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NMR spectroscopy, one of the two major analytical platforms utilized in the metabolomics 

field, has witnessed a large number of advances in fundamental studies, methods 

development, and applications in a broad variety of disciplines. While biomedical science 

studies have dominated the field, applications to other areas including plant science, food 

and nutrition, drug development, energy and environmental sciences are on the rise. NMR 

has contributed very significantly to the metabolomics field despite its lower sensitivity 

compared to mass spectrometry (MS), the other major analytical platform used in 

metabolomics. Numerous unsurpassed characteristics of NMR, including its excellent 

reproducibility, highly quantitative nature, ability to identify unknown metabolites 

unambiguously, and capacity to detect metabolites using intact biospecimens compensate for 

its relatively low sensitivity. In addition, and importantly, NMR offers some unique 

capabilities to reliably identify active metabolic pathways, measure metabolic fluxes and 

enzyme activity through tracing the flow of nuclei such as 2H, 13C, and 15N from labeled 

substrates as they are transformed into downstream metabolites. Thus, NMR-based 

metabolomics applications have exploited the unique strengths of NMR that are largely 

complementary to mass spectrometry.

In the area of methods development, numerous efforts have been focused on enhancing the 

sensitivity and resolution of NMR, improving unknown identification and quantifying a 

larger number of metabolites. The extreme complexity of biological mixtures has also 

prompted exploitation of the combined strength of the two main analytical platforms, NMR 

and MS, for direct comparison of the metabolite data, unknown identification and reliable 

biomarker discovery. The field has already witnessed significant progress in combining 

NMR and MS methods. An increased number of quantifiable metabolites are now routinely 

detected, which opens avenues for cross-study comparison and new applications. New 

databases and software tools have made large scale data analyses and interpretation much 

easier.

In this review, we discuss recent advances in NMR-based metabolomics with an emphasis 

on the development of new methods, databases, software tools, and applications during the 
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past 2 years, from mid-2014 to mid-2016. During this period, over 1000 papers have been 

published (based on PubMed search using the keywords NMR and metabolomics, 

metabonomics, or metabolic profiling). An excellent, earlier review in Analytical Chemistry 
on this topic reported the developments from 2011 until mid-2014,1 and numerous aspects of 

the field have also been highlighted in a number of other recent reviews.2–6 Because of space 

constraints, the goal of the present review is not to cover all NMR-based metabolomics work 

exhaustively. Instead, we highlight new developments and some important applications that 

will help provide a representative overview of the current status and likely future directions 

of the NMR-based metabolomics field.

FOCUSED REVIEWS

In view of NMR’s favorable analytical characteristics, NMR-based metabolomics has 

witnessed rapid growth in both applications and methods development. In the following 

paragraphs, we highlight some recent focused reviews that cover a range of investigations, 

acknowledging that it is beyond the scope of this Review to cover the full breadth of 

applications.

Applications that focus on biomarker discovery continue to be a major area driven by the 

promise of earlier detection and better outcomes, and numerous reviews on this topic 

highlight recent developments. A description of metabolomics of cardiovascular diseases as 

viewed from a clinical perspective provides an overview of recent 1H NMR-based findings 

in the atherosclerosis field7 as well as information on the design and scope of studies 

conducted to date. In cancer, the detection of biomarkers is of major interest for the 

metabolomics field in view of the potential impact worldwide. A recent chapter on cancer 

biomarkers discusses metabolomics approaches and applications,8 and also covers various 

aspects of sample preparation, analysis methods, and statistical analysis tools for handling 

large data sets important to the goal of identifying robust cancer biomarkers. More 

specifically, investigations of renal cancer were described that touch on numerous aspects of 

NMR-based metabolomics investigations and highlight the current challenges and future 

directions.9 A recent review on prostate cancer emphasizes the published NMR work 

analyzing both body fluids and tissue for biomarker identification.10 The potential of 

metabolomics applications in the area of critical care medicine seems promising. There are a 

number of approaches using NMR and/or MS for analysis of a variety of biofluids from 

patients in the intensive care unit with various clinical manifestations including septic shock 

and community acquired pneumonia.11 Airway diseases have also been investigated based 

on the NMR analysis of exhaled breadth condensate (EBC).12 The potential of NMR-based 

metabolomics of EBC, known as breathomics, as well as electronic noses based on other 

diagnostic platforms in distinguishing patients with respiratory diseases including asthma, 

chronic obstructive pulmonary disease (COPD), lung cancer, cystic fibrosis, or primary 

ciliary dyskinesia associated with the respiratory system are discussed. One major 

hypothesis related to the development of obesity is related to intestinal microbiota, apart 

from lifestyle habits and genetic factors. Therefore, there has been significant interest to 

investigate the role of gut microbiota in the pathogenesis of metabolic dysfunctions and 

increased adiposity. Clavani et al. discuss some important findings on the involvement of gut 
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microbiota in the pathogenesis of obesity and how NMR could be used to understand 

microbial activity and assess treatments.13

Investigations that involve the use of stable isotope labeled substrates for mechanistic studies 

continue to attract major attention owing to the ability to answer a number of key 

mechanistic questions in systems biology and biochemistry. A recent review of this area 

describes various direct and isotope-edited 1D and 2D NMR methods to profile metabolites 

and their isotopomer distributions.14 The article also illustrates in detail various in vitro, ex 
vivo, and in vivo studies that have been made, focusing on gaining systematic and novel 

metabolic insights in different biological systems, including humans. A number of critical 

steps involving sample preparation, including rapid cryoquenching, extraction, and 

chemoselective derivatization are required to achieve robustness in the analysis. The 

investigation of cancer metabolism is a major topic in the metabolomics field, and over the 

past 20 years NMR has become a core tool to study altered cellular metabolism specifically 

using stable isotope tracers. Recent progress made in this direction, along with the current 

challenges to the field and the benefit of combining MS with NMR, is also described.15

It is increasingly realized that diet has a significant impact on human health and well-being 

for a variety of reasons. However, detailed knowledge regarding the food metabolome that 

makes up the human diet as well as food production processes that alter that metabolome is 

still quite limited. Metabolomics is now widely employed to study various aspects of food 

products including the impact of agricultural practices, processing, and storage on the global 

metabolite composition of food; the identification of novel bioactive compounds; and the 

authentication and region-of-origin classification. Numerous reviews provide an overview of 

the current application of metabolomics to this broad area.16 The past 5 years of work on 

food plants, emphasizing NMR-based metabolomics for the quality control of dietary natural 

products and assessment of their nutritional value has been summarized,17 and current 

research in the areas of food analysis, dietary biomarker identification, diet-related diseases 

and nutritional interventions is provided by a number of reviews.18–20 Various steps involved 

in NMR-based metabolomics studies in nutritional research along with some important 

applications was also described recently.21

The plant metabolome is widely considered to be the most complex with an estimated 

number of metabolites in the plant kingdom exceeding well over 200 000 due to the 

significant presence of secondary metabolites. Research interest in this area is focused on 

identifying metabolites that correlate with changes in genotype or phenotype. A review on 

plant metabolomics describes developments over nearly the last 15 years highlighting 

numerous examples.22 It also describes recent advances in numerous analytical technologies 

including NMR and MS. Identification of metabolites by integrating NMR and MS 

platforms is also described in this review. Drug discovery, based on natural sources, is 

another area that is related to plant metabolomics. An overview of the development of 

NMR-based plant metabolomics was provided with emphasis on 2D NMR techniques and 

their applications in phytomedicine quality control analysis and drug discovery from natural 

sources.23
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More broadly, the drug discovery process has been enhanced by the use of metabolomics. 

The ability to follow dynamic changes in the metabolome resulting not only from 

pathologies but also from drug treatment and toxicity has been of immense value for the 

development of new therapeutic approaches. The key features of NMR for applications to 

drug discovery have been described in detail,24 while the current state of drug discovery 

with emphasis on the role of NMR-based metabolomics is provided in an article by Powers.4 

Notably, inclusion of metabolomics as a routine component of the drug discovery process 

potentially provides important information on the binding affinity of drug molecules, the 

selectivity, and the in vivo mechanism of action. In addition, metabolomics facilitates 

evaluation and validation of lead molecules through high-throughput screening and helps 

eliminate undesired candidates.

While numerous advances in NMR-based metabolomics have enabled greater insights into 

biochemical mechanisms in health and disease and provided numerous disease biomarker 

candidates, the amount of metabolite information currently obtainable from biological 

specimens is limited owing to the high complexity of such systems. Clearly, such complexity 

of biological mixtures far outweighs the current capabilities of NMR. Major efforts in the 

field are focused on addressing this challenge. A recent article presents some perspective on 

the ability of NMR to alleviate this and other bottlenecks in metabolomics.25 The emerging 

trends in NMR-based metabolomics in the areas of improved metabolite detection, better 

unknown identification, and more accurate quantitation of larger numbers of metabolites are 

discussed in some detail, highlighting both the opportunities and challenges. The complexity 

of biological specimens demands new approaches for unknown identification. While NMR 

databases and search tools allow faster and more reliable identification of known 

metabolites, the identification of unknown metabolites using new strategies that integrate 

NMR with MS, cheminformatics, and computational methods was reviewed.26,27 One novel 

approach is the use of certain chemical additives to the NMR tube can permit identification 

of metabolites with specific physicochemical properties.28 A new method named “blind 

source separation (BSP)” that is aimed at decomposing the NMR signal into simpler pieces 

was also described.29 BSP analysis is an alternative to the conventional Fourier transform 

and uses potentially more appropriate mathematical methods for data processing. It is 

particularly suitable for analysis of complex mixtures and is aimed at addressing the 

analytical challenges faced in metabolomics and other fields.

