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Abstract

Human myxovirus resistance 2 (MX2/MXB) is an interferon-induced post-entry inhibitor of

human immunodeficiency virus type-1 (HIV-1) infection. While the precise mechanism of

viral inhibition remains unclear, MX2 is localized to the nuclear envelope, and blocks the

nuclear import of viral cDNAs. The amino-terminus of MX2 (N-MX2) is essential for anti-viral

function, and mutation of a triple arginine motif at residues 11 to 13 abrogates anti-HIV-1

activity. In this study, we sought to investigate the role of N-MX2 in anti-viral activity by iden-

tifying functionally relevant host-encoded interaction partners through yeast-two-hybrid

screening. Remarkably, five out of seven primary candidate interactors were nucleoporins

or nucleoporin-like proteins, though none of these candidates were identified when screen-

ing with a mutant RRR11-13A N-MX2 fragment. Interactions were confirmed by co-immuno-

precipitation, and RNA silencing experiments in cell lines and primary CD4+ T cells

demonstrated that multiple components of the nuclear pore complex and nuclear import

machinery can impact MX2 anti-viral activity. In particular, the phenylalanine-glycine (FG)

repeat containing cytoplasmic filament nucleoporin NUP214, and transport receptor trans-

portin-1 (TNPO1) were consistently required for full MX2, and interferon-mediated, anti-viral

function. Both proteins were shown to interact with the triple arginine motif, and confocal

fluorescence microscopy revealed that their simultaneous depletion resulted in diminished

MX2 accumulation at the nuclear envelope. We therefore propose a model whereby multiple

components of the nuclear import machinery and nuclear pore complex help position MX2

at the nuclear envelope to promote MX2-mediated restriction of HIV-1.

Author summary

The movement of large molecules into the cell nucleus is regulated at specific sites within

the nuclear envelope termed nuclear pores. To infect cells productively, human
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immunodeficiency virus type-1 (HIV-1) must traverse the nuclear envelope to enable

integration of the viral DNA into the genomic DNA of host cells. We, and others, have

previously identified a cell-encoded protein, human myxovirus resistance 2 (MX2), which

is expressed upon initiation of an innate immune response and prevents accumulation of

HIV-1 DNA within the nucleus, thus imposing a block to infection. Here, we reveal that

components of the nuclear pore complex, and nuclear import machinery, are required for

MX2-dependent inhibition of HIV-1 infection. We show that MX2, which is localized at

the cytoplasmic face of the nuclear envelope, interacts with multiple protein components

of the nuclear pore complex, as well as transport receptor transportin-1, via a functionally

required triple arginine motif at its amino-terminus. We speculate that these interactions

facilitate MX2-mediated inhibition of HIV-1 nuclear import by situating the protein at

the nuclear envelope.

Introduction

Human myxovirus resistance 2 (MX2/MXB) is an interferon-stimulated gene (ISG), and a key

contributor to the type-1 interferon-induced post-entry inhibition of human immunodefi-

ciency virus type-1 (HIV-1) infection [1–3]. The MX2-mediated block to HIV-1 infection

occurs after reverse transcription, but prior to the nuclear import of pre-integration viral

nucleoprotein replication complexes [1, 2]. The precise mechanism of inhibition remains

unclear, although the HIV-1 Capsid protein (CA) is believed to determine viral specificity

since point mutations in CA can allow escape from MX2-mediated inhibition [1–4]. Further-

more, MX2 has been shown to interact with synthetic Capsid-Nucleocapsid nanotubes in
vitro. However, the relationship between CA binding and viral suppression is not straightfor-

ward, since mutations in CA that permit escape from viral inhibition do not prevent CANC

nanotube interactions with MX2 [5–7].

Human MX2 is a large dynamin-like GTPase, and is most closely related to human MX1/

MXA. MX1 has long been established as a potent interferon-induced restriction factor for a

range of DNA and RNA viruses including influenza A virus (IAV), though it does not inhibit

retroviruses such as HIV-1 [8, 9]. Indeed, despite sharing 63% amino acid sequence identity

and a similar structure and domain architecture [5], the viral specificities and mechanisms of

action appear to differ considerably between MX1 and MX2. While GTPase activity is essential

for the anti-viral function of MX1 against IAV [10, 11], inactivating mutations in conserved

residues within the GTPase-domain of MX2 do not abrogate anti-viral activity against HIV-1

[1, 2]. Both MX1 and MX2 can oligomerize, forming a variety of multimeric species from

dimers and trimers to high-order oligomers [8, 12, 13], and recombinant MBP-tagged MX2

fusion proteins can form large helical assemblies in vitro [14]. In a recent structure-function

study by Gao et al, higher-order oligomerization of MX1 was found to be essential for anti-

viral activity against IAV [15]. However, while monomeric MX2 mutants are not anti-viral,

higher-order oligomerization appears to be dispensable for MX2-mediated inhibition of HIV-

1 [5, 13, 16].

MX2 possesses an extended N-terminal domain that distinguishes it from MX1, and exists

as two isoforms owing to the presence of an internal initiation methionine codon at position

26. However, only the longer 78 kDa isoform displays anti-HIV-1 activity and is associated

with the nuclear envelope (NE); the shorter 76 kDa isoform is cytoplasmic (as is human MX1),

and is not anti-viral. Indeed we, and others, have previously shown that the N-terminal 91

amino acids of full-length MX2 are required for anti-viral activity [17, 18], and remarkably can
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confer anti-HIV-1 activity on heterologous scaffolds including MX1, the murine leukemia

virus (MLV) restriction factor Fv1, and oligomerization-competent leucine-zippers [19]. Pre-

viously, we identified a triple-arginine motif at positions 11 to 13 as essential for the anti-HIV-

1 activity of MX2 [19]. Mutation of these three residues, either to alanine (RRR11-13A), or

lysine (RRR11-13K), almost entirely abrogate anti-viral function, without observably disturb-

ing NE localization [19]. This motif has also been implicated in binding to HIV-1 CA (20),

though its precise role in virus suppression has remained unclear.

To address the role of the N-terminal domain in MX2 function, we therefore sought to

identify biologically relevant host-encoded binding partners using yeast two-hybrid (Y-2-H)

screening. Strikingly, most of the candidate interactors with the wild-type N-terminal

sequence were nucleoporins (NUPs) or nucleoporin-like proteins. We then determined the

functional importance of these interactions using a combination of biochemical, genetic and

virological experiments: specifically, we confirmed these interactions through co-immunopre-

cipitation assays, and used RNA silencing-mediated depletion to demonstrate that multiple

components of the nuclear pore complex (NPC) and the nuclear import machinery promote

MX2-mediated inhibition of HIV-1 infection.

