Algorithm 1. The Pseudo-code of the Hierarchical Activity Recognition Method |
Inputs: |
(1) dataset with activity labels |
(2) the hierarchical tree T associated with the activity labels |
Output: |
(1) a set of classifiers and feature subsets |
1. cls_fs = {}; //a set used for storing outputs |
2. For each non-leaf node nd do |
(2.1) search the child nodes ↓(nd) of nd with T; |
(2.2) obtain a training set Tr(nd) using ↓(nd); |
(2.3) do feature selection on Tr(nd), and get Snd; |
(2.4) construct a classifier clsnd using Tr(nd) and Snd; |
(2.5) cls_fs.add(< clsnd, Snd>); // add it to cls_fs |
3. return cls_fs |