Since each biofluid can potentially present its own set of challenges in terms of preparation 

and analysis in metabolomics, efforts have been made to start addressing this issue. As an 

example, urine is one of the most frequently analyzed biofluids (after blood serum/plasma) 

in metabolomics studies. Metabolic profiling of urine offers numerous benefits as it can be 

obtained noninvasively and it provides a rich source of information as it generally contains a 

significantly higher number of NMR detectable metabolites compared to serum/plasma, 

cells, or tissue. However, contributions from numerous factors including diet, medications, 

personal habits such as physical activity or smoking, gender, age, gut microbe diversity, as 

well as genetics, all can affect the urinary metabolome and add to the spectral complexity. 

Further, varied pH and salt concentrations induce peak shifts for many metabolites, 

especially, for those with functional groups with pKas near physiological pH. A major effort 

was made recently by investigators from many institutions to alleviate these challenges by 
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providing standardized protocols for experiments and metabolite quantitation using urine.
30,31 To accomplish this task, a large number of published studies in the field were reviewed 

and key variables that potentially affect results were identified; subsequently, 

recommendations were made for standardized sample collection protocols and experimental 

design.30 Separately, a number of issues regarding urinary metabolite analysis with emphasis 

on quantification for disease biomarker napplications are discussed.31

NEW PROTOCOLS

Given the subtle changes in metabolite profiles due to disease combined with numerous 

confounding effects, the need for large scale studies with high-throughput is increasingly 

recognized for biomarker discovery and validation. An effort that recognizes such a need is 

the development of an automated high-throughput serum NMR-based metabolomics 

platform.32 Impressively, the platform is shown to provide quantitative data for more than 

200 metabolic measurements including 14 lipoprotein subclasses, their lipid concentrations 

and composition, apolipoprotein A-I and B, multiple cholesterol and triglyceride 

measurements, albumin, various fatty acids, as well as numerous low-molecular-weight 

metabolites, including amino acids, glycolysis related measures, and ketone bodies (Figure 

1). Using this platform, the authors have analyzed nearly 250 000 samples from nearly 100 

epidemiological cohorts and biobanks, and the new international setup of multiple platforms 

in Finland and United Kingdom is anticipated to allow an annual throughput of more than 

250 000 samples. A number of new biomarkers for early detection of diseases such as 

atherosclerosis, type 2 diabetes, diabetic nephropathy, and cardiovascular disease have been 

identified from such large scale data analysis. Nicholson and coworkers at Imperial College 

also focused on providing highly reproducible methods for large scale studies and 

standardized protocols that minimize technical or experimental bias in metabolomics, have 

provided a detailed set of updated protocols that carefully consider major experimental 

conditions, including sample preparation, spectrometer parameters, NMR pulse sequences, 

throughput, reproducibility, quality control, and resolution.33 These results provide an 

experimental platform that facilitates NMR spectroscopy usage across different large cohorts 

of biofluid samples, enabling integration of global metabolic profiling.

Analysis of human blood serum/plasma is of major interest in the metabolomics 

investigations of virtually all human diseases. However, the large amount of proteins present 

in serum/plasma presents a major challenge. To alleviate this bottleneck, it has been the 

norm in MS analysis to physically remove serum/plasma proteins before analysis. For NMR, 

the samples have typically been used without protein removal; however, it is increasingly 

realized to be of benefit to remove proteins before analysis. Many approaches including 

ultra-filtration and protein precipitation using an organic solvent have been the subject of 

investigation and use. Given the importance for reliable analysis, this topic continues to be 

of significant interest for further investigations and improvements. Recently, a new method 

that involves addition of nanoparticles for removal of proteins was explored.34 Treating 

serum with nanoparticles prior to ultrafiltration offers excellent metabolite recovery and 

clean NMR experiments. Earlier, the same group presented a charged nanoparticle-based 

strategy to selectively suppress metabolites with specific charge to simplify NMR spectra.35 

By adding electrically charged silica nanoparticles to the solution, metabolites of opposite 
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charge were shown to bind to the nanoparticles and weaken or entirely suppress their NMR 

signals.

NEW TECHNIQUES AND METHODOLOGIES

The extremely large number of metabolites in biological samples that span a vast range of 

concentrations requires the development of improved methods for efficient analysis of 

metabolites. A significant exploration of new techniques and methodologies has occurred 

over the past 2 years.

1H Techniques.

The reliable quantification of metabolites continues to be a major challenge in 

metabolomics, and the development of new methods is being sought to overcome this 

challenge. Recently, a new method focused on accurately quantifying metabolites and 

proteins in blood plasma as well as other body fluids from one single NMR measurement 

was presented.36 This method is based on chemical shift changes caused by protein-induced 

bulk magnetic susceptibility (BMS). BMS shifts were obtained using isolated and exchange-

free metabolite resonances such as valine, alanine, glucose, leucine, and lactate and by 

external referencing with respect to TSP (3-(trimethylsilyl)propionic-2,2,3,3-d4 acid, sodium 

salt) in a coaxial insert. This method is shown to quantify proteins with an accuracy of 5% or 

better, which is comparable to the conventional colorimetric method.

NMR provides a unique opportunity to profile metabolites from the intact tissue, 

nondestructively, using high-resolution magic angle spinning (HRMAS) techniques.37 There 

are numerous benefits to HRMAS; importantly, it enables obtaining highly resolved, liquid-

like spectra without sample preparation. Also, the tissue can be recovered after NMR 

experiments for use in other studies such as proteomic and genomic analysis. Advances in 

this area have enabled metabolomics studies that use as little as a few nanograms of tissue 

and have showed that tissue obtainable from core needle biopsy is sufficient for such 

analysis. One challenge for HRMAS NMR, however, is the extreme forces exerted on fragile 

tissue samples due to sample spinning, even at speeds of several kilohertz. To overcome this 

issue, a protocol for acquiring the spectra at very low spinning speeds of a few hundred hertz 

was provided.38 In this experiment, the suppression of broad spectral features is achieved 

using a modified version of the recently introduced PROJECT experiment with water 

suppression and rotor synchronization.

The lack of advanced analytical tools to investigate metabolism in living cells is still a 

challenge for metabolomics. To try to improve current analytical capabilities, a miniaturized 

microslot NMR detector was fabricated with an on-board heater that was integrated with a 

microfluidic device as an NMR sample holder.39 Using this device, a tumor spheroid of 500 

μm diameter consisting of ~9000 cells was studied noninvasively. The production and 

degradation of 23 intra- and extracellular metabolites could be monitored. The planar 

geometry of the microslot NMR detector potentially allows its hyphenation with versatile 

lab-on-a chip (LOC) technology.
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Techniques for 13C and Other Nuclei.
13C NMR, despite its many advantages for metabolomics studies, has not been used widely 

owing to its relatively low sensitivity and natural abundance. To alleviate this bottleneck, a 

custom-built 13C-optimized probe was used to obtain high-quality 13C NMR spectra.40 A 

lower limit of 13C NMR detection of approximately 40 nmol was obtained, and a combined 

analysis of 13C and 1H data using statistical correlation was shown to improve metabolite 

identification. Another technique that is often used for small molecule NMR applications is 

the 13C–13C incredible natural abundance double quantum transfer experiment 

(INADEQUATE), which is a highly useful 2D NMR method for metabolite identification. 

However, its potential is largely untapped in metabolomics owing to the low sensitivity of 
13C at natural abundance. Recently, using samples derived from isotopically labeled 

Caenorhabditis, a new INADEQUATE-based, semiautomated approach called INETA 

(INADEQUATE network analysis) was proposed41 (Figure 2). Using INETA, 53 and 49 

networks were identified from the endo- and exometabolomes, respectively, and from these 

networks, 31 compounds were assigned by combining these data with the BMRB42 

database. The authors envisioned that using this approach provides an outstanding way to 

discover unknown molecules.

A method for real-time metabolite monitoring in live cancer cells using 13C6-glucose and 

heteronuclear two-dimensional (2D) NMR was proposed recently.43 This method allowed 

for metabolic differentiation between cancer and normal cells on the basis of time-dependent 

changes in metabolite concentrations. The anticancer effects of galloflavin were also 

monitored, which revealed previously unknown functional targets of galloflavin. This 

method is potentially applicable to the study of real-time monitoring of metabolic alterations 

in a wide variety of cellular systems.

Signal Enhancement and Fast Acquisition.

A new methodology, known as signal enhancement by spectral integration (SENSI), was 

shown to overcome the low signal-to-noise ratio (S/N ratio) problem in 13C NMR by 

integration of a large number of spectra without additional measurements.44 Here, by the 

addition of 181 different spectra, a single spectrum was synthesized, which exhibited 

increased signal-to-noise ratio by about 10-fold and the number of peaks detected by more 

than 100 compared to a single spectrum. Such an increase in signal-to-noise ratio is 

equivalent to a 100-fold savings in data acquisition time, and hence this approach is 

considered highly time efficient. Adoption of the SENSI approach to 2D NMR (SENSI 2D) 

was also described recently.45 Here, using 1000 2D JRES NMR spectra, it was shown that a 

signal enhancement of ~14-fold and identification of 80–250 additional peaks could be 

achieved without any additional measurements.

It has been known for quite some time that data acquisition techniques such as nonuniform 

sampling (NUS) significantly reduces the measurement time or alternatively enhances 

spectral resolution. With the incorporation of NUS capabilities in current NMR 

spectrometers for routine use, NMR-based metabolomics applications are anticipated to 

benefit significantly. A demonstration that NUS substantially increases the resolution of 2D 

NMR spectra of complex mixtures of small molecules indicates the potential benefit of NUS 
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to NMR-based metabolomics.46 Another article from the same group has evaluated ultrafast 

NMR and NUS in the context of metabolomics.47 In this latter paper, model samples 

mimicking the metabolic profile variations in serum from subjects affected by colorectal 

cancer and controls were analyzed by 1D 1H NMR along with conventional and fast DQF-

COSY and HSQC spectra. It was shown that the fast 2D NMR techniques lead to similar 

results as conventional 2D NMR, which substantiates their utility for high-throughput 

metabolomics studies. Another new fast acquisition method that leverages a priori 
knowledge to tailor polychromatic pulses and customized time delays for an efficient Fourier 

encoding of the indirect domain of an NMR experiment was explored recently.48 This 

approach avoids potential artifacts associated with NUS schemes and uses a minimum 

number of scans equal to the number of resonances present in the indirect dimension. The 

method uses the conventional Fourier transform to process the generated data and is 

potentially useful in metabolomics for both in-cell and in in vivo NMR studies.