Results

Multiple components of the nuclear pore complex interact with MX2

through its N-terminal RRR11-13 motif

A yeast two-hybrid screen was performed to identify candidate interaction partners with the

MX2 N-terminal domain (N-MX2). The N-terminal 91 amino acids of wild-type MX2, or

mutant RRR11-13A MX2, were employed as bait fragments to screen against prey fragments

from a human leukocyte cDNA library. Candidate interactors were assigned a Predicted Bio-

logical Score (PBS) (from A to F; A representing a very high confidence in the interaction, F

representing experimentally proven artifacts as previously described [21]). Candidate interac-

tors with PBS scores of A, B or C with wild-type N-MX2 or mutant RRR11-13A N-MX2 are

shown in Fig 1A, with the complete lists of all identified genes displayed in S1 Table. For wild-

type N-MX2, five out of the seven candidate interactors are either FG-nucleoporins (nucleo-

porins containing phenylalanine-glycine repeat sequences; NUP358, NUP214 and NUP98) or

nucleoporin-like proteins containing FG-repeats (NUPL2/hCG1 and human Rev-interacting

protein/hRIP). However, none of these proteins were recovered using the mutant RRR11-13A

N-MX2 as bait.

To validate these interactions, co-immunoprecipitation analyses were performed by co-

expression of hemagglutinin (HA)-tagged wild-type MX2 or RRR11-13 mutant MX2 and

FLAG-tagged candidate interactors in 293T cells, HA-specific immunoprecipitation, and

immunoblot detection of associated FLAG-tagged proteins (Fig 1B). These data largely corrob-

orated the interactions from the Y-2-H screen. NUP98, a 35 kDa C-terminal domain of

NUP214 (the predicted site of interaction from the Y-2-H screen) and PNRC1 all exhibited a

clear interaction with wild-type MX2, but almost no interaction with RRR-11-13A or the nega-

tive controls MX1 and green fluorescent protein (GFP) (S2 Table). hRIP exhibited a stronger

interaction with MX2 than RRR-11-13A (and virtually no interaction with the negative con-

trols) while KLHL6 and NUPL2 exhibited a comparable interaction with MX2 and RRR-11-

13A. RUNX3, a predicted interactor of RRR-11-13A but not wild-type MX2, did indeed

exhibit a stronger interaction with RRR-11-13A than wild-type MX2. Multiple experimentally

varied co-immunoprecipitation studies with the regions of NUP358 predicted to interact with

MX2 were unsuccessful.
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Nuclear pore complex components and nuclear import factors are required

for MX2-mediated inhibition of HIV-1

NUP358, NUP214, NUP98 and NUPL2 have been described as cytoplasmic filament nucleo-

porins [22] and have all been previously implicated in HIV-1 infection [23–29]. These proteins

are all components of the NPC and are localized, at least partially, at the cytoplasmic face of

the NE. They all possess multiple FG-repeats, which have been proposed to act as sequential

docking sites for nuclear transport receptors as they traverse the NPC [30], facilitating nuclear

import/export of associated cargo (reviewed in [31]). MX2 imposes a barrier to HIV-1 infec-

tion that follows reverse transcription but precedes nuclear import of the viral cDNA [1].

These nucleoporins and hRIP (which also resides on the NE cytoplasmic face) are, therefore,

conceptually well placed to contribute to regulatory processes that influence HIV-1 nuclear

import.

We investigated whether these candidates, as well as selected other nuclear import factors

and NPC components, are functionally linked with MX2 anti-viral activity. A focused siRNA

“screen” incorporating other nucleoporins previously implicated in HIV-1 infectivity such as

NUP153 [32, 33], NUP62 [34, 35] and transport receptor transportin-3 (TNPO3, also referred

Fig 1. Multiple nucleoporins interact with the N-terminal domain of MX2 (N-MX2). (A) A yeast two-hybrid (Y-2-H)

screen was performed using a human leukocyte cDNA library to identify interacting proteins with wild-type or mutant

RRR11-13A N-MX2. Interacting partners were assigned a predicted biological score from A-F to assess the confidence of

an interaction being specific (with A indicating very high confidence, and F indicating experimentally determined

artifacts). (B) Co-immunoprecipitation of candidate interacting proteins with MX2. 293T cells were co-transfected with

HA-tagged wild-type or mutant RRR11-13A MX2 and FLAG-tagged candidate interactors from the Y-2-H screen. Cells

were lysed and HA-tagged protein immunoprecipitated with anti-HA antibody. Co-transfection of FLAG-tagged

candidates with HA-tagged MX1 or GFP served as negative controls. Immunoblots of immunoprecipitated proteins (IP)

were probed with anti-FLAG and anti-HA antibodies. As a control for protein expression, samples of lysate prior to

immunoprecipitation (IN) were probed with anti-FLAG antibody. All experiments were performed at least three times.

https://doi.org/10.1371/journal.ppat.1007408.g001
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to as TRN-SR2) [36, 37], as well as the related transportin-1 (TNPO1, also called karyopherin-

β2/KPNB2), was therefore performed. FLAG-tagged human MX2 and Photinus luciferase

(negative control) constructs were overexpressed in U87-MG CD4+ CXCR4+ cells using the

doxycycline-inducible EasiLV lentiviral vector system [1]. Prior to induction of expression,

transduced cells were treated with experimental or control siRNAs. Following doxycycline

treatment, cells were challenged with an HIV-1 based lentiviral vector (HIV-1/GFP) and trans-

duction efficiency assessed after 48 h by flow cytometry (S1 Fig, Fig 2A). Overexpression of

human MX2 exhibited an ~18-fold inhibition of HIV-1/GFP infection compared to the lucif-

erase control after either treatment with a non-targeting control siRNA pool or no siRNA

treatment, consistent with previous observations [1, 13, 17, 19].

Depletion of a number of nucleoporins (S2 Fig) increased HIV-1 infection in MX2 express-

ing cells, indicating partial relief from MX2-mediated inhibition (we were unable to deplete

NUPL2 using the siRNA pool tested). NUP214 depletion led to the most consistent and robust

diminution in MX2-mediated inhibition, with simultaneous depletion of both NUP214 and

TNPO1 exhibiting the most pronounced phenotype: ~6-fold inhibition of HIV-1 by MX2, cor-

responding to a ~3-fold reduction in MX2-mediated inhibition compared to the non-targeting

siRNA control. This observation with NUP214/TNPO1 knock-down was then confirmed in a

series of more targeted experiments, with the double depletion consistently reducing the MX2

anti-viral effect by ~2 to 3-fold (Fig 2B and 2C). Critically, MLV infection, which is not suscepti-

ble to MX2-mediated inhibition [1], was not affected by the depletion of NUP214/TNPO1 (Fig

2D), and neither was the overall expression of MX2 (Fig 2E). Interestingly, siRNA depletion of

nucleoporins in general had a minimal general effect on HIV-1 infectivity in control (luciferase

expressing) U87-MG cells, despite previous reports that several of the nucleoporins tested here

are important for HIV-1 infection in other cell lines [24, 25, 27, 33] (S1 Fig and Fig 2B).

