Skip to main content
. 2018 Nov 2;18(11):3744. doi: 10.3390/s18113744
Algorithm 2 Absent Emotion Data Reinforcement
Input: IDS(1M)—Initial Multiple User Speeches Dataset
    CT—Number of Classes from Target User
    TFeatureVector(1N)—Target User Speeches Feature Vector
    TEmoLabelSet(1C)—Acquired Target User Speeches Label Set
    NU—Number of Users
    TID—Target User ID
Output: SU (1...K)—Selected Similar User Speeches Dataset
for i = 1 to M do
IFeatureVectori = extractFeatures(IDSi);
IEmoLabeli = getLabel(IDSi);
IUserID i = getUserID (IDSi);
end
for i = 1 to N do
TCentroidValuesi = calculateDistributionFactors (TFeatureVectori);
end
for i = 1 to NU do
   for j = 1 to CT do
     for k = 1 to M do
   if TEmoLabelSetj = IEmoLabelk and i = IUserIDk THEN
ICentroidValuesi = calculateDistributionFactors (IFeatureVectorj);
     end
   end
end
for i = 1 to NU do
   for j = 1 to CT do
SumDistancesij = SumDistancesij + EuclidianDistance(TCentroidValuesj,  ICentroidValuesij);
   end
end
US = Sorting (SumDistances, IDS);
Return US;