Hyperpolarization.

Methods that can significantly boost the nuclear polarization can achieve superb sensitivity 

enhancement to enable even real time monitoring of metabolism in vivo. Among the major 

approaches, parahydrogen induced polarization (PHIP) and dynamic nuclear polarization 

(DNP) offer hyperpolarization of nuclei such as 13C or 15N and detection of downstream 

reaction products, and thereby provide significant promise for metabolomics applications. 

Recently, for the first time, a PHIP approach was applied for quantitative analysis of biofluid 

extracts.49 Here, a combination of solid-phase extraction, para-hydrogen induced 

hyperpolarization, and selective NMR detection quickly enabled the detection of a doping 

substance, nikethamide, at sub-μM concentrations in urine. Hyperpolarization by dissolution 

dynamic nuclear polarization (D-DNP) assisted by cross-polarization (CP) was also shown 

to offer significant sensitivity enhancement suitable for investigations of dilute mixtures, in 

this case for plant and cancer cell extracts.50 The precision of the 13C D-DNP method was 

recently evaluated in tomato extract samples to assess its applicability for metabolomics 

applications.51 It was shown that the average reproducibility of D-DNP NMR is 3.6% for 

signals above the limit of quantification and 6.4% when all signals above the limit of 

detection are included.

DATA ANALYSIS

Data Preprocessing.

NMR spectra contain up to thousands of signals arising from many hundreds of detected 

metabolites. Preprocessing of the raw data represents an important and challenging step in 

NMR-based metabolomics, especially in studies involving large data sets. A number of data 

pretreatments are generally required before subjecting the data to statistical analysis to 

obtain meaningful information. Important steps include apodization, Fourier transformation, 

phasing, baseline correction, chemical shift calibration, and data normalization. For 

quantitative metabolomics, metabolite identification and quantification represent additional 

steps. While many previous reports describe each step in detail, large-scale metabolomics 

data sets obtained from multiple cohorts and analysis platforms, often obtained currently, 

demand even more robust processing approaches to ensure reliable data for statistical 
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analysis. To meet such needs, a workflow was presented recently for integrated processing 

of multicohort NMR data.52 In this investigation, NMR data from COMBIBIO project 

consisting of ~8000 individuals from three different cohorts were used with appropriate 

quality controls and a pipeline for preprocessing was suggested. Two additional reports 

published recently describe preprocessing steps for large-scale NMR data in metabolomics.
53,54 Data normalization is an essential step and the choice of the appropriate normalization 

method is also critical. A recent study using NMR of spiked urine samples shows that 

commonly used normalization and scaling methods fail to retrieve true metabolite 

concentrations in the presence of increasing amounts of glucose added to simulate 

unbalanced regulation.55 To address this challenge, Linear Baseline Normalization, 

Probabilistic Quotient Normalization, and Variance Stabilization Normalization were shown 

to account well for different dilutions of the samples. Studies focused on interactions 

between metabolites rely on investigations of correlations between metabolites. Such 

investigations need proper normalization of metabolomics data. To meet this need, a new 

normalization approach based on a mixed model that involves simultaneous estimation of a 

correlation matrix was proposed.56 Data binning is one of the preprocessing steps widely 

employed in 1D NMR-based metabolomics. With the aim of extending this approach to 

multidimensional NMR data, a generalization of Adaptive Intelligent binning was described.
57 It allows the direct use of nD NMR data in bilinear factorizations such as principal 

component analysis (PCA) and partial least-squares (PLS) analysis methods.

Spectral and Data Analysis.

A new, simple-to-implement, and quantitative methodology to assess the confidence of 

NMR-based identification of known metabolites was introduced.58 This method is based on 

a topological analysis of metabolite identification information available from NMR 

spectroscopy studies. Biofluids such as urine require improved protocols for analysis as the 

large variations in pH and ionic concentrations contribute to positional noise and 

deleteriously affect unknown identification as well as biomarker discovery. To alleviate this 

challenge, a two-dimensional buffering system using potassium fluoride and phosphate 

buffer was presented to reduce positional noise.59 It was also shown that recursive segment-

wise peak alignment leads to a further improvement in data reliability. A new method, 

ChemSMP (Chemical Shifts to Metabolic Pathways), which facilitates rapid data analysis by 

identifying the active metabolic pathways directly from chemical shifts obtained from a 

single 2D 1H–13C correlation NMR spectrum was described recently.60 The method does 

not require the identification or assignment of individual metabolites; instead, ChemSMP 

employs an indexing and scoring system for metabolite identification and uses metabolic 

pathway data from the Small Molecule Pathway Database (SMPDB; http://smpdb.ca/) and 

chemical shifts from the Human Metabolome Database (HMDB; http://www.hmdb.ca/).

Focused on efficient identification of metabolites in complex NMR spectra, Dubey and co-

workers also proposed a new method that relies on matching the pattern of peaks rather than 

absolute tolerance thresholds.61 The new approach uses a combination of geometric hashing 

and similarity scoring techniques and was shown to exhibit 100% accuracy for 719 

metabolites tested from the Human Metabolome Database (HMDB). Unlike conventional 

methods, it was shown to be highly tolerant of alterations in sample pH, temperature, and 
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ionic strength. A new statistical analysis concept that involves classifying a component as 

“reliable” or “unreliable” depending on the reproducibility of its appearance was proposed.
62 Using clustering method for classification, the concept was applied to multivariate curve 

resolution-alternating least-squares (MCRALS). The new method was shown to detect 

clusters containing little information but with good reliability, increasing the plausibility of 

results.

Statistical Data Analysis.

Metabolite data are generally complex and hence multivariate statistical methods are often 

used to summarize or extract the relevant data, develop classification models, and identify 

differentiating metabolites. Numerous unsupervised and supervised methods exist currently 

and the methods have witnessed continuous advances, owing to the need to detect subtle 

changes in the metabolic profiles and also to alleviate the effects of confounding factors. A 

recent report describes different steps involved in the metabolomics characterization of 

biofluids for clinical applications, ranging from study design to biological interpretation 

with an emphasis on the specific procedures required for processing and interpreting the 

NMR data.63 Another study presents a new approach to analyze NMR data to find 

discriminatory variables using minimum classification error rates as test statistics.64 Error 

rates are transformed into p-values, referred to as ERp, which are potentially useful in 

addressing many characteristics of metabolomics data. Another study discussed the fact that 

the now-conventionally used statistical methods such as PLS-DA and OPLS-DA can mislead 

in the absence of proper validation and provides practical guidelines and cross-validation 

recommendations for reliable inference from PCA and OPLS-DA models.65

It has also been realized that the conventional metabolomics data analysis approach, in 

which two or more sample groups are compared, is often unsuitable for complex data 

analysis, since it does not consider the unpredictable differences between subjects such as 

responders and nonresponders to treatment. To address this challenge, an approach based on 

statistical process control (SPC), which is able to monitor the response to a treatment or the 

development of a pathological condition, was recently proposed.66 It is suggested that this 

approach can potentially lead to a better understanding of the individual pathological 

processes and to a personalized diagnosis and therapy. A major challenge to biomarker 

discovery using metabolomics is the deleterious effects on the metabolite levels from the 

contributions of confounding factors. Recently, using a powerful statistical approach, 

seemingly unrelated regression (SUR), the effects of numerous demographic covariates such 

as gender, BMI, alcohol, and smoking status on serum metabolite levels could be modeled.67 

After accounting for the contributions of such confounding factors, the potential of 

metabolites and pathway-related metabolite groups to differentiate patients with colon 

polyps and age-matched healthy controls was investigated.

Absolute Quantitation.

As compared to the traditional global data analysis methods that rely on relative 

comparisons, absolute metabolite quantitation offers numerous benefits, which include 

reducing the potential errors arising from factors such as broad spectral background, strong 

solvent signals and peak misalignments. Comparison across multiple studies and even 
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analytical platforms becomes possible when the concentrations of metabolites are recorded. 

The ability to analyze intact samples with no need for sample preparation or separation 

represents an important characteristic that has traditionally drawn NMR-based metabolomics 

to prominence. However, it is increasingly realized that while biospecimens such as urine 

and extracted metabolite mixtures from cells and tissues enjoy the benefit of analysis using 

intact samples as they are generally devoid of macromolecules, biospecimens such as human 

blood serum or plasma, which have high amounts of macromolecules, are much more 

challenging. Further, numerous challenges including the limited resolution and unknown 

metabolite identification have deleteriously affected the utility of NMR for absolute 

metabolite quantitation.

As a remedy to this challenge, removing proteins physically using ultrafiltration, solid phase 

extraction, or protein precipitation using one or more organic solvents such as methanol, 

acetonitrile, perchloric acid, and trichloroacetic acid has been proposed. Further studies in 

this area have shown that protein precipitation using methanol exhibits superior performance 

over other organic solvents as well as ultrafiltration and allows a dramatic increase in the 

number of detectable and quantifiable metabolites.68,69 Incidentally, the results also reveal a 

surprisingly poor performance for protein precipitated samples using acetonitrile, which is 

often used instead of methanol. This is due to the poor solubility of many metabolites in 

acetonitrile, and hence it is clearly unsuitable for quantitative analysis of, specifically, 

hydrophilic blood metabolites.68 Using methanol precipitation and combining with an array 

of 1D/2D NMR experiments, database searches, and spiking with authentic compounds, 

quantitation of nearly 70 blood metabolites, a large number (nearly 1/3) of which had not 

been previously identified in the NMR spectra of blood was reported. Further, experimental 

protocols and comprehensive peak annotations were provided to take advantage of the high 

reproducibility and quantitative nature of NMR and to mitigate against the sensitivity of 

NMR chemical shifts to altered sample conditions. Such details enable easy reproduction of 

NMR spectra and serve as a visual guide for identification of the enhanced pool of blood 

metabolites for routine applications. Importantly, this protocol enables even nonexpert NMR 

users to easily identify and quantify blood metabolites, thereby allowing effective use of this 

tool.

Coenzymes of cellular redox reactions and cellular energy mediate biochemical reactions 

fundamental to the functioning of all living cells. Recently, the major coenzymes of redox 

reaction and energy, NAD+ (nicotinamide adenine dinucleo-tide, oxidized), NADH 

(nicotinamide adenine dinucleotide, reduced), NADP+ (nicotinamide adenine dinucleotide 

phosphate, oxidized) and NADPH (nicotinamide adenine dinucleo-tide phosphate, reduced), 

adenosine triphosphate (ATP), adenosine diphosphate (ADP), and adenosine monophosphate 

(AMP) were detected and their identity established based on the combination of an array of 

1D/2D NMR experiments, database searches, and spiking with authentic compounds70 

(Figure 3). All the coenzymes were then shown to be quantitated simultaneously. The 

analysis method was also evaluated by measuring cardiac NADH and NAD+ ratios/pool 

sizes using mouse models with cardiac specific knockout (cKO) of the Ndufs4 gene (the 

Ndufs4 protein is critical for the integrity of mitochondrial Complex I) and cardiac-specific 

overexpression of nicotinamide phosphoribosyl transferase (cNAMPT) as examples. This is 
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the first successful effort to provide the absolute quantitation of major coenzymes of cellular 

redox reactions and energy, simultaneously, with high fidelity.

One key characteristic of NMR is its ability to provide absolute concentrations for many 

metabolites based on a single internal reference. Recently, a quantitation method using the 

synthetic ERETIC (Electronic REference To access In vivo Concentrations) signal was used 

in combination with the Chenomx NMR software suite to provide absolute quantitation of 

serum metabolites.71 Internal references such as 4,4-dimethyl-4-silapentane-1-sulfonic acid 

(DSS) and trimethylsilyl propionate (TSP) can bind to proteins in the sample and thereby 

reduce their accuracy as quantitation standards and hence the use of synthetic signal can 

alleviate this challenge. However, the ERETIC, being a synthetic signal does not account for 

the sensitivity of NMR signals to sample conditions that affect critical parameters such as 

pulse width and relaxation parameters. Further, many metabolites that are attenuated due to 

protein binding are also difficult to quantify even using this approach. Another method that 

uses diffusion-weighted 1H NMR to separate lipoprotein and metabolite signals based on 

their large differences in translational diffusion was recently shown to work for blood 

plasma metabolite quantitation.72 The method, based on the combination of minimal sample 

preparation and minimal user interaction during processing and quantification, offers an 

alternative technique for automated quantification of human plasma metabolites. Here, the 

authors demonstrate an excellent correlation for 28 metabolites between results obtained 

with diffusion NMR and ultrafiltration.

A new method that permits the sensitive quantification of metabolites in the extracellular 

medium of cells in cultures was also published recently.73 This method uses the procedure 

PULCON (pulse length-based concentration determination), which was first applied for 

protein concentration measurements, requires one reference spectrum for quantitation of 

metabolites in all samples.

Absolute quantitation of metabolites using 2D NMR such as HSQC offers the significant 

benefit of improved resolution due to the extra spectral dimension. However, the dependence 

of peak integrals on a number of parameters such as rf pulse power, interpulse delays, the 

magnitude of heteronuclear J-couplings, T1 and T2 relaxation times, and the number of 

protons attached to carbon poses majorz challenges. Numerous efforts have focused on 

alleviating these challenges, including calibration curves, correction factors calculated from 

solving the Bloch equations, calculating a “time zero” HSQC spectrum derived by 

extrapolating the peak intensity back to zero time using a series of HSQC spectra and 

modulation of coherence transfer delays in the HSQC pulse sequence. Recently, a new 

quantitative HSQC pulse sequence was developed by introducing a refocusing period after 

the first INEPT transfer which discards the unwanted excess magnetization from methyl and 

methylene carbons and is designed to make 2D NMR peak integrals for all types of carbons 

the same.74 This experiment, which is called Quantitative, Equal Carbon HSQC 

(QECHSQC), also provides a uniform response over a wide range of 1JCH couplings and 

potentially promises new avenues for absolute quantification of metabolites in 

metabolomics.
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Unknown Identification.

Unambiguous peak assignment, especially for low concentration metabolites, continues to 

be a challenge because most of the small metabolite peaks in the NMR spectrum are 

partially or completely overlapped by large signals from more abundant metabolites. Further, 

metabolite signals that do not appear in chemical shift databases pose added challenges to 

their identification.

An increasing trend in the area of unknown identification is the utilization of the combined 

strengths and capabilities of NMR and MS.75 Using statistical correlation analysis of NMR 

and MS data, it was shown that peaks of the structurally related compounds between the two 

data sets can be linked. Here, on the basis of the correlation between direct-infusion Fourier 

transform ion cyclotron resonance mass spectrometry and NMR data of tissue extracts, more 

than half of the NMR detected signals were shown to exhibit high correlations, which is 

helpful in prioritizing candidate assignments and unknown identification (Figure 4). 

Statistical correlation was also applied using a set of 50 1H–13C Heteronuclear Single 

Quantum Correlation spectra and showed that the approach can be successfully used to 

identify biofluid metabolites.76 A recent paper describes the combination of NMR and 

electrospray ionization (ESI) MS for identification of metabolites.77 Here, authors also 

provide a new software tool for this approach that works with the Chenomx NMR Suite, 

which is commonly used for metabolite identification and quantitation. Another recent 

article provides a detailed guide to use different NMR methods and parameters for the 

identification of metabolites with illustrations using examples from recent studies.78

Separately, Brüshweiler and co-workers have developed novel metabolite identification 

strategies by exploiting the combined strength of NMR and MS methods. One approach 

identifies metabolite candidates from NMR spectra by database query, followed by the 

determination of the masses (m/z) of their possible ions, adducts, fragments, and 

characteristic isotope distributions.79 It allows assignment of mass spectra with very high 

confidence and, simultaneously, validates NMR-detected metabolites. Using this approach, a 

number of metabolites in urine were detected that had not been reported in the NMR 

literature previously. This approach, termed as a NMR/MS Translator, is fast, works in an 

automated fashion, and offers a new avenue for identifying and validating new metabolites. 

Another strategy, reported by the same group, combines high-resolution MS with NMR for 

the identification of unknown metabolites.80 (Figure 5). In this approach, chemical formulas 

are first identified from accurate mass data and all feasible structures consistent with these 

chemical formulas are generated. Then, for each structure, the NMR spectrum is predicted 

and compared with the experimental NMR spectrum. The structure that best matches both 

the MS and NMR data represents the putative identity of the metabolite. This approach was 

successfully applied to the identification of a large number of metabolites in an E. coli 
extract. Interestingly, this approach, termed SUMMIT MS/NMR (Structures of Unknown 

Metabolomic Mixture components by MS/NMR), does not require metabolite databases and 

is potentially useful for the discovery of new metabolites in complex biological mixtures.

A new dimension to the detection of an enhanced pool of metabolites in biological mixtures 

using NMR is provided by chemical derivatization.25 A selected class of metabolites can be 

reacted with chemoselective tags containing a stable isotope such as 13C, 15N, or 31P, which 
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is favorable to NMR detection with enhanced resolution and sensitivity. Recently, the 

chemoselective derivatization approach was extended to the identification of metabolites 

with free keto and aldehyde groups.81 Here, by incorporating a 15N isotope in the aminooxy 

functional group, 15N-edited 2D NMR was used to select exclusively metabolites containing 

a free carbonyl function while suppressing all other metabolites. More than 30 carbonyl-

containing compounds were detected in cell extracts and the identity for six was established.

COMBINING NMR AND MS

Interest in combining NMR and MS to exploit their combined strength in areas outside of 

unknown identification is growing quickly for a number of reasons. The need to improve 

biomarker discovery, to measure and quantitate many metabolites in complex biological 

mixtures, and better interpret biological function and mechanisms are all important driving 

forces. As demonstrated by the metabo-ring initiative,82 untargeted metabolomics data 

obtained using many NMR and MS instruments was highly convergent between and across 

different NMR and MS platforms, indicating that the necessary robustness for combining 

NMR and MS data was present. Recent reports describe some of the advances made so far in 

combining NMR and MS3,25,80 and indicate that the work is primarily focused on methods 

development and applications to biomarker discovery.

An optimized protocol for effectively integrating NMR and DI-ESI-MS was described 

recently and used for a biomarker discovery application.83 To minimize the potential 

variability between the two methods, a single sample was split into two parts and used for 

analysis by MS and NMR, simultaneously. Detailed steps to analyze the samples using both 

platforms and statistical analysis are provided, starting from sample preparation. The 

effectiveness of this approach in metabolic profiling was demonstrated utilizing multiblock 

principal component analysis (MB-PCA) and multiblock partial least-squares (MBPLS) to 

improve the mechanistic understanding of dopaminergic cell death. Another methodology-

focused study presented analysis of intracellular metabolites in adherent mammalian cells 

combining NMR, GC–MS, and LC–MS methods.84 Here, different methods were first 

evaluated by NMR to quench the metabolism in adherent cells and extract the metabolites. 

The optimized method, quenching at −40 °C using methanol and extraction with 

dichloromethane–methanol–water (3:3:2 ratio), was then used for analysis by MS.

In the area of biomarker discovery, a methodology development study presented an 

algorithm to perform backward variable elimination partial least-squares discriminant 

analysis embedded with Monte Carlo cross validation (MCCVBVE-PLSDA) and combined 

NMR and targeted liquid chromatography (LC)–MS data.85 The study focused on 

differentiating colorectal cancer (CRC) and polyps from healthy controls as an example to 

demonstrate that variable selection is vitally important in combining NMR and MS data and 

obtaining improved predictive accuracy. On the basis of the obtained results, the article 

recommends using such a statistical approach for analysis of data from multiple analytical 

platforms in biomarker discovery studies focused on improved statistical performance and a 

more accurate biological interpretation.
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A number of recently published studies that combine NMR and MS have focused on a 

variety of applications, including human diseases, plants, natural products, marine life, 

environmental effects, and toxicity. One study combined NMR and GC–MS platforms to 

generate a panel of five urinary metabolite biomarkers for Bipolar Disorder (BD) (four GC–

MS-derived and one NMR-derived).86 This composite biomarker panel discriminated BD 

subjects from healthy controls with impressive area under the receiver operating 

characteristic curve (AUC) values of 0.974 in a training set and 0.964 in a test set, which is 

significantly superior to the previous single platform-derived metabolite panels. Urinary 

metabolic profiles of renal transplant patients with major injury factors at critical stages 

following transplantation were investigated by combining NMR and GC–MS.87 In this 

study, markers for medullary injury, tubule cell oxidative metabolism, impaired tubular 

reabsorption or secretion, and affected metabolic pathways upon transplantation as well as 

the variation of metabolic profiles with time were identified. Another NMR-and MS-based 

study investigated the intervention effect of curcumin on hyperlipidemic mice induced by a 

high-fat diet.88 While the serum biochemical assay indicated that treatment of curcumin 

improves the lipid profiles, metabolic pathways derived from urine metabolic profiles 

provided more detail and indicated reversal of the metabolic disorder.

An investigation of two varieties of maize combining NMR and GC–MS methods89 yielded 

extensive metabolic variation in grain from both varieties and also differentiation in patterns 

for subpopulations within each variety. Overall, this study provides insights into the 

extensive metabolic diversity associated with the conventional maize germplasm. In another 

study, fractions of natural product mixtures were subjected to combined NMR and MS 

analysis for identification of features related to bioactive compounds in mixtures, without 

the need for complete isolation.90

In the environmental area, a marine life study combined NMR and UPLC–MS methods to 

profile metabolite composition of the soft coral genus Sarcophyton with respect to its 

species and different habitats along the coastal Egyptian Red Sea.91 A total of 120 

metabolites including 65 diterpenes, 8 sesquiterpenes, 18 sterols, and 15 oxylipids were 

identified. A number of these contributed to the differentiation of species and their unique 

habitats. Another environmental study combined NMR, GC–MS, and LC–MS for analyzing 

bronchial wash (BW) and bronchoalveolar lavage fluid (BALF) from healthy volunteers 

following exposure to biodiesel exhaust and filtered air.92 This study detected a total of 82 

metabolites, the greatest number of unique metabolites reported so far in BW and BAL fluid. 

Notably, the GC–MS data revealed an effect of biodiesel exhaust exposure on the levels of 1-

monostearylglycerol, sucrose, inosine, nonanoic acid, and ethanolamine (in BAL) and 

pentadecanoic acid (in BW), whereas LC–MS analysis indicated a shift in the levels of 

niacinamide (in BAL). The NMR assay only identified lactic acid (in BW) as being 

responsive to biodiesel exhaust exposure. A toxicity study combined NMR and LC–MS/MS 

to evaluate the subacute effects of hexabromocyclododecane (HBCD) on the mouse urinary 

metabolome.93 The results indicated subchronic exposure to HBCD caused a disturbance of 

mouse metabolism, especially in the TCA cycle, lipid metabolism, gut microbial 

metabolism, and homeostasis of amino acids. The study demonstrates the ability of the 

combined NMR and MS approach to provide comprehensive information and aid in 

predicting the health risks of such pollutants.
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APPLICATIONS

Numerous studies including the investigations of human diseases, environmental toxicity, 

food and nutrition, and plants have been made use of NMR techniques. Among these, 

specifically, investigations of human diseases continue to be the major focus, and many 

diseases have been the subject of recent investigations including different types of cancers, 

heart disease, diabetes, obesity, Huntington’s disease, preeclampsia, and infections.

Cancer.

Mechanistic understanding of the development of cancer and its early detection are the 

dominant research areas that continue to exploit advances in metabolomics. A number of 

studies have focused on distinguishing cancer patients from matched controls based on 

measurements of biofluids and tissue from tumors. Many mechanistic studies have used 

animal models and cell lines for investigation. These studies have provided a new body of 

knowledge on altered metabolism in cancer. Notably, investigations of almost all major types 

of cancers have resulted in the identification of numerous potential metabolite biomarkers, 

although rigorous validation still remains to be performed in most cases.

Among these studies, the investigation of lung cancer has gained significant attention owing 

to the fact that it is the most lethal among all cancers. One study focused on diagnostic 

biomarkers of lung cancer investigated tissue using both ex vivo HRMAS NMR and in vitro 
NMR.94 Another study combined NMR with targeted rapid resolution liquid 

chromatography to obtain serum metabolite profiles of Stage I lung cancer (n = 25) and 

matched healthy controls; 25 metabolites were identified that distinguished the two groups 

with 100% sensitivity and specificity.95 Notably, this study highlighted the ability of NMR-

based metabolomics for early stage detection of lung cancer. In a separate study, 17 

metabolites associated with disease progression in serum were detected, in addition to 18 

metabolites that distinguished lung cancer from healthy controls.96 Efforts have also been 

made to distinguish between adenocarcinoma (AdC) and squamous cell carcinoma (SqCC) 

based on investigations of tumor and tumor adjacent tissue from 56 patients using HRMAS 

NMR.97 Thirteen metabolites differentiated AdC and SqCC. In another study, NMR-based 

serum metabolite profiles could distinguish chronic obstructive pulmonary disease and lung 

cancer.98 And a study focused on the investigation of the effects of tumorigenesis and tumor 

growth on the noninvolved organs evaluated the metabolic phenotypes of multiple 

noninvolved mouse organ tissues such as heart, liver, spleen, lung, and kidney using a lung 

cancer xenograft model.99 It is interesting to note that the noninvolved organs exhibit 

significant metabolic changes due to the tumor growth.

Gastric cancer is the second most deadly and fourth most common cancer in the world. As 

with many cancers, gastric cancer exhibits very poor prognosis. Although endoscopy may 

prove to be useful for its detection, it is impractical to use endoscopy for general screening 

purposes. Hence, there is significant interest in detecting gastric cancer based on molecular 

markers, and a number of recent investigations have thus used NMR-based metabolomics 

approaches to study humans and animal models. One such study used a rat model involving 

four pathological groups, gastritis, low-grade gastric dysplasia, high-grade gastric dysplasia, 

and gastric cancer along with a healthy control group, and measured the serum metabolome 
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by NMR.100 This study detected perturbed metabolic networks associated with the four 

pathological stages along with continually disturbed oxidative stress-related metabolic 

pathways during gastric carcinogenesis, which provides new information to address the 

molecular mechanisms underlying the gastric carcinogenesis. Focused on identifying 

diagnostic markers, an investigation of human urine has resulted in the identification of 

distinct metabolites for gastric cancer.101 In a separate study, urine as well as tumor tissue 

from gastric cancer were investigated using solution and HRMAS NMR, respectively; it 

showed significant differences between patients and healthy controls based on the 

combination of the two sample types.102 Investigation of tissue specimens from a large 

cohort of gastric cancer patients showed, apart from discrimination between cancer and 

controls, discrimination between cancer stages based on changes in 13 metabolites.103 And 

finally, a study focused on evaluating the effects of different culture media on cellular 

metabolic profiling has used a human gastric cancer cell line (SGC7901) cultured in two 

media, RPMI1640 and DMEM.104 This study demonstrated the distinct effect of media on 

the levels of several metabolites and cautions researchers to account for such media effects 

in comparative metabolomics analysis of cell lines.

Breast cancer has also been the focus of a large number of metabolomics investigations. An 

interesting epidemiological study demonstrated accurate prediction of breast cancer several 

years ahead of its clinical detection based on the combined analysis of serum NMR 

metabolic profiles and lifestyle variables, referred to as biocontours.105 While 

mammography can diagnose current breast cancer with a sensitivity and specificity of ~75%, 

respectively, the new approach can predict the breast cancer risk 2–5 years ahead with 

sensitivity and specificity above 80%. This study was made using the samples from women 

enrolled in the Danish Diet, Cancer and Health cohort enrolled in the years 1993–1997. A 

statistical model was built on data obtained in 1993–1996 and tested on women sampled a 

year later, in 1997. Clearly, the results of the model are impressive and are far superior to the 

model obtained from a single molecular marker or even from lifestyle parameters alone 

(Figure 6). Limitations of this study, however, are that the cases and controls were not 

matched on age and the identities of many NMR variables that positively contributed to 

cancer prediction are not known. In another study, HRMAS NMR was used to distinguish 

between ductal carcinoma in situ (DCIS) lesions with or without an invasive component.106 

It showed that the GPC/PC ratio as well as multivariate models discriminated between pure 

DCIS and DCIS accompanying invasive carcinoma. HRMAS NMR was also used to 

investigate breast tumor cell lines MCF-7 and MDA-MB-231, along with the nontumor 

breast cell line MCF-10A, to evaluate cancer metabolism in intact cells.107 Among the 

metabolites detected, phosphocholine exhibited higher concentrations in both tumor cells 

relative to controls and the level was higher for MDA-MB-231 than in MCF-7. 

Phosphocholine is recognized as a tumor marker for breast cancer.

Many other cancer types including prostate cancer, colorectal cancer, pancreatic cancer, 

ovarian cancer and thyroid cancer have also been the subject of NMR-based metabolomics 

investigations. For example, a study focused on prostate cancer biomarkers identification 

investigated serum from low-grade and high-grade prostate cancer patients along with 

healthy controls.108 It was shown that prostate cancer could be distinguished from controls 

with 84.4% sensitivity and 92.9% specificity, low-grade cancer could be distinguished from 
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and high-grade cancer with 92.5% sensitivity and 93.3% specificity. In another study by the 

same group, filtered serum samples from prostate cancer, benign prostatic hyperplasia, and 

healthy controls were investigated for identifying distinguishing metabolites.109 Here, on the 

basis of discriminant function analysis, metabolite profiles showed higher discrimination 

power than the clinical laboratory tests. The identification of robust metabolite biomarkers 

for prostate cancer has been challenging, and controversy regarding the validated 

performance of any new biomarkers will likely continue. In the area of colon cancer, some 

recent investigations have reported fecal metabolite profiles.110,111 These studies have 

detected a number of short-chain fatty acids as common distinguishing markers. Such 

metabolites have been the focus of a number of recent gut microbiome studies, which 

provides some level of biological validation for these studies.112,113 Investigations of 

pancreatic cancer using animal models have been made based on metabolite profiling of 

tissue extract and serum.114,115 The disease model included both pancreatic intraepithelial 

neoplasia and pancreatic ductal adenocarcinoma and the results showed significant 

differences in metabolite profiles between the two pathological conditions. In the area of 

ovarian cancer, ovarian cyst fluid samples from benign, borderline, and malignant ovarian 

tumors were investigated.116 It showed significant metabolic differences among the three 

groups. Finally, focused on evaluating the potential for NMR to help diagnose preoperative 

thyroid cancer, percutaneous fine-needle aspiration of tissue specimens were subjected to 

metabolite profiling.117 The metabolite profiles significantly discriminated between benign 

and malignant nodules. Similar discrimination was observed in another study that 

investigated malignant and benign tumors as well as adjacent noncancerous tissue.118

Diabetes.

Several NMR studies have focused on investigations of diabetes using animal models and 

humans. Many of these studies evaluated the antidiabetic activity of potential drugs or 

supplements using animal models. For example, a rat model study investigated genipin119 

and found that it improves many perturbed pathways including glucose metabolism, the 

TCA cycle, lipid metabolism, and amino acid metabolism. Investigation of antidiabetic 

properties of Phyllanthus niruri indicated that it decreased serum glucose levels and 

improved the lipid profile in diabetic rats.120 The study of antidiabetic effects of metformin 

and vildagliptin showed altered metabolite profiles in urine of a mouse model.121 Notably, it 

showed evidence for significant correlation between a number of metabolites including N-

carbamoyl-β-alanine and glucose; N-carbamoyl-β-alanine was thus indicated to be a 

potential diabetes marker. In another study, plasma from a total of 71 patients with diabetes, 

coronary heart disease, diabetic coronary heart disease, or healthy controls were investigated 

to evaluate the metabolic risk for diabetic coronary heart disease.122 Interestingly, the 

diagnostic model constructed based on the metabolites detected diabetic coronary heart 

disease with 93% sensitivity and 93% specificity. It is known that obesity is a major risk 

factor for diabetes. Focused on identifying metabolic risk factors, a recent study compared 

serum metabolite profiles from obese and diabetic subjects with both high and low BMI.123 

The study found higher concentrations of five metabolites including fatty acids, valine, 

isoleucine, phenylalanine, and lactate in nondiabetic obese subjects compared to 

nondiabetics with low BMI. Further, 19 metabolites including saturated fatty acids, several 

amino acids, lactic acid, 3-hydroxybutyric acid, choline, 3,7-dimethyluric acid, pantothenic 
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acid, myoinositol, sorbitol, glycerol, and glucose were found to be higher in diabetic 

subjects compared to controls. Metabolite profiling of saliva offers a noninvasive approach 

that can be quite beneficial such as in the investigations of small children. Using this 

approach, an investigation of type I diabetes in small children (<6 years age) was made124 

and found that many metabolites associated with glycolysis and the TCA cycle were altered 

between the diabetic and control groups.

Other Diseases.

Many other diseases including heart disease, Huntington’s disease, and preeclampsia have 

also been the recent focus of metabolomics investigations using NMR. An investigation of 

heart failure measured blood metabolites from heart failure patients with severe versus mild 

to moderate impairment of the left ventricle ejection fraction.125 Levels of four metabolites, 

2-hydroxybutyrate, glycine, methylmalonate, and myo-inositol, were found to distinguish 

the three groups. Another investigation studied serum metabolite profiles from heart failure 

patients and matched controls focused on evaluating pathophysiological mechanisms of 

elevated myocardial energy expenditure in heart failure.126 It showed that three metabolites, 

3-hydroxybutyrate, acetone, and succinate were associated with myocardial energy 

expenditure.

Huntington’s disease (HD) represents an autosomal neuro-degenerative disorder and affects 

one in every 10 000 subjects in the U.S. Metabolomics studies that focus on HD currently 

are scarce. While a few NMR-based studies have used animal models, investigations of HD 

using humans had not yet been made. Recently, the first NMR-based metabolomics study 

focused on HD in humans evaluated brain metabolites in the post-mortem striatum and 

frontal lobe from Huntington’s disease patients along with matched controls.127 On the basis 

of 39 quantified metabolites in brain tissue, multivariate discriminant models differentiated 

between HD and controls. Importantly, the metabolite profiles revealed that both parts of the 

brain studied were affected differently in HD compared to controls and that the striatum was 

more perturbed than the frontal lobe, metabolically.

A few NMR-based metabolomics investigations were focused on gaining insights into the 

pathogenesis of preeclampsia. In one study, late-onset preeclampsia was compared to 

matched controls based on the measurement of the serum metabolome.128 Altered pathways 

involving branched-chain amino acids, propanoate, glycolysis, gluconeogenesis, and ketone 

bodies were detected, which are suggestive of abnormalities including insulin resistance and 

metabolic syndrome, mitochondrial dysfunction and disturbance of energy metabolism, 

oxidative stress and lipid dysfunction in the pathogenesis of late-onset preeclampsia. A fairly 

large study used both urine and serum metabolite profiles to evaluate the potential of 

metabolomics to predict preeclampsia and gestational hyper-tension in early pregnancy.129 It 

showed that urinary metabolites provide higher sensitivity than serum metabolite profiles for 

the prediction of preeclampsia and gestational hypertension. The sensitivity was 51.3% 

(from urine) vs 15% (serum) for preeclampsia and 40% (urine) vs 33% (serum) for 

gestational hypertension.
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Infection.

For infectious disease diagnosis, identification of the specific microorganism in biological 

specimens is critical to prescribe appropriate therapy. In principle, the unique metabolism 

linked to a specific bacterium or virus could be used to establish their identity based on 

metabolite profiling of infected samples. Many NMR-based metabolomics investigations 

have thus been focused on this hypothesis. A first metabolomics application to evaluate 

urinary metabolic profiles to distinguish bacterial and viral causes in children with 

respiratory tract infections was presented recently.130 While the sample size was small, the 

interesting result was that the urinary metabolome could differentiate these two causes based 

on statistical modeling. Another study focused on distinguishing Plasmodium falciparum 
infection from other symptomatically similar diseases by evaluating plasma metabolite 

profiles.131 It found an association of the infection with elevated levels of plasma 

lipoproteins. Focused on rapid discrimination and identification of several bacterial species, 

culture media of six species were analyzed.132 The results show that the six bacterial species 

including E. coli, Pseudomonas aeruginosa, Proteus mirabilis, Enterococcus faecalis, 
Staphylococcus aureus, and Staphylococcus saprophyticus could be discriminated. A study 

of urinary tract infections (UTI) was focused on the diagnosis of E. coli infection based on 

the metabolite profiles in urine.133 Trimethylamine was found to be a potential urinary 

biomarker for UTI involving E. coli. Finally, altered metabolite profiles due to pleural 

infection in children with Streptococcus pneumoniae pneumonia was investigated using 

pleural fluid.134 Results of this study indicated the ability of NMR to detect the progress of 

pneumococcal pneumonia infections by direct visualization of the bacterial metabolism.

Obesity.

Obesity is a major risk factor for many diseases, and many now recognize it as a disease 

itself. The search for a metabolic basis of obesity-induced diseases continues to be an 

important topic of many investigations. Several NMR-based metabolomics investigations of 

obesity have been made recently using both animal models and humans. A study using a rat 

model investigated metabolic profiles of portal vein and peripheral blood plasma, urine, and 

fecal water of obese and lean animals with a major focus on circulating host-microbial 

metabolites.135 This study demonstrated the important association of urinary host-microbial 

co-metabolites with phenotype. In another study, blood samples collected before and, 

periodically, after bariatric procedures were investigated to evaluate the metabolic alterations 

due to bariatric surgery in obese individuals.136 It was shown that surgery reverses the 

metabolic alterations associated with obesity and the results suggest profound changes in gut 

microbiome-host interactions after surgery.

An impressive, international study of over 2 000 patients involving cohorts from U.S. and 

U.K. investigated urine to characterize metabolic signatures of adiposity.137 This study 

showed that metabolite profiles of urine collected over two 24-h time periods 3 weeks apart 

provided reproducible patterns of metabolites associated with adiposity (Figure 7). Further, 

the cohorts from both U.S. and U.K. showed multiple associations between urinary 

metabolites and body mass index that importantly could be validated across these two 

geographically distinct collections.
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Environmental Toxicity.

Environmental metabolomics, which deals with the investigation of interactions of the 

environment with living organisms, is an emerging area within the metabolomics field. 

Numerous pollutants including toxic chemicals, metals, and their products that have leached 

into the environment constitute major health hazards for humans as well as animals. Several 

NMR-based metabolomics studies have focused on investigations of such environmental 

toxicity. A study using a rat model investigated zinc oxide (ZnO) induced molecular changes 

on the respiratory system.138 BALF and lung tissue samples obtained after treating rats with 

different doses of 35 and 250 nm ZnO particles were analyzed. Only moderate and high 

doses of 250 nm ZnO particles were found to induce altered metabolism. Specifically, 

metabolites such as isoleucine and valine were increased while acetate, trimethylamine n-

oxide, taurine, glycine, formate, ascorbate, and glycerophosphocholine were decreased in 

the BALF. In addition, lipids were increased, while taurine and glucose were decreased in 

the lung tissue of ZnO treated rats compared to controls. In another study, Daphnia magna 
exposed to atrazine, propranolol, and perfluorooctanesulfonic acid (PFOS) at sublethal 

levels were investigated.139 Depending on the type of contaminant, neonates and adults 

responded uniquely. Specifically, exposure to propranolol and PFOS altered metabolite 

profiles significantly in both neonates and adults, whereas exposure to atrazine caused 

altered metabolism only in adult Daphnia magna. Bioindicators of exposure to 

pharmaceuticals and personal care products were identified by exposing Daphnia magna to a 

range of sublethal concentrations of triclosan, carbamazepine, and ibuprofen.140 Separately, 

investigation of urine from rats exposed to polybrominated diphenyl ethers (PBDE) along 

with controls using NMR (and MS) indicated altered metabolite levels that are suggestive of 

endocrine disruption and neurodevelopmental toxicity caused by PBDEs.141 The toxic 

effects of 3,5,6-trichloro-2-pyridinol (TCP), which is a primary degradation product of 

chlorpyrifos and chlorpyrifos-methyl, was investigated using a mouse model.142 It was 

found that the TCP-treated mice exhibited lower body weight relative to controls; a number 

of metabolites related to hepatotoxicity and nephrotoxicity were detected in the TCP treated 

mice.

A recent human study evaluated oxidative/nitrosative stress biomarkers and NMR-based 

metabolite profiles using residents living within a 40-km radius of a petrochemical complex. 

These subjects were exposed to different levels of environmental pollutants such as 

vanadium and polycyclic aromatic hydro-carbons.143 The results showed that urine 

biomarkers, vanadium and 1-hydroxypyrene, were higher by a factor of 40 and 20, 

respectively, in high-exposure subjects compared to low exposure subjects; on the other 

hand, results of the metabolomics studies showed lower levels of amino acids and 

carbohydrates in the high-exposure subjects. Importantly, the combination of exposure 

biomarkers and metabolomics provide new insights into a number of potentially affected 

pathways including insulin signaling and oxidative stress. Finally, in the quest for preclinical 

serum markers of environmental exposure to lead, cadmium, and arsenic, serum metabolic 

profiles in healthy smelter workers were studied using NMR.144 In this study, the 

disturbance of energy, lipids, and amino acid metabolism due to exposure to heavy metals 

was identified.
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Food and Nutrition.

Research on food and nutrition has witnessed numerous NMR-based metabolomics studies 

focused on a variety of issues, including food processing, quality, taste, composition, 

adulteration, contaminants, and nutritional values. In the area of food processing, a recent 

study investigated changes in metabolite composition of chicory root during the roasting 

process.145 The results showed that many metabolites, including most amino acids, degraded 

while several compounds were newly formed during roasting. Separately, it was shown that 

metabolic profiles can predict the taste of commercial coffee beans.146 Metabolic profiles in 

carrot root juices associated with different pedoclimatic conditions were identi-fied based on 

the analysis of carrot roots cultivated in different geographical areas,147 and metabolomics 

could also distinguish between monofloral and polyfloral honey.148 Metabolomic analysis 

provided insights into the metabolic variations of diverse rice cultivars and their associations 

with environmental conditions and genetic backgrounds.149 Such insights help to facilitate 

improvement in rice grain quality. Metabolite profiling of different varieties of cherry 

tomatoes identified variations due to climatic changes, specifically, the association of 

nutritional metabolites with both the variety as well as climatic conditions.150

Identifying dietary biomarkers is of major interest for numerous reasons including the goal 

of achieving calorie restriction without malnutrition that is increasingly shown to extend 

longevity and delay the onset of age-associated disorders in many animal studies. A study 

focused on detecting the effects of long-term dietary interventions investigated serum and 

urinary metabolic profiles in mice fed with different diets, with or without reduced caloric 

intake, over their life span.151 Notable findings of this study include the result that, 

irrespective of diet, calorie intake exerts a dominant effect on metabolic perturbations. Diet-

induced metabolic changes were also investigated using urine metabolic profiles from 

individuals fed with seafood or nonseafood diets. It was found that seafood intake reduces 

urinary excretion of metabolites involved in mitochondrial lipid and energy metabolism, 

possibly facilitating a higher lipid catabolism in healthy subjects.152 It is also known that 

overeating different dietary fatty acids influence the amount of liver fat stored during weight 

gain. Focused on understanding the mechanism of such weight gain, a metabolomics study 

investigated the effect of overfeeding of saturated fatty acids (SFA) and polyunsaturated 

fatty acids (PUFA).153 Here polar metabolites were evaluated for differentiation between 

SFA and PUFA diet-based body fat deposition. Finally, a metabolomics study focused on 

identifying dietary markers for coffee consumption identified 2-furoylglycine as a reliable 

marker.154

Plants.

Plant metabolomics is another growing area of NMR-based metabolomics investigations. 

One study focused on biotechnological production of secondary metabolites in plants and 

presented a biomimetic approach in which a real tissue is simulated by a microfluidic 

chamber system.155 This study provided proof-of-principle results that a microfluidic system 

of cultivated plant cells can mimic the metabolic flows in a real plant tissue. Another study 

investigated the metabolic evolution and cultivar-dependent metabolite variation in soybean 

leaves using NMR-based metabolomics.156 The results identified distinct metabolism for 

adaptation to environmental conditions and their intrinsic metabolic phenotype, which 
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provides new insights into the physiology of soybean plants. Another metabolomics study 

investigated plant species associated with benzylisoquinoline alkaloid metabolism, which 

accumulates pharmacological agents.157 This study found significant species- and tissue-

specific variations including different alkaloids. Separately, metabolomics investigations of 

lettuce leaves focused on characterizing metabolic adaptations during leaf growth and 

exposure to the pesticide mancozeb were described.158 Finally, the effect of genotype on the 

metabolite composition in carrots was investigated and showed that different genotypes were 

characterized by differences in a number of metabolites, indicating the potential of this 

approach to map the carrot metabolome and identify genetic differences between varieties.
159

NEW RESOURCES

The improved analytical tools in metabolomics generate increasingly large and complex data 

sets and thus drive the demand for improved processing and analysis software tools to 

unravel and understand the resulting data. In response, developments in numerous resources 

including software tools for automated data processing, analysis, and interpretation, as well 

as databases and data repositories have been made and continue to be developed in the field. 

One major benefit of these efforts is that virtually all such resources have been made 

publicly available, which has enabled the capabilities to perform fast data analysis and 

interpretation of the complex data by even nonexpert users. A recent overview of the freely 

available and open-source tools, algorithms, and frameworks was published with the goal of 

making new as well as established metabolomics researchers aware of the developments.160 

Important topics included processing, annotation, and visualization of untargeted data from 

both NMR and MS-based metabolomics investigations.

A new software platform named BAYESIL was provided recently that focused on fast, 

reliable, and automated analysis of NMR spectra.161 It performs fully automated spectral 

processing and spectral profiling for 1D 1H NMR spectra collected on standard instruments, 

at several different frequencies (Figure 8). It was shown that >50 metabolites in biological 

samples such as serum and CSF can be analyzed in less than 5 min with good quantitative 

accuracy for ~90% of metabolites. Notably, this is the first fully automatic publicly 

accessible system that performs quantitative profiling for 1D NMR spectra with an accuracy 

that meets or exceeds the performance of trained experts. For optimal performance, 

BAYESIL requires NMR spectra from ultrafiltered serum/plasma. NMRPro, a software tool 

which enables easy-to-use online interactive processing and visualization of NMR spectra, 

was also recently developed.162 NMRPro is Web-based and hence is platform independent. 

This publicly available tool integrates server-side processing with client-side interactive 

visualization. Another software package, Dolphin, can analyze 2D NMR, in addition to 1D 

NMR, and automatically quantify a set of target metabolites accurately.163 It takes advantage 

of the 2D J-resolved NMR spectroscopy signal dispersion to avoid inconsistencies in signal 

position detection, which enhances the reliability and confidence in metabolite matching.

A new database, termed 1H–13C-TOCCATA, that contains complete 1H and 13C chemical 

shifts for individual spin systems and isomeric states of common metabolites was recently 

developed.164 This database has been shown to help identification of metabolites using 2D 
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1H–13C TOCSY and 2D 13C–1H HSQC-TOCSY spectra at natural abundance. More 

recently, the same group introduced another metabolomics database and query algorithm, 

which unifies NMR spectroscopic information on 555 metabolites from both the Biological 

Magnetic Resonance Data Bank (BMRB) and the Human Metabolome Database (HMDB), 

for the analysis of 13C–1H HSQC spectra.165 The database, termed Complex Mixture 

Analysis by NMR (COLMAR) is specific to isomers and can be queried via an interactive, 

easy-to-use Web interface that is publicly available. Another software tool, Pathomx, enables 

processing, analysis, and visualization of NMR data including 1D and 2D spectra.166 This 

easy-to-use tool should be useful to new, nonexpert users as well as experts and also 

supports complex analysis.

A number of resources have also been devoted to statistical analysis, data visualization, and 

interpretation. One important and very successful endeavor among these is MetaboAnalyst, a 

comprehensive Web-based package for a range of metabolomics applications.167 

MetaboAnalyst handles targeted as well as untargeted data from both NMR and MS 

platforms. It incorporates a number of normalization procedures and a range of univariate 

and multivariate methods including PCA, PLS-DA, heatmap clustering, and machine 

learning methods. It also offers a number of data interpretation tools such as MSEA 

(metabolite set enrichment analysis), MetPA (metabolite pathway analysis), and biomarker 

selection via ROC (receiver operating characteristic) curve analysis, as well as time series 

and power analysis. So far, MetaboAnalyst has been used for processing more than 1 million 

data sets by more than 50 000 users all over the world and currently more than 100 000 jobs 

are processed per month. Another new open-source platform, MVAPACK, was developed 

for NMR-based metabolomics applications168 (Figure 9). Developed for the GNU Octave 

programming environment, this publicly available package represents a complete platform 

for NMR-based chemometric data handling and was shown to be applicable for both routine 

NMR-based metabolomics applications as well as the development of new chemometric 

algorithms.

Major repositories for a variety of metabolomics research related tools have also been made 

available recently. One such repository is the Metabolomics Workbench, an international 

collection of metabolomics data and metadata, metabolite standards, metabolite structures, 

protocols, tutorials and training, and analysis tools.169 This public repository is part of the 

data coordinating effort of the National Institute of Health (NIH) Common Fund’s 

Metabolomics Program and provides a computational platform to integrate, analyze, track, 

deposit, and disseminate large volumes of heterogeneous data from NMR and MS platforms 

from more than 20 different species including humans and other mammals, plants, insects, 

invertebrates, and microorganisms. Another international open-access database repository, 

MetaboLights, collects data from cross-platform and cross-species metabolomics research at 

the European Bioinformatics Institute (EMBL-EBI).170 It provides Metabolomics Standard 

Initiative compliant metadata and raw experimental data associated with metabolomics 

experiments. These data repositories and new software tools are already being heavily used 

and promise to have a large impact on the field.
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CONCLUSIONS

The field of metabolomics continues to witness multifaceted growth in methods and tools 

development as well as a wide range of applications. With its numerous unique 

characteristics and capabilities, NMR spectroscopy continues to play an important role in the 

field. While the intrinsically low sensitivity of NMR limits the number of detectable 

metabolites compared to MS, the unique characteristics of NMR far outweigh the sensitivity 

limitations. As a result, a large number of successful studies have been completed using 

NMR-based metabolomics. Also, there have been major efforts to improve the sensitivity 

and enhance the pool of detected metabolites by NMR; such advances help close the gap 

between the number of metabolites reliably detected by NMR and MS and enable 

researchers to exploit the combined strength of the two analytical platforms. Recent 

advances in NMR methods development have led to the detection of a large number of 

unknown metabolites, faster data acquisition, as well as automated spectral and data 

analysis. While the biomedical sciences continues to be the major beneficiary of NMR-

based metabolomics investigations, studies in numerous other areas are also increasing. 

Another major trend over the past few years is the increased use of NMR and MS together. 

This development highlights the increasingly realized complexity of biological systems and 

the need for multifaceted and complementary analytical tools for better visualization of 

metabolite profiles in biological mixtures. We anticipate this trend will continue as more 

researchers become aware of the improved results from exploitation of the strength of the 

complementary methods. Further, as highlighted in a recent article,171 a number of 

technological advances focused on enhancing the resolution and sensitivity of NMR and 

speed of data collection and analysis will witness major advances in the NMR-based 

metabolomics applications to the benefit of all in the field.
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Figure 1. 
Automated high-throughput serum NMR metabolomics platform used to obtain molar 

concentrations of more than 200 metabolic measures. The samples are handled in 96-well 

plates, with every plate containing 2 quality control samples, a serum mimic and a mixture 

of two low-molecular-weight metabolites. All liquid handling steps for serum samples are 

performed by a PerkinElmer JANUS Automated Workstation equipped with an 8-tip 

dispensor arm with Varispan. This platform has two NMR spectrometers, each equipped 

with a SampleJet that holds 480 samples at a cooled (+6 °C) temperature that allow analysis 

of ≈80 000 samples annually. Reproduced from Soininen, P.; Kangas, A. J.; Würtz, P.; Suna, 

T.; Ala-Korpela, M.Circ. Cardiovasc. Genet. 2015, 8, 192–206 (ref 32). Copyright 2015 

Wolters Kluwer Health, Inc.
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Figure 2. 
INETA (INADEQUATE network analysis) method for metabolite identification, which uses 

an INADEQUATE experiment for 13C enriched samples to connect peaks. Peaks are picked 

(A) and their double quantum signal pair is found (B). Peaks lacking a partner are not 

considered in the analysis. Vertical pairs are matched on the basis of chemical shifts (C). 

Vertical and horizontal pairs are connected to form a network. All networks are shown in 

part D. 1D 13C spectra and carbon connectivity information are downloaded from the 

BMRB, and a 2D INADEQUATE in silico database is generated by adding the chemical 

shifts of two directly bonded carbons (E). The INADEQUATE spectra of database matches 

or candidates can then be plotted onto the peak-picked experimental spectra (denoted by red 

circles above carbon numbers) to give positive identification (F). Reproduced from 

Clendinen, C. S.; Pasquel, C.; Ajredini, R.; Edison, A. S. Anal. Chem. 2015, 87, 5698–5706 

(ref 41). Copyright 2015 American Chemical Society.
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Figure 3. 
(a) Typical 800 MHz 1H NMR spectrum of a mouse liver tissue; (b) expanded spectral 

region with annotations for peaks for oxidized nicotinamide adenine dinucleotide (NAD+), 

oxidized nicotinamide adenine dinucleotide phosphate (NADP+), reduced nicotinamide 

adenine dinucleotide (NADH), reduced nicotinamide adenine dinucleotide phosphate 

(NADPH), adenosine triphosphate (ATP), adenosine diphosphate (ADP), and adenosine 

mono-phosphate (AMP); (c) expanded spectral region showing the characteristic fingerprint 

of the redox and energy coenzymes; and (d) adenine moiety with the lone hydrogen atom on 

the five membered ring indicated by an arrow; all peaks in the fingerprint region shown in 

part c arise from this hydrogen atom. Reproduced from Nagana Gowda, G. A.; Abell, L.; 

Lee, C. F.; Tian, R.; Raftery, D. Anal. Chem. 2016, 88, 4817–4824 (ref 70). Copyright 2016 

American Chemical Society.
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Figure 4. 
Statistical correlation between NMR and MS: (A) distribution of mass errors for MS peaks 

that matched to at least one assigned NMR bin, (B) structural correlations between NMR 

and MS, and (C) nonstructural correlations between NMR and MS. Reproduced from Hao, 

J.; Liebeke, M.; Sommer, U.; Viant, M. R.; Bundy, J. G.; Ebbels, T. M. Anal. Chem. 2016, 

88, 2583–2589 (ref 75). Copyright 2016 American Chemical Society.
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Figure 5. 
Schematic representation of the strategy for identifying metabolites in complex metabolomic 

mixtures by combining mass spectrometry with data from predicted and experimental 1D 

NMR spectroscopy. Reproduced from Bingol, K.; Bruschweiler-Li, L.; Yu, C.; Somogyi, A.; 

Zhang, F.; Brüschweiler, R.Anal. Chem. 2015, 87, 3864–3870 (ref 80). Copyright 2015 

American Chemical Society.
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Figure 6. 
Comparison of the prediction accuracy for breast cancer incidence several years early 

obtained from three different models: a univariate model (left), a model of the 47 lifestyle 

variables (middle) and the model based on the combination of the serum NMR metabolite 

profile and lifestyle variables (right). Blue curve: Model from the data obtained in 1993–

1996. Red curve: validation using independent data obtained in 1997. Reproduced from Bro, 

R.; Kamstrup-Nielsen, M. H.; Engelsen, S. B.; Savorani, F.; Rasmussen, M. A.; Hansen, L.; 

Olsen, A.; Tjønneland, A.; Dragsted, L. O. Metabolomics 2015, 11, 1376–1380 (ref 105).
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Figure 7. 
An international (U.S. and U.K.) study focused on urinary metabolic signatures of human 

adiposity. (A) An average spectrum of 1880 urine spectra from the U.S. cohort; (B) 

associations of BMI with urinary metabolites. Statistically significant peaks are colored red 

if directly associated with BMI and blue if inversely associated. (C) Overall study design. 

Reproduced from Elliott, P.; Posma, J. M.; Chan, Q.; Garcia-Perez, I.; Wijeyesekera, A.; 

Bictash, M.; Ebbels, T. M.; Ueshima, H.; Zhao, L.; van Horn, L.; Daviglus, M.; Stamler, J.; 

Holmes, E.; Nicholson, J. K. Sci. Transl. Med. 2015, 7, 285ra62 (ref 137). Copyright 2015 

American Association for the Advancement of Science.
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Figure 8. 
NMR spectral processing steps in BAYESIL for the automated identification and 

quantitation of metabolites. Reproduced from Ravanbakhsh, S.; Liu, P.; Bjorndahl, T. C.; 

Mandal, R.; Grant, J. R.; Wilson, M.; Eisner, R.; Sinelnikov, I.; Hu, X.; Luchinat, C.; 

Greiner, R.; Wishart, D. S. PLoS One 2015, 10, e0124219 (ref 161).
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Figure 9. 
Flow diagram showing the steps handled by the MVAPACK software package. Reproduced 

from Worley, B.; Powers, R. ACS Chem. Biol. 2014, 9, 1138–1144 (ref 168). Copyright 

2014 American Chemical Society.
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