Due to the observed lack of impact of nucleoporin knockdown on infection of U87-MG

cells, we asked whether functional redundancy between nucleoporin-dependent HIV-1

nuclear import pathways in these cells may have occluded the detection of MX2-dependent

infection phenotypes. We therefore investigated the nucleoporin requirements for MX2 inhi-

bition in a second cell line, selecting HeLa cells since many previous studies relating to HIV-1

nuclear import have been conducted in this line. Human MX2 or CD8 (negative control) was

overexpressed in HeLa cells using a puromycin selectable lentiviral vector system. Puromycin-

selected transduced cells were treated with the same targeted siRNA pools used in the previous

experiments prior to challenge with HIV-1/GFP, and monitoring of transduction efficiency

was performed by flow cytometry (Fig 3).

In notable contrast to the observations in U87-MG cells (S1 Fig and Fig 2), depletion of sev-

eral nucleoporins reduced HIV-1 infectivity in control (CD8 expressing) cells (Fig 3A). In

agreement with previous observations in this cell line, depletion of NUP358 and NUP153 each

reduced HIV-1 infectivity by ~5-fold, and depletion of TNPO3 reduced infectivity by ~8-fold,

relative to treatment with a non-targeting siRNA). In cells treated with the non-targeting

siRNA, MX2 exhibited an ~8-fold inhibition of HIV-1 infection (Fig 3B). Specific siRNA

depletion of many of the nucleoporins (confirmed by immunoblotting, S3 Fig) significantly

reduced the magnitude of MX2 inhibition (Fig 3B); in particular, silencing of NUP214,

NUP62, NUP153, NUP88, NUP358, NUP98 and transportins TNPO1 and TNPO3 each

reduced the magnitude of MX2 inhibition of HIV-1 infection to below 3-fold. However, it is

important to recognize two caveats with this experiment: 1) the narrowing of the MX2 inhibi-

tory phenotype in HeLa cells silenced for NUP358, NUP153 or TNPO3 is largely driven by

reduced infection of control cells rather than the restoration of infection in cells harboring

MX2 (i.e., in contrast to what we describe in U87-MG cells, S1 Fig and Fig 2), and 2) the silenc-

ing of certain nucleoporins can result in the reduced expression of nucleoporins additional to

MX2 and the nucleoporins
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the intended target (S3 Fig), thus making it impractical to ascribe activity to single proteins in

some cases. Notably, knock-down of NUP214, NUP62 or NUP98 had minimal effects

(<2-fold) on HIV-1 infection in control cells, indicating that each of these nucleoporins pro-

mote MX2 anti-viral function. Depletion of some of the other candidates from the Y-2-H

screen such as hRIP, had no effect on MX2-mediated inhibition (Fig 3).

Fig 2. NUP214 and TNPO1 are required for full anti-viral activity of MX2 in U87-MG cells. U87-MG CD4+ CXCR4+ cells were transduced with

EasiLV vectors expressing FLAG-tagged MX2 or Luciferase (control). After 48 h, transduced cells were transfected twice, 24 h apart, with 20 nM of

specific siRNAs (a non-targeting siRNA was included as a control, CTRL). Expression of MX2 or Luciferase was then induced by treatment of cells with

doxycycline (0.5 μg/ml) for ~72 h prior to challenge with a HIV-1 based lentiviral vector expressing GFP (HIV-1/GFP). Transduction efficiency was

assessed 48 h post challenge by flow-cytometry. (A) NUP358, NUP214, NUP98, hRIP, PNRC1, KLHL6, NUP62, NUP153, TNPO1 or TNPO3 were

depleted independently or in pairs and MX2 anti-viral activity was analyzed. A dotted line indicates the fold inhibition of HIV-1 obtained in cells

treated with CTRL siRNA. Conditions where NUP214 or TNPO1 where depleted are highlighted in red and blue, respectively, while depletion of both

is indicated in purple. (B-C) Effect of siRNA-mediated depletion of NUP214 and/or TNPO1 on the anti-HIV-1 activity of MX2. In C, the same data as

in B are represented as MX2-mediated fold inhibition by dividing %GFP+ luciferase expressing cells by %GFP+ MX2 expressing cells (n = 3;

mean ± standard deviation (SD); �p-value< 0.05; paired t-test to CTRL siRNA). (D) The effect of NUP214 and/or TNPO1 depletion on MLV

infectivity in the presence of MX2 was studied by challenging siRNA-transfected cells with an MLV based vector expressing GFP. (E) Immunoblot

analysis of MX2 expressing cells from the experiment described in B-D, indicating levels of FLAG-tagged MX2 and endogenous NUP214 (detected

using mab414) and TNPO1 after siRNA treatment. Tubulin is included as a loading control.

https://doi.org/10.1371/journal.ppat.1007408.g002
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Fig 3. Multiple nucleoporins and transport receptors are required for anti-viral activity of MX2 in HeLa cells. (A)

HeLa cells were stably transduced with lentiviral vectors constitutively expressing FLAG-tagged MX2 or CD8 (negative

MX2 and the nucleoporins
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MX2 interacts with TNPO1, in part via the N-terminal RRR11-13 motif

We next wished to confirm whether endogenous FG-nucleoporins interact with IFN-induced

endogenous MX2. U87-MG cells were first treated with either a non-targeting control siRNA,

or anti-NUP214 siRNA followed by the addition of IFNα for 24 h to induce MX2 expression.

Immunoprecipitation with mab414, a mouse monoclonal antibody which recognizes FG-

repeat regions within multiple nucleoporins including NUP358, NUP214, NUP153 and

NUP62 [38], was then performed using cell lysates, and associated MX2 was detected by

immunoblotting using an MX2-specific antibody (Fig 4A). Immunoblots of the cell lysate

(INPUT) material show efficient IFN-mediated induction of MX2, and specific depletion of

NUP214 following siRNA treatment. MX2 was detected in IFN-induced samples immunopre-

cipitated with mab414, but not with the negative control GFP-specific antibody (Fig 4A), dem-

onstrating an interaction with endogenous FG-nucleoporins. Depletion of NUP214 visibly

reduced but did not ablate this interaction (although MX2 levels were noticeably higher in

NUP214 siRNA treated samples) implying that at least one other nucleoporin recognized by

mab414 can also interact with MX2.

Since NUP214 and TNPO1 were required for full MX2-mediated HIV-1 inhibition in both

U87-MG cells and HeLa cells, potential interactions between these proteins and MX2 were

explored further. A series of co-immunoprecipitation experiments were performed using 293T

cells transfected with HA- and FLAG-tagged constructs, HA-specific immunoprecipitation,

and immunoblot detection of associated FLAG-tagged proteins (Fig 4B and 4C). TNPO1

interacts with wild-type MX2, but not GFP or MX1 (Fig 4B), whereas the interaction between

TNPO1 and the RRR11-13A mutant is diminished, despite a higher level of RRR11-13A pres-

ent in the immunoprecipitated material, suggesting that arginine residues 11–13 are important

for the interaction (Fig 4B, S2 Table). TNPO1 does not interact with the C-terminal domain of

NUP214, though the interaction between NUP214 and MX2 is again demonstrated (Fig 4C).

Observed interactions between MX2 and both NUP214 and TNPO1 were also demonstrated

by similar experiments performed with FLAG-specific immunoprecipitation instead of HA-

specific immunoprecipitation (Fig 4D). Additional attempts to explore the possible formation

of a ternary NUP214-MX2-TNPO1 complex were unsuccessful, but perhaps this is to be

expected since both interactions depend upon the integrity of the triple-arginine motif at posi-

tions 11 to 13 and may therefore be mutually exclusive.

Assessment of endogenous MX2, NUP214 and TNPO1 function during

IFN-mediated inhibition of HIV-1

Since endogenous, IFN-induced, MX2 is able to interact with NPC proteins, we next investi-

gated the role played by NUP214 and TNPO1 in endogenous MX2 function during the inhibi-

tion of HIV-1 by IFNα. An U87-MG CD4+ CXCR4+ derived cell line was engineered where

the MX2 alleles were inactivated using CRISPR-Cas9 genome editing, and the effect of

NUP214 and/or TNPO1 depletion by siRNA treatment was analyzed. As a control, we used

siRNAs targeting MX2, as well as a CRISPR-Cas9 control cell line (CTRL CRISPR). As

expected, IFNα treatment of CTRL CRISPR cells resulted in a severe reduction in the percent-

age of infected cells (Fig 5A). SiRNA-mediated silencing of MX2 reduced the suppression of

control), and transduced cells selected by treatment with 1 μg/ml puromycin for 72 h. After selection, transduced cells

were transfected twice, 24 h apart, with 20 nM siRNA targeting individual nucleoporins or transport receptors. A non-

targeting siRNA was included as a control, CTRL. After 48 h, cells were challenged with HIV-1/GFP and transduction

efficiency assessed by flow cytometry after a further 48 h post challenge. (B) the same data as in A are represented as fold

MX2-mediated inhibition, calculated as in Fig 2 (n = 3; mean ± SD; �p-value< 0.05; paired t-test to CTRL siRNA).

https://doi.org/10.1371/journal.ppat.1007408.g003
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virus infection caused by IFNα by ~50% when compared with the CTRL siRNA. Importantly,

knock-down of NUP214, TNPO1 or both proteins together significantly reduced the effect of

IFNα on viral infectivity to levels similar to that seen in cells depleted of MX2 alone.

Fig 4. MX2 interacts with TNPO1 via RRR11-13, and endogenous FG-nucleoporins. (A) Interaction of MX2 with

endogenous FG-nucleoporins. U87-MG CD4+ CXCR4+ cells were treated with siRNA targeting NUP214 or a non-

targeting siRNA (CTRL) as described in Fig 2 and incubated for ~48 h prior to culture with or without IFNα (500 U/

ml) for a further 24 h. Treated cells were lysed, and mouse monoclonal mab414 used to extract FG-nucleoporins

NUP358, NUP214, NUP153 and NUP62. An anti-GFP mouse monoclonal was included as a control (CTRL).

Immunoblots were performed on immunoprecipitated material (IP) to detect the presence of associated MX2, and on

samples of lysate prior to precipitation (INPUT). (B) TNPO1 interacts with MX2 via RRR11-13. 293T cells were co-

transfected with HA-tagged wild-type MX2 or mutant RRR11-13A MX2 and FLAG-tagged TNPO1. Cells were lysed

and HA-tagged protein immunoprecipitated with anti-HA antibody. HA-tagged MX1 or GFP were included as

negative controls. Immunoblots of immunoprecipitated protein (IP) were probed with anti-FLAG and anti-HA

antibodies. As a control for protein expression, samples of lysate prior to immunoprecipitation (IN) were probed with

anti-FLAG antibody. (C) TNPO1 interacts with MX2 but not the CTD of NUP214. A similar experiment was

performed in 293T cells as described in B, except that a FLAG-tagged construct encoding the 35 kDa CTD of NUP214

was co-expressed with HA-tagged constructs expressing TNPO1, MX1 or MX2. Immunoprecipitation was performed

with an anti-HA antibody (D) MX2 interacts with NUP214 CTD and TNPO1 after FLAG immunoprecipitation. In

293T cells, a similar experiment was performed as described in B and C except that HA-tagged MX2 was co-expressed

with FLAG-tagged NUP214 CTD, TNPO1 or GFP and immunoprecipitation of cell lysate performed with an anti-

FLAG antibody. All experiments were done at least three times.

https://doi.org/10.1371/journal.ppat.1007408.g004
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Fig 5. Endogenous MX2 requires NUP214 and TNPO1 for a full anti-viral function. (A) U87-MG cells transduced with a CRISPR-Cas9 control

guide RNA were transfected twice with a control siRNA (CTRL) or siRNAs targeting MX2, NUP214 and/or TNPO1, and treated or not with 1000 U/

ml of IFNα, prior to infection with an HIV-1/GFP lentiviral vector. On the left, the percentage of infected cells calculated by flow cytometry and the
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In the MX2 CRISPR cell line, the reduction of viral infection observed after IFNα treatment

(and transfection with CTRL siRNA) was substantially reduced when compared to the CTRL

CRISPR cells (4.3- versus 12.4-fold reduction, Fig 5A and 5B; note the absence of MX2 in the

IFN-treated cells in Fig 5B according to immunoblot analysis). Critically, no further reduction

of infectivity was observed in the MX2 CRISPR cells when MX2, NUP214, TNPO1 or

NUP214/TNPO1 together were depleted by siRNA treatment. The only noticeable difference

observed in these cells was a modest increase in infectivity in cells depleted of NUP214 and not

treated with IFNα, which consequently registered as a slightly greater IFNα effect upon

NUP214 depletion. Taken together, these results reconfirm that endogenous MX2 contributes

to the inhibition of HIV-1 by IFNα, and demonstrate that the contributions of NUP214 and

TNPO1 to the anti-viral effect of IFNα are dependent on MX2.

In an attempt to provide additional evidence for the role(s) of NUP214 and TNPO1 in

MX2 in anti-viral activity using a more physiologically relevant model, we tested the effect of

depleting these two proteins, as well as MX2, in primary CD4+ T cells from 4 donors by

shRNA-mediated silencing. Using NL4.3/Nef-IRES-Renilla as the challenge virus, depletion of

MX2 yielded clear relief from the effect of IFNα in 3 of 4 donors (Fig 5C). Upon targeting of

TNPO1, all donors displayed a diminution in the effects of IFNα, whereas only 2 donors

showed an effect following NUP214 knock-down. However, analysis of cellular mRNA levels

revealed that the shRNA-mediated suppression of NUP214 transcripts was relatively ineffi-

cient, likely explaining its evidently weaker phenotypic effect in these primary cell cultures

(Fig 5D). These data are in concordance with the data obtained in cell lines, and confirm the

contributions of MX2, NUP214 and TNPO1 to the IFNα response against HIV-1 infection.

Nuclear envelope targeting of MX2 requires both NUP214 and TNPO1

Human MX2 localizes at the NE [17, 39]; we therefore hypothesized that the molecular

interactions described herein may facilitate tethering of MX2 to the cytoplasmic face of

NPCs. Confocal microscopy was performed on HeLa cells stably expressing C-terminally

FLAG-tagged MX2 and treated with control non-targeting siRNA or siRNAs specific for

NUP214 and/or TNPO1 (Fig 6; panel B depicts visual scoring of MX2 localization for ~100

cells per sample). In cells treated with control siRNA, MX2 exhibited staining at the NE as

well as diffuse staining throughout the cytoplasm [2, 17, 19]. NUP214 was also localized to

the NE as in previous reports [26], and TNPO1 exhibited both nuclear and cytoplasmic

staining as has also been described [40]. Treatment of cells with siRNA targeting either

NUP214 or TNPO1 led to their respective depletion, but with no apparent effect on MX2

localization. However, in cultures doubly depleted for NUP214 and TNPO1, MX2 was sig-

nificantly re-distributed to the cytoplasm with less pronounced NE accumulation. These

findings infer that NUP214 and TNPO1 function in the NE targeting and localization of

MX2; nevertheless, given that the single gene knock-downs yielded no significant alter-

ations in MX2 localization, we speculate that the roles of each protein in NE targeting can

be provided by redundantly acting host proteins.

fold inhibition of infection due to IFNα treatment are shown (n = 4; mean ± SD; �p-value< 0.05; (ns) non-significant; paired t-test). On the right is

an immunoblot from a representative experiment, showing depletion of the indicated proteins. (B) Same experiment as in A, but using U87-MG cells

where the MX2 alleles were disrupted using CRISPR-Cas9 genome editing (n = 4; mean ± SD; �p-value< 0.05; (ns) non-significant; paired t-test). (C)

Primary CD4+ T cells were isolated from 4 independent donors, transduced with shRNAs targeting MX2, NUP214, TNPO1 or a control shRNA

(CTRL) and treated or not with 3000 U/ml of IFNα. 24 h later, cells were challenged with NL4.3/Nef-IRES-Renilla and luciferase activity determined

48 h later. The mean of three technical replicates are shown for each donor on the left, and the fold inhibition of infection (no IFN/IFN) on the right.

(D) Efficiency of MX2, NUP214 and TNPO1 depletion in primary CD4+ T cells following shRNA transduction was quantitated by qPCR and

normalized to GAPDH. Data shown represent 4 donors used in (C).

https://doi.org/10.1371/journal.ppat.1007408.g005
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Fig 6. Depletion of NUP214 and TNPO1 disrupts nuclear envelope accumulation of MX2. (A) HeLa cells stably

expressing MX2 bearing a C-terminal FLAG tag were transfected with siRNA targeting NUP214 and/or TNPO1 or a

non-targeting siRNA (CTRL) as described in Fig 3, and then seeded onto glass coverslips. Localization of MX2, and

endogenous NUP214 and TNPO1 was visualized by fluorescence confocal microscopy, using anti-FLAG, anti-

NUP214, and anti-TNPO1 antibodies respectively. DAPI was used to stain the nuclei. Scale bar represents 20 μm. (B)

Predominant cellular localization of MX2 was determined visually (blinded) using a 60x objective and an average of

100 cells, randomly selected (mean ± SD; �p-value< 0.05; paired t-test).

https://doi.org/10.1371/journal.ppat.1007408.g006
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Discussion

In seeking to define host co-factors required for MX2 inhibition of HIV-1, we started by per-

forming an unbiased Y-2-H screen using the functionally essential N-terminal domain as bait.

Remarkably, most of the candidate interactors with wild-type N-MX2 were members of a spe-

cific subfamily of nucleoporins, the cytoplasmic filament FG-nucleoporins (NUP358,

NUP214, NUP98) or FG-repeat containing nucleoporin-like proteins also associated with the

cytoplasmic face of the NE (NUPL2, hRIP) (Fig 1A; Fig 7). None of these candidates scored as

interacting with the inactive mutant R11-13A thereby attesting to their likely biological rele-

vance, and all interactions with wild-type MX2, with the exception of that with NUP358, were

validated by co-immunoprecipitation (Fig 1B). Though we could not confirm the MX2—

NUP358 interaction, data obtained through immunoprecipitation of endogenous nucleopor-

ins with IFN-induced MX2 suggested that at least one other nucleoporin in addition to

NUP214 on the cytoplasmic face of the NPC (which includes NUP358) may interact with

MX2 (Fig 4A).

MX2 has previously been proposed to suppress HIV-1 infection by inhibiting the nuclear

import of viral replication complexes, a view supported by the NE localization of the active 78

kDa isoform of MX2 [1, 2, 41]. Here, we have used RNA silencing to demonstrate that certain

members of the family of cytoplasmic filament FG-nucleoporins are required for full-anti-viral

activity of MX2 (Fig 2, Fig 3), including some that we have shown to interact with the MX2 N-

terminal domain. In U87-MG cells, significant functional redundancy appeared to exist,

although depletion of certain nucleoporins, particularly NUP214, as well as the transport

receptor TNPO1, elicited a significant reduction in the potency of MX2-mediated inhibition

(S1 Fig, Fig 2). Importantly, we further confirmed that NUP214 and TNPO1 are key determi-

nants of the HIV-1 inhibitory function of endogenous MX2 during the IFNα response: deple-

tion of NUP214 and/or TNPO1 significantly curtailed the anti-viral effect of IFNα, but only in

cells expressing MX2 (Fig 5A and 5B). In addition, we also used RNA silencing to show, for

the first time, that MX2 contributes to IFN-mediated suppression of HIV-1 in primary CD4+

T cells (Fig 5C). Consistent with our findings in cell line systems, silencing of TNPO1 or

NUP214 (albeit to a lesser extent, and possibly due to less efficient silencing) also attenuated

the effects of IFNα.

A considerable body of prior evidence has shown that HIV-1 requires the presence of spe-

cific nucleoporins to facilitate trafficking of viral replication complexes through the NPC (in

studies where MX2 was not present) [24, 25, 42]. However, our experiments in U87-MG cells

indicated that there is no specific requirement for particular nucleoporins for HIV-1 infection,

implying effective functional redundancy between multiple nuclear import factors/pathways

in MX2’s absence. In contrast, HIV-1 infection in HeLa cells exhibited a marked requirement

for specific nucleoporins, particularly NUP358 and NUP153 and the transport receptor

TNPO3, in agreement with previous observations (Fig 3) [24, 25, 42]. Perhaps mirroring such

selectivity, a stronger dependence on certain nucleoporins and transport receptors for

MX2-mediated inhibition was also observed in HeLa cells, with depletion of NUP214, NUP88,

NUP358, NUP153 or TNPO3 eliciting ~4-fold reductions in MX2-mediated inhibition, and

depletion of TNPO1, NUP62 and NUP98 eliciting ~3-fold reductions in MX2’s effect (Fig 3).

However, the inherent dependence of HIV-1 infection upon NUP358, NUP153 and TNPO3

in HeLa cells confounds this analysis since their depletion results in less efficient infection

regardless of MX2 expression. Taken together, observations in these cell lines suggest that mul-

tiple nucleoporins can contribute to MX2-mediated inhibition of HIV-1, but that significant

functional redundancy exists and the requirements for specific nucleoporins vary between cell

lines. Nevertheless, NUP214 and TNPO1 were consistently important for full MX2 anti-HIV-1
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Fig 7. Nucleoporins interacting with MX2 are located at the cytoplasmic face of the nuclear pore. Schematic diagram indicating the

structure and organization of the nuclear pore complex as described in Hoelz et al [22]. Nucleoporins interacting with MX2 (identified

by Y-2-H screening) are shown in red. Nucleoporins required for MX2 activity (defined as those for which specific depletion elicited

>50% reduction in MX2 dependent inhibition of HIV-1, in either HeLa or U87-MG cells) are shown in bold. Nucleoporins that

interact with MX2 and are required for MX2 inhibition are shown in red and bold.

https://doi.org/10.1371/journal.ppat.1007408.g007

MX2 and the nucleoporins

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1007408 November 29, 2018 14 / 24

https://doi.org/10.1371/journal.ppat.1007408.g007
https://doi.org/10.1371/journal.ppat.1007408


function, even in CD4+ T cells, and their depletion did not significantly impair infection in the

absence of MX2: we therefore conclude that these proteins are particularly influential in pro-

moting the anti-viral activity of MX2.

The pathway(s) through which nuclear import of HIV-1 proceeds remains unclear, as do

the molecular details of inhibition by MX2. There is evidence to suggest that HIV-1 CA is a

key specificity determinant in both processes [43]. Certain engineered mutations in CA permit

escape from MX2-mediated restriction, including at positions P90 and G89 (the cyclophilin A

(CYPA) binding loop), N74 and N57 (the CPSF6 binding site), and T210, N57 and G208 [1, 2,

18], However, current in vitro evidence indicates that such mutant CA proteins retain the abil-

ity to interact with MX2 [5, 7]. CYPA is required for MX2 inhibition in some cell lines [3] but

not others, including CD4+ MT4 cells where CA mutant viruses that have lost the ability to

interact with CYPA remain MX2 resistant [18]. Many of the same CA mutations that enable

escape from MX2 have also been shown to influence HIV-1’s requirement for certain nucleo-

porins and transport factors during nuclear import. For instance, NUP358 can interact with

CA directly through its cyclophilin domain, and mutations in CA at positions P90 and G89

reduce the dependence on both NUP358 and NUP153 for nuclear import in HeLa cells [24,

33]. The dependence of nuclear import on TNPO3 also appears to map to CA [44], with muta-

tions at positions N74 and N57 within the CPSF6 binding site promoting use of a TNPO3

independent pathway [24]. However, the mechanism(s) through which these preferences exert

their effects remains obscure.

Thus far, NUP214 has been primarily studied in the context of CRM-1 dependent nuclear

export [26, 45], including that of HIV-1 viral RNAs [28]. However, NUP214 is required for

docking of adenovirus (Ad) particles at the NPC and subsequent disassembly and nuclear

import of the viral DNA [46]. Furthermore, through interaction assays with purified NEs from

rat liver nuclei, and crosslinking studies with recombinant protein, the Ad2 capsid was shown

to interact with the FG-repeat containing C-terminal domain of NUP214 [46] (also a site of

MX2 interaction, Fig 1B). TNPO1 is a member of the karyopherin-β family, and while few pre-

vious studies have addressed its function in the HIV-1 life cycle, its role in nuclear transloca-

tion is believed to be restricted to import (reviewed in [47]). Many cargoes imported by

TNPO1 possess a proline-tyrosine nuclear localization signal (PY-NLS) motif, a weak consen-

sus sequence generally located within a basic and structurally disordered domain [48], with

reported cargoes including CPSF6 and HIV-1 Rev [47]. Though the N-terminal domain of

MX2 contains part of the consensus motif (R/H/X-X2-5-PY), no clear role for it in HIV-1 sup-

pression is suggested since the inactive RRR11-13 mutant is still capable of binding to TNPO1

(albeit at reduced levels, Fig 4B, S2 Table), and mutation of residues within the consensus

region do not interfere with anti-HIV-1 activity [19]. TNPO1, like other members of the kar-

yopherin-β family, interacts with FG-repeat regions of nucleoporins, facilitating recruitment

of these transport receptors and their associated cargoes to the NPC [47]. Earlier biochemical

studies have also shown that recombinant TNPO1 can interact with NUP358, NUP214,

NUP153, NUP98, and NUP62 from Xenopus egg extracts [49], but our studies failed to detect

an interaction between TNPO1 and the C-terminal region of human NUP214 (consistent with

a previous study [45]), despite the fact that the majority of NUP214’s FG-repeats are present

within this region of the protein (Fig 4).

Taken together, this work invokes a model where NUP214 and TNPO1 are each important

for the anti-viral activity of MX2, but that their contributions are both subject to degrees of cell

type variation and redundancy, particularly in the case of NUP214 where additional FG-

nucleoporins may serve similar role(s) in some cell types. Nevertheless, in light of their known

functions and sites of localization (Fig 7), we propose a model in which interaction with

TNPO1 helps recruit MX2 to the NPC, where MX2 can subsequently accumulate through
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interactions with NUP214 and other nucleoporins. The notion of redundant functionality

among FG-nucleoporins for MX2 binding and localization is reminiscent of nucleoporin

interactions with nuclear transport receptors [31, 50], and is illustrated by our Y-2-H and co-

immunoprecipitation data (Fig 1), the sustained NE accumulation of the RRR11-13A mutant

[19], as well as by the incomplete inhibition of MX2 function following efficient RNA silencing

interventions (Fig 2, Fig 3).

Once localized at the NPC, MX2 is presumably then positioned to inhibit the nuclear

import of HIV-1 nucleoprotein replication complexes [1, 2]. Current data suggest that the N-

terminal domain of MX2 is again pivotal for activity, most likely via interactions with the viral

CA protein [5, 17, 18, 20], thus adding a further interacting partner to the list of MX2 ligands.

That said, it should also be acknowledged that a significant proportion of MX2 is cytosolic

rather than NE localized (Fig 6) [17], and that interactions with viral replication complexes

could initiate away from the NPC. One set of critical questions that is raised is: what are the

specific roles(s) of the interactions between MX2, nucleoporins and CA, and how do they

relate to one another in the context of viral inhibition? While nucleoporin binding to CA is

thought to be important for HIV-1 translocation through the NPC, as well as ordered capsid

disassembly (uncoating), MX2 interferes with these processes. Though this could be accom-

plished by MX2 competitively impeding CA-nucleoporin interactions, we favor the idea that

MX2 inhibits HIV-1 infection through a specific process that targets viral replication com-

plexes, a view that is supported by the noted ability of CA mutants to evade MX2. Another

related question is: how does the N-terminal domain of MX2 accommodate a series of poten-

tially sequential and competing interactions? A possible contributing solution is provided by

MX2 oligomerization [5, 13], which may afford an MX2 oligomer the capacity to contact

simultaneously different ligands, for instance, allowing CA binding while retaining NPC teth-

ering. In sum, there is much to be resolved concerning the nature, orchestration and spatio-

temporal ordering of the key molecular interactions and mechanistic processes that underpin

MX2-mediated viral restriction at the NE.

Note added during revision

During the review of this work, Kane et al., reported the use of RNA silencing to show that sev-

eral nucleoporins impact HIV-1 infection as well as MX2 anti-viral function [51]. Our results

are in good general agreement with their findings that depletion of NUP214 or TNPO1 impair

MX2 anti-viral function in HeLa cells, and also with the apparently variable nucleoporin

requirements for HIV-1 infection and MX2 activity among different cell lines.

Materials and methods

Cell culture and plasmid constructs

Human 293T cells, HeLa cells and parental U87-MG cells were obtained from the American

Tissue Culture Collection (ATCC). The generation of the U87-MG CD4+ CXCR4+ cell line

has been described [1]. All cell lines were cultured in Dulbecco’s modified Eagle’s medium

supplemented with fetal bovine serum (10%), L-glutamine and penicillin-streptomycin.

Human primary CD4+ T cells were obtained through the Infectious Diseases BioBank at

King’s College London (ethics reference MM2-220518) and were isolated from peripheral

blood mononuclear cells (PBMCs) of anonymous healthy volunteer donors with written con-

sent under overall permission from the Southampton and South West Hampshire Research

Ethics Committee (B) (approval REC09/H0504/39+5). CD4+ T cells were purified by density

gradient centrifugation using LymphoPrep (Axis-Shield) and isolated by negative selection

using the CD4+ T Cell Isolation Kit (Miltenyl Biotec) following manufacturer’s instructions.
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Activation of the cells was achieved using Dynabeads Human T-Activator CD3/CD28 (Ther-

moFisher) and 50 U/ml recombinant IL-2 (rIL-2) (Roche) for 48 h in medium consisting of

RPMI 1640-GlutaMAX containing 10% heat-inactivated autologous serum, 100 U/ml penicil-

lin and 100 U/ml streptomycin. After activation, cells were maintained in medium containing

30 U/ml of rIL-2. IFNα-2b (Merck, Sharpe & Dohme Corp.) was added to cultures for 24 h

prior to infection, as indicated.

Construction of pCAGGS based expression constructs encoding FLAG- or HA-tagged

GFP, MX1 or MX2 has been described previously [13, 17]. pCAGGS R11-13A MX2-HA was

generated by replacing the cDNA encoding the first 25 amino acids from MX2-HA with the

mutated version from R11-13 MX2-FLAG (described previously [19]) using NotI and EcoRI.

To generate FLAG-NUP214 CTD (~40 kDa C-terminal fragment), the cDNA encoding the C-

terminal amino acids (positions 1681–2080) of NUP214 (IMAGE clone BC105998) were PCR

amplified with an N-terminal FLAG tag and cloned into pCAGGs. pCAGGs FLAG-KLHL6,

PNRC1-FLAG, FLAG-NUPL2 and RUNX3-FLAG were generated by PCR amplification of

full-length cDNAs from IMAGE clones BC032348, BC018112, BC107583, and BC013362

respectively. pCAGGs FLAG-TNPO1 and HA-TNPO1 were generated from PCR amplifica-

tion of the full-length cDNA from IMAGE clone BC040340. FLAG-NUP98 and T7-hRIP were

gifts from Drs Maria Teresa Catanese and Chad Swanson, respectively. EasiLV based lentiviral

expression vectors (pRRL.sin.cPPT.(7TetOCMV/CDS.IRES.rtTA3-2A-E2-Crimson)antisense.

WPRE) encoding MX2-FLAG or Photinus pyralis luciferase-FLAG; lentiviral vectors confer-

ring puromycin selection (LV-puromycinR) (pRRL.sin.cPPT.CMV/CDS-IRES-puromycinR.

WPRE) constitutively expressing CD8-FLAG or MX2-FLAG; and the NL4-3/nef-IRES-Renilla

reporter virus (which expresses Renilla luciferase from an internal ribosome entry site, IRES)

have been described [1, 13].

Yeast two-hybrid screen

A yeast two-hybrid screen to probe for interaction partners with the N-terminal domain of

MX2 was performed by Hybrigenics Services (ULTImate Y2H, www.hybrigenics-services.

com). Amino acids 1 to 91 of human MX2 (N-MX2) were used as bait to screen against a

human leukocyte cDNA library. Predicted interactions with native N-MX2 were compared to

those identified using mutant RRR11-13A N-MX2 as a bait domain. Interactions were

awarded a Predicted Biological Score (PBS) to assess the reliability of each interaction, primar-

ily based on the number of independent prey fragments identified for each interaction com-

pared to the probability of random selection [21]. For interactions awarded ‘A’ there is ‘very

high confidence’ in the interaction, for those awarded ‘C’ there is ‘good’ confidence in the

interaction, and those awarded F have been experimentally demonstrated to be technical

artifacts.

Co-immunoprecipitation

For co-immunoprecipitation of ectopically expressed affinity-tagged proteins, 293T cells were

seeded in 6-well plates and co-transfected with pCAGGs based plasmids encoding triple-HA

tagged and FLAG- or T7-tagged constructs using polyethylenimine. After ~30 h, cells were

lysed in either hypotonic lysis buffer (10 mM Tris-HCl pH 8.0, 10 mM KCl, 1 × protease inhib-

itor cocktail (Roche)) by Dounce homogenization in experiments with PNRC1, KLHL6 and

hRIP; or isotonic lysis buffer (1 × phosphate buffered saline, 0.5% Triton-X100, 1 × protease

inhibitor cocktail) and lysed by sonication (20 s) for all other experiments. Lysates were cleared

by centrifugation at 1,500 × g for 10 min, and for hypotonic lysates, KCl and Triton X-100

were added at final concentrations of 100 mM and 0.3%, respectively. A sample from each
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whole cell lysate was saved in order to confirm protein expression levels. HA-tagged proteins

were immunoprecipitated using anti-HA magnetic beads (Pierce) for 2 h at 4˚C, or FLAG-

tagged proteins were immunoprecipitated with anti-FLAG (M2) magnetic beads (Sigma)

under the same conditions. Beads were washed a further 4 times in wash buffer for hypotonic

lysates (10 mM Tris-HCl pH 8.0, 200 mM KCl, 0.3% Triton X-100) or isotonic lysis buffer for

isotonic lysates before the addition of sample buffer (200 mM Tris-HCl pH 6.8, 5.2% SDS, 20%

glycerol, 0.1% bromophenol blue, 5% β-mercaptoethanol). HA-, FLAG- and T7 tagged pro-

teins were resolved on 10% acrylamide gels by SDS-PAGE and detected by immunoblotting

using HRP-conjugated anti-HA (rat monoclonal 3F10, Sigma), anti-FLAG (mouse monoclo-

nal M2, Sigma), or anti-T7 antibody (mouse monoclonal, Sigma). Images were visualized by

chemiluminescence (ECL western blotting substrate, Pierce) on a LI-COR Odyssey Fc imaging

system (LI-COR) and band intensities of input and precipitated proteins were quantified using

ImageJ software.

For co-immunoprecipitation of endogenous FG-nucleoporins and IFN-induced MX2,

U87-MG CD4+ CXCR4+ cells were transfected twice, 24 h apart, with siRNAs targeting

NUP214 (Dharmacon siGENOME smartpool) or a non-targeting control siRNA (Dharma-

con). After 72 h, cells were treated with IFNα (500 U/ml) for 24 h to induce MX2 expression,

prior to harvesting. Cells without IFN were included as a negative control for MX2 induction.

Harvested cells were lysed in isotonic lysis buffer, sonicated, and the lysate cleared as described

previously. FG-nucleoporins were immunoprecipitated with mouse monoclonal antibody

mab414 [38] conjugated to protein G magnetic beads (Invitrogen) for 2 h at 4˚C. An anti-GFP

mouse monoclonal antibody (Roche) was used as a negative control. Beads were washed with

isotonic lysis buffer, before addition of sample buffer. Immunoprecipitated endogenous FG-

nucleoporins NUP358, NUP214, NUP153 and NUP62 were detected by immunoblotting with

mab414 after SDS-PAGE on 6% acrylamide gels, and MX2 was detected by immunoblotting

with anti-MX2 goat polyclonal antibody (N17, Santa Cruz Biotechnology). Bound primary

antibodies were detected with HRP-conjugated anti-mouse or anti-goat immunoglobulin sec-

ondary antibodies and visualized by chemiluminescence.

HIV-1 vector infectivity assays

For experiments in U87-MG CD4+CXCR4+ cells, ectopic expression of MX2 was achieved by

transduction of cells with doxycycline-inducible EasiLV lentiviral vectors encoding FLAG-

tagged human MX2 (or a FLAG-tagged luciferase control construct) for 6 h. After a rest period

of 48 h, transduced cells were transfected twice, 24 h apart, with a panel of siRNAs (all human

siGENOME smartpools, Dharmacon) at 20 nM concentration using Lipofectamine RNAi-

MAX reagent (Invitrogen). After 16 h, transgene expression was induced by the addition of

0.5 μg/ml doxycycline for 72 h, prior to viral challenge. EasiLV transduction efficiency was typ-

ically above 90% and was assessed by measuring the percentage of cells expressing E2-crimson

(co-expressed via an IRES) by flow cytometry (FACSCanto II; BD Biosciences). To assess

HIV-1 infectivity, cells were challenged with HIV-1/GFP, a vesicular stomatitis virus G protein

(VSV G)-pseudotyped 8.91 HIV-1 Gag-Pol based cytomegalovirus (CMV) immediate early-

enhanced green fluorescent protein lentiviral vector as described previously [13]. Productive

infection was enumerated by flow cytometry as the percentage of E2-crimson-positive cells

expressing GFP at 48 h post infection. Preparation of EasiLV particles and challenge HIV-1/

GFP vector stocks has been described [1, 17]. In experiments measuring the effect of MX2,

NUP214 and/or TNPO1 depletion by siRNA during an IFN response, CTRL CRISPR or MX2

CRISPR U87-MG cells were doubly transfected 24 h apart with 10 nM siRNA in 24-well plates.

8 h later, cells were split into two populations and seeded in 96 well plates. One population was
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treated with IFNα while the other one was left untreated. 24 h later cells were challenged with

HIV-1/GFP as described.

For experiments in HeLa cells, constitutive overexpression of MX2 was achieved by trans-

duction of cells with lentiviral vector LV-PuromycinR expressing FLAG-tagged human MX2

(or a FLAG-tagged CD8 control construct) [1]. After 72 h, transduced cells were selected with

1 μg/ml puromycin for a further 72 h (100% cell mortality for non-transduced cells). Selected

cells were treated twice with siRNA, and challenged with HIV-1/GFP, as described previously.

In both cell lines, efficiency of siRNA-mediated silencing prior to challenge was assessed by

immunoblotting. Cell pellets were lysed in sample buffer, resolved by SDS-PAGE, and detected

using the following primary antibodies: mab414 (FG-nucleoporins NUP358, NUP214,

NUP153, NUP62), anti-NUP98 (rat monoclonal 2H10, Abcam), anti-hRIP (goat polyclonal,

Santa Cruz Biotechnology), anti-KLHL6 (rabbit monoclonal, Abcam), anti-TNPO1 (mouse

monoclonal D45, Abcam), anti-α-tubulin (mouse monoclonal, Sigma), anti-Hsp90 (rabbit;

Santa Cruz Biotechnology), anti-NUP188 (rabbit polyclonal, Abcam), anti-TNPO3 (mouse

monoclonal, Abcam), anti-NUP88 (rabbit polyclonal, Abcam), anti-hRIP (rabbit polyclonal,

Abcam) or anti-PNRC1 (rabbit polyclonal, antibodies-online.com). Bound primary antibodies

were detected with HRP-conjugated anti-mouse, anti-rat, anti-rabbit or anti-goat immuno-

globulin secondary antibodies and visualized by chemiluminescence.

CRISPR-Cas9 genome editing of U87-MG cells

U87-MG cells were transduced with VSV-G-pseudotyped HIV-1 lentiviral vector (LV) bearing

plentiCRISPRv2. Specific guide RNAs targeting MX2 or red fluorescent protein (RFP) (as the

control) were cloned into BsmBI-linearized lentiviral vector pLentiCRISPRv2 using the oligo-

nucleotides (forward/reverse) caccgAATTGACTTCTCCTCCGGTA / aaacTACCGGAGGAG

AAGTCAATTc for MX2 and caccgCTCAGTTCCAGTACGGCTCCA / aaacTGGAGCCGTA

CTGGAACTGAGc for RFP. Transduced cells were selected with 1 μg/ml puromycin. Single-

cell clones were obtained by limiting dilution and grown in a 96-well plate in the absence of

puromycin and MX2 depletion was validated by immunoblotting.

shRNA-mediated gene silencing

Modified versions of the HIV-1 based lentiviral vector pHRSIREN-S-SBP-ΔLNGFR-W [52]

where the selectable marker for antibody-free magnetic cell sorting (SBP-ΔLNGFR) was

replaced by GFP (CTRL and TNPO1) or E2-crimson (MX2 and NUP214) for cytometric anal-

ysis of transduction were used for gene silencing in primary CD4+ T cells. The shRNA target-

ing sequences for MX2, NUP214 and TNPO1 were AAGATGTTCTTTