that EBNA3A and 3C have functional redundant roles in 

maintaining B-lymphoblast state [69].

EBNA3A and 3C were found to co-occupy a PRDM1 locus intronic site[68], but since they 

do not bind DNA directly, how do they target this site? An overlay of LCL ChIP-seq datasets 

demonstrates that IRF4 and BATF co-occupy the major EBNA3A/C PRDM1 locus site 
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(Figure 3). We hypothesize that LMP1, LMP2A and EBNA2 first induce a BATF/IRF4 

complex to target this site, and to then prevent PRDM1 induction, EBNA3A and C are 

recruited and drive polycomb proteins to epigenetically silence PRDM1.

Transgenic mouse B-cell LMP2A expression induces IRF4 and enhances B-cell survival, but 

not plasmablast differentiation [70]. By contrast, conditional GC B-cell LMP1/2A co-

expression highlyinduces IRF4 and PRDM1 [71] and upregulates markers of plasmablast 

differentiation, including CD38 and CD138 [71]. Taken together with EBNA3 models, it 

appears that sustained LMP1/2A expression in the absence of EBNA3A or 3C drives 

plasmablast differentiation, which is fatal in mice that lack T and NK-cells [71] or even 

perforin [72]. In immunocompetent animals, GC B-cell LMP1/2A-coexpression impedes the 

GC reaction but does not cause lymphoma [71,72].

These mouse models raise the important question of how latency II GC B-cells differentiate 

into latency I memory cells rather than plasmablasts. Perhaps epigenetic marks from earlier 

EBV latency states, coexpression of EBNA1 or viral ncRNAs, LMP1/2A expression levels, 

and/or T/NK-cell immune pressure play roles in guiding infected GC B-cells towards 

memory cell states. Conversely, epigenetic mechanisms that drive the latency I state 

typically observed in EBV+ plasmablastic lymphomas remain to be determined.

EBV suppresses Blimp1 by additional mechanisms, including by PRDM1 promoter 

hypermethylation, upregulation of the functionally-impaired Blimp1-beta isoform [73], and 

by EBV miR-BHRF1–2 [74]. EBV SE target IRF2 also suppresses PRDM1, apparently 

independently of EBNA3A/C, since LCL depletion of IRF2 but not EBNA3A/C de-

represses PRDM1 [52,68]. CRISPR identified the EBV SE target and IRF2 co-repressor 

IRF2BP2 as important for LCL growth/survival [52], suggesting possible joint roles in 

PRDM1 suppression.

Concluding remarks.

Despite recent advances, important epigenetic roles throughout the EBV lifecycle and in 

EBV oncogenesis remain to be discovered. Humanized mice EBV infection models are 

rapidly advancing and promise to enable the study of viral and host genome epigenetic 

changes at key steps of Bcell infection, differentiation and reactivation. For instance, how 

does EBV alter memory B-cell epigenetic states to maintain latency in vivo? Likewise, how 

epigenetic mechanisms differ in the host/pathogen interactions between Type-I and II 

Epstein-Barr strains, and for Type II EBV between B and T-lymphocytes, will be interesting 

to pursue, including in newly developed humanized mouse models. It will be also be 

interesting to learn how epigenetic mechanisms underlie cell differentiation state-specific 

roles of LMP2A [75] and EBNA-LP, and how EBV nuclear antigens and host TFs together 

form viral super-enhancers.
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Highlights

• EBNA2 and TET2-mediated DNA demethylation promotes Latency III in B 

cells

• EBNA3A/3C and polycomb prevent plasmablast differentiation driven by 

LMP1/2A

• IRF4, BATF, EBNA3A/3C and polycomb suppress BCL2L11/BIM 

expression

• EBV super-enhancers target 544 LCL genes, typically by long-range 

interactions
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Figure 1. Methylation-dependent expressional changes of the EBV genome during latency 
progression.
Recent evidence suggests EBV latency begins with a pre-latent stage, in which lytic inducers 

Zta and Rta, along with the vIL-10 homolog BCRF1 and vBCL2 homologs BHRF1 and 

BALF1 are expressed and enhance transition into viral latency. Upon accumulation of 

EBNA2 and EBNA-LP, expression from the viral Cp and LMPp promoters is enhanced, 

leading to induction of all type III latency genes. Repressive methylation of Cp blocks 

EBNA2 an 3 expression in latency II, where Qp drives EBNA1 and LMPp drives LMP1/2A 

co-expression. Once repressive methylation is accrued on LMPp, the quiescent latency I is 

reached, where only EBNA 1 and viral ncRNAs are expressed.
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Figure 2. Epigenetic mechanisms affecting the EBV latent-lytic switch.
(A) Schematic diagram depicting repressive methylation (green circles) accrual on the EBV 

genome by cellular DNA methyltransferases (DMNTs), resulting in latency I. Shown also 

are selected treatments that can induce lytic gene expression. (B) TET2 conversion of viral 

genome methylated Z-response element (ZRE) 5’cytosine residues (5mC) into 5’ 

hydroxymethylation (5’hmC) precludes Zta binding and transactivation. 5’hmC does not 

affect Rta binding, but surprisingly enhances Rta-mediated activation. (C) PI3K pathway 

activation stimulates EBV lytic reactivation from latency I. Multiple lytic reactivation 

stimuli activate PI3K to upregulate Blimp1 and downmodulate Ikaros.

Frost and Gewurz Page 14

Curr Opin Virol. Author manuscript; available in PMC 2019 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. Epigenetic silencing of PRDM1 in lymphoblastoid B-cells.
Shown are LCL ChIP-seq tracks at the Blimp1-encoding PRDM1 locus for the host 

transcription factors BATF and IRF4 (blue), EBV EBNA3A (yellow) and EBNA3C (green) 

and the histone epigenetic mark histone 3 lysine 27 acetyl (H3K27ac, red). A schematic 

diagram of the PRDM1 gene body is shown at bottom.
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Overview Figure. Key epigenetic mechanisms regulating EBV and B-cell gene expression.
Upon B-cell infection, the EBV genome rapidly becomes chromatinized to establish latency. 

During latency III, EBV superenhancers, comprised of four EBNA and five NF-kB 

transcription factor subunts target key host growth and survival genes, including IRF4. 

EBNA2-superenhancers. Separately, EBNA3A, 3C and polycomb proteins block expression 

of tumor suppressors, including PRDM1 (which encodes Blimp1) and BCL2L11 (which 

encodes BIM). BATF and IRF4 occupy composite AP1-interferon sites and may anchor 

EBNA3/polycomb complexes. As B-cells transit through the germinal center and 

differentiate into memory cells, progressive methylation restricts EBV latency gene 

expression, whereas the TET2 demethylase promotes latency III. Inducing agents trigger 

PI3K activation and de-repression of the master plasma cell differentiation regulator Blimp 

to trigger EBV lytic reactivation.
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