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Abstract: In the milling process, cutting forces contain key information about the machining process
status in terms of workpiece quality and tool condition. On-line cutting force measurement is key
for machining condition monitoring and machined surface quality assurance. This paper presents a
novel instrumented working table with integrated polyvinylidene fluoride (PVDF) thin-film sensors,
thus enabling the dynamic milling force measurement with compact structures. To achieve this, PVDF
thin-film sensors are integrated into the working table to sense forces in different directions and the
dedicated cutting force decoupling model is derived. A prototype instrumented working table is
developed and validated. The validation demonstrates that profiles of the forces measured from the
developed instrumented working table prototype and the dynamometer match well. Furthermore,
the milling experiment results convey that the instrumented working table prototype could also
identify the tool runout due to tool manufacturing or assembly errors, and the force signal spectrum
analysis indicates that the developed working table can capture the tool passing frequency correctly,
therefore, is suitable for the milling force measurement.
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1. Introduction

Cutting force, which is originated by the shearing of the material, friction between the chip
and the cutter and so on, can convey key information on the conditions of machining processes.
The cutting forces can reflect the machinability of the material [1,2] or used to identify machining
malfunctions, such as machining vibrations [3,4] or tool wear [5]. Therefore, measuring cutting forces
in the machining process is fundamental for condition monitoring and process optimization [6,7]. The
commonly used method for cutting force monitoring is the application of a dynamometer, which is
stable, accurate and has good repeatability [8]. However, since the dynamometer is usually large
and heavy, it cannot be directly assembled in a simple way for continuously measuring forces in
a workshop. Therefore, the measuring of cutting forces in the machining process with embedded
sensors or integrated into the instrumented fixtures and tools is a promising way which has little effect
on the existing machining environment. For this to happen, some instrumented table/structure or
instrumented tools with embedded sensors have been developed in recent years [9].

Instrumented tables or components are designed to integrate sensors or to be used as sensors to
measure forces and vibrations. Zhao et al. [10] developed a structure with two mutual-perpendicular
octagonal rings and three Wheatstone full bridge circuits in order to obtain the tri-axial cutting force
components and restrain cross-interference in turning process. Yu et al. [11] proposed a flexible
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piezoelectric tactile sensor array based on a polyvinylidene fluoride (PVDF) film for measuring
three-axis dynamic contact force distribution. Li et al. [12] presented a strain-type three-component
table dynamometer with has a sensor structure with eight parallel elastic beams and sensitive regions
and Wheastone measuring circuits are designed to eliminate the influence of eccentric forces. To
monitor the machining process, Shi and Gindy [13] integrated the strain sensor, accelerometer and
power sensor into the machine tool to detect tool malfunctions for machining processes. Luo et al. [14]
embedded PVDF thin-film sensors into the fixtures to monitor the vibration of thin-walled components
during the flank milling process. Li et al. [15] developed a responsive fixture by integrating the
piezoelectric pressure sensor and eddy current displacement sensor into the fixture to ensure the
precision machining of large-scale aerospace parts. Wan et al. [16] integrated a strain gauge into the
workpiece to measure the magnitude of force transformed by the fixture, which is used to improve the
machining stability.

To further measure cutting forces acting on the cutting tool in the machining processes,
developing instrumented cutting tools is an alternative method for understanding the cutting process.
Wang et al. [17] presented a lathe tool with two surface acoustic wave strain sensors mounted onto the
top and side surface of the tool shank to measure cutting force and feed force. Nguyen et al. [18] used
the PVDF strain rosette to monitor dynamic cutting forces and torque in single-point cutting processes,
specifically turning and boring. The above studies are wired method for cutting forces measurement,
which cannot be used in rotation cases. To measure cutting forces in rotating cases, wireless
instrumentation methods are also developed. Totis et al. [19] developed a rotating instrumented
cutter by integrating a tri-axial force sensor into the cutter for cutting force measurement in face
milling. Liang et al. [20] developed a six-component sensor system with a compact monolithic elastic
element to detect the tangential cutting forces as well as the cutting moments simultaneously in the
machining processes. Ma et al. [21] used PVDF sensors to pick up the dynamic shear strain produced
in the rotating tool during the cutting process. Luo et al. [22] integrated the PVDF thin-film sensors
into the index-able tools to measure cutting forces acting on separate insert, the signals are transmitted
by a wireless transmitter, and the signals are then used to identify the insert working condition in the
milling process. Liu et al. [23] designed an integrated rotating dynamometer based on fiber Bragg
grating (FBG) to measure four-component cutting force. These methods mainly integrate sensing
components into the cutting tool, however, this is easy to be disturbed by the machining process since
rigidity of the spindle is relatively low.

Machining process monitoring is an emerging requirement in the Industry 4.0 era, where the
concept of integrating sensors into machine tools is a promising way that will not have a large
influence on existing production lines. To this end, an instrumented working table with embedded
PVDF thin-film sensors was developed and verified in this study. The main contribution of this paper
is the usage of PVDF sensor to pick up the dynamic normal strain from an instrumented table for
milling force measurement. The design conception of the instrumented working table and the PVDF
based cutting force sensing method are presented in Section 2, the cutting force decoupling model
is developed in Section 3. The experimental validation results and discussion are given in Section 4,
followed by conclusions in Section 5.

2. Conceptual Designs for Instrumented Working Table

2.1. The Design Conception

In the milling process, cutting forces are applied directly on the workpiece as well as the connecting
holding table. To measure these cutting forces, the basic idea is to put sensors around the table to sense
forces in all three directions: X, Y and Z. However, to fix the working table in terms of translation and
rotation, in total there should be six locators with sensors. Besides, since the bottom face is relatively
large, three sensing locations are needed. To sense the cutting forces in the milling process, within
the X-Y plane, sensors are placed on face A, B and C, which are also faces contacting with the outer
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frame. Based on the above analysis, the conceptual design of the instrumented working table is shown
in Figure 1. On face A, two sensors are used since it is relatively large and rotation may occur if only
one locator is used. With this design, forces within the X-Y plane can be sensed by the sensor. In the
Z direction, there are three sensors on the bottom face and they will sense force component in the
Z direction.
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Figure 1. The design conception for the instrumented working table with integrated sensors. (a) Inner
table, (b) assembled table.

2.2. PVDF Based Cutting Force Sensing

2.2.1. Cutting Force Sensing System with PVDF Sensors

Since the milling process is a highly interrupted process and forces change with the instantaneous
chip thickness, cutting forces in all tangential, radial and axial directions vary fast with the progress of
cutting. Therefore, sensors with high working frequency range should be employed. To this end, the
commercially available PVDF thin-film sensors with connecting wires are used in this study since it
is highly flexible and has a high working frequency up to 10 MHz. Each PVDF sensor has a size of
10 × 10 mm and a thickness of 50 µm. Once the PVDF sensor deforms under the external force, an
equal quantity of charges on the surfaces of electrodes will be induced by polarized charges insides of
the thin film. These charges are then measured by a charge amplifier and output as voltage, which is
then collected by the data acquisition system for further analysis. Three groups of PVDF sensors are
used in this study and the basic concept for the cutting forces sensing is shown in Figure 2.
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Figure 2. The schematic diagram for the cutting forces sensing and recording.

2.2.2. Charge Calculation for PVDF Sensors

As shown in Figure 3, a PVDF sensor has a multilayer sandwich structure consisting of a PVDF
thin-film, two electrodes, the whole structure is wrapped by coatings for protection and insulation.
The total thickness of the sensor can vary from 10 µm to hundreds of micrometers according to
its application. When an external force component is applied on the PVDF sensor, the electric
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charges generated by the mechanical strains of the sensor can be computed by integrating the electric
displacements D over the electrode area as follows [24]:

q =
x [

D1 D2 D3

] dA1

dA2

dA3

 (1)

where dA1, dA2 and dA3 are the components of the electrode area in the 2-3, 1-3 and 1-2 planes
respectively, as shown in Figure 3.
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Figure 3. Schematic configuration of the PVDF thin-film sensor.

Since the thickness of the PVDF sensor is very small and the PVDF element of the sensor can be
treated as orthotropic material after being poled, the sensor can be assumed to be in a state of plane
stress. Therefore, if the force component is applied only on the normal face of the sensor, the strain
mainly exists in the normal direction, the shear strain caused by torsion or slide is neglected here since
the PVDF sensor is insensitive to the in-plane shear strain. Hereby, the charged induced in element
area dAi can be derived as:

qi = d33σidAi = d33dFi (2)

where d33 is the piezoelectric constant in the 3 direction, and the stress σi can be written as [25]:

σi = dFi/dAi (3)

Since the working table is usually large, more than one PVDF sensor should be used for force
sensing in one direction, which requires a parallel array of thin film sensors. In this case, the output
charge will be the sum of all sensors.

2.2.3. Forces Calculation Based on Generated Charges

To record signals induced by the cutting forces, the output charge is converted to voltage by a
charge amplifier and then filtered by a filter circuit. Once connected to the circuit of charger amplifier,
the output voltage can be expressed as [26]:

V = −q/C f (4)

where C f is the electric capacitance of the circuit feedback loop, it can be calibrated by experiments.
If the pressure over the sensor is evenly distributed, the output voltage is related to the applied force F
by the relation:

V =
d33

−C f
F (5)

In this paper, the applied force on PVDF sensor is the dynamic cutting force which has an higher
frequency than the lower cut-off frequency of the charge amplifier circuit. Thereby, the applied force
can be calculated by the above equation.
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3. Cutting Force Decoupling Model

In order to utilize the proposed concept, the decoupling of forces based on the monitored signals
with PVDF sensors is required. Since the table is used for fixing the workpiece and will not move
during the machining process, the forces acting on the table are balanced.

3.1. Synthesis and Decomposition of Forces

Consider a solid body with n forces F1, F2, · · · , Fn applying on it within a plane, while applying
the translation theorem of force, moving these forces to a center O, then forces F’

1, F’
2, · · · , F’

2 with
corresponding force couples can be obtained. In this way, any force on the plane is equivalent to two
simple force systems: the planar force and the planar force couple. Since F’

i = Fi, and the planar force
system can be synthetized into a force F’

R:

F’
R = F’

1 + F’
2 + · · ·+ F’

n. (6)

That is, F’
R is the vector sum of the original applied forces.

The planar force couple system can be synthesized as a couple, and the moment MO of the couple
is equal to the algebraic sum of the additional moments and the algebraic sum of the moments of the
original forces to the point O, which is:

MO = M1 + M2 + · · ·+ Mn (7)

The vector sum F’
R of all forces in a coplanar arbitrary force system is called the principal vector of

the force system; and the algebraic sum of moments for these forces referring to an optionally reduction
center O is MO, and it is the principal moment of the force system for the reduction center. Obviously,
the principal force vector is independent of the reduction center, and the principal moment is generally
related to the reduction center, so it is necessary to specify the principal moment for which point the
force system is.

When a force system satisfies its principal vector and the principal moment of any point is zero, it
can be obtained that the coplanar arbitrary force system is balanced. That is, when performing the
cutting force measurement, the combined forces are respectively obtained for the three directions of X,
Y and Z. If it can be ensured that the combined force of the main body of the table in each of the three
directions is zero, the working table is in an equilibrium state. Since the table is restricted and does
not move during the machining process, it is in equilibrium state. Therefore, the measurement of the
cutting force is converted into the pressure change of the piezoelectric sensors.

3.2. Calculation of Forces in X and Y Directions

In the milling process, four sensors placed on the faces A, B and C to sense the cutting forces in
the X-Y plane, as shown in Figure 4. Since the table cannot move, all forces applied on the table should
be balanced. Then the following Equations hold

n
∑

i=1
Fxi = 0

n
∑

i=1
Fyi = 0

, i = 1, 2, 3, 4 (8)
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Forces in the X and Y directions can be derived as{
Fx =

√
2

2 F3 −
√

2
2 F4

Fy = F1 + F2 −
√

2
2 F3 −

√
2

2 F4
(9)

where Fi (i = 1, 2, 3, 4) is the force component sensed by the corresponding sensor.

3.3. Calculation of Force in Z Direction

As shown in Figure 5, on the bottom face of the table, there are three sensors used for forces
sensing in the Z direction. Since sensors on other planes do not have components in the Z direction,
there is no coupling in the Z direction, and the force can be expressed as

Fz = Fz1 + Fz2 + Fz3 (10)
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4. Experimental Validation and Discussion

To verify the accuracy of the developed monitoring platform, both the cutting force signals
monitored by the instrumented working table and the dynamometer will be recorded and compared
in this section.

4.1. Realization of Instrumented Working Table

To validate the proposed concept, a working table with embedded PVDF sensors was
manufactured and assembled, as shown in Figure 6. The prototype table is made of 45 steel, and
preloading is applied on the sensors in the assembly process. A multi-channel charge amplifier is
connected to the PVDF sensors, it is then connected to a DEWEsoft data acquisition system for signal
recording. The piezoelectric constant d33 of the PVDF sensor is 43.94 pC/N, the sensitivity of the
charge amplifier is 0.1 mV/pC, its working frequency range is from 0.8 Hz to 10 kHz. The collected
charge signal can be directly converted into the cutting force output through the setting in the data
acquisition system.
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Figure 6. The assembled instrumented working table prototype.

To validate the proposed prototype, a 9255B table dynamometer (Kistler, Winterthur, Switzerland)
is used to the record forces for comparison. The workpiece is fixed on the instrumented table, the table
is then fixed on the dynamometer.

4.2. Experimental Set-Up

The material used for validation is aluminum alloy, the cutter is a 10.0 mm diameter HSS flat-end
milling cutter with three flutes. The developed instrumented table is fixed on the top of a Kistler 9255B
dynamometer, a SA-PE03 charge amplifier (Shiao, Wuxi, China) and a STG data acquisition device
(DEWESoft SIRIUSi-SYSTEM, Trbovlje, Slovenia) are connected to the table. Dry cutting condition is
applied in the milling test to avoid the influence of cutting fluid on cutting forces and to avoid the
damage to the developed monitoring system. To validate the instrumented working table, a certain
cutting parameters range with axial and radial cutting depth varies from 1 to 3 mm are applied, and
the spindle speed varies from 2000 rpm to 4000 rpm. The experimental setup is shown in Figure 7, and
the cutting parameters are shown in Table 1.
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Table 1. Cutting parameters used in the experiments.

Test No. Spindle Speed
(rpm)

Feedrate
(mm/min)

Axial Cutting
Depth (mm)

Radial Cutting
Depth (mm)

1 2000 250 2.0 1.0
2 2000 250 3.0 2.0
3 2000 250 3.0 3.0
4 3000 500 3.0 3.0
5 3000 250 3.0 3.0
6 4000 500 1.0 3.0
7 4000 500 3.0 3.0

4.3. Results and Discussion

4.3.1. Cutting Forces

Measured signals from the table are used to compute forces in both X and Y directions, and then
compared with measured forces from the dynamometer, as shown from Figures 8–14. Results show
that measured forces in the X direction from both the developed instrumented working table and the
dynamometer match well in terms of the value, profile and details. In the Y direction, the tendency of
both force value and profile are almost the same, except some deviations in the profile for those in
Figures 13 and 14. Force signals from the dynamometer in Figures 9 and 13 show different degrees of
vibration. These differences and vibration may due to the non-rigid connection between the developed
working table and the dynamometer. Besides the force value and profile, the cutter runout in the
milling process are well recognized by the developed working table, which is shown by the peak force
difference for the neighboring teeth, as shown in those figures.
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Figure 8. Measured cutting forces for experiments with spindle speed 2000 rpm, feedrate 250 mm/min,
axial cutting depth 2 mm and radial cutting depth 1 mm in the (a) X direction and (b) Y direction.
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Figure 9. Measured cutting forces for experiments with spindle speed 2000 rpm, feedrate 250 mm/min,
axial cutting depth 3 mm and radial cutting depth 2 mm in the (a) X direction and (b) Y direction.Sensors 2018, 18, x  9 of 13 
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Figure 10. Measured cutting forces for experiments with spindle speed 3000 rpm, feedrate 500 mm/min,
axial cutting depth 3 mm and radial cutting depth 3 mm in the (a) X direction and (b) Y direction.
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Figure 11. Measured cutting forces for experiments with spindle speed 3000 rpm, feedrate 250 mm/min,
axial cutting depth 3 mm and radial cutting depth 3 mm in the (a) X direction and (b) Y direction.
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Figure 13. Measured cutting forces for experiments with spindle speed 4000 rpm, feedrate 500 mm/min,
axial cutting depth 3 mm and radial cutting depth 3 mm in the (a) X direction and (b) Y direction.
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Figure 14. Measured cutting forces for experiments with spindle speed 2000 rpm, feedrate 250 mm/min,
axial cutting depth 3 mm and radial cutting depth 3 mm in the (a) X direction and (b) Y direction.
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4.3.2. Force Signal Spectrum Analysis

To further analyze the measured force signals, spectrum analysis is conducted. Shown in Figure 15
are the spectrum analysis results for milling tests with a spindle speed of 2000 rpm. The main
frequencies are the multipliers of 100 Hz, which is the tooth passing frequency since a three teeth
cutter was used in the tests. For all three channels, the results are almost the same. Spectrum analysis
results for milling tests with spindle speed 3000 rpm are shown in Figure 16, the main frequencies are
the multipliers of 150 Hz, which is the tooth passing frequency. The force signal spectrum analysis
indicates that the developed working table is suitable for milling force measurement. Furthermore, the
results also show that the system can capture the high frequency signal portion of the cutting forces.Sensors 2018, 18, x  11 of 13 
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Figure 15. Spectrum analysis results for milling tests with spindle speed 2000 rpm. (a) Channel one,
(b) channel two, and (c) channel three.
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Figure 16. Spectrum analysis results for milling tests with spindle speed 3000 rpm. (a) Channel one,
(b) channel two, and (c) channel three.

5. Conclusions

A novel instrumented working table used for milling force measurement with embedded PVDF
thin-film sensors is proposed, developed and validated in this paper. The main contribution of this
paper can be summarized as follows:

(1) PVDF thin-film sensors are integrated into the working table to pick up the dynamic normal
strain and to form an instrumented table for milling force measurement.

(2) By applying the force translation theorem and force balance theory, cutting force decoupling
models are developed to identify force component in each direction based on the
measured signals.

(3) The developed working table is validated by implementation of real milling experiments. Results
show that measured forces match well with those from the dynamometer in terms of profile.
From the monitored force signals, it can clearly identify the cutter runout in the milling process
since the developed working table can capture the force details.

(4) The force signal spectrum analysis indicates that the main frequencies of the measured forces are
the multipliers of tool passing frequency, thus the developed working table is suitable for the
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milling force measurement. Furthermore, the developed system can capture the high frequency
signal portion of the cutting forces.

With the developed working table, it can helps to monitor the entire milling process of workpiece,
thus enabling monitoring and recognition of the machining condition as well as optimization of the
milling process. Further studies on improvement of the instrumented working table as well as the
corresponding signal processing method, and the machining condition recognition based on on-line
monitored data will be implemented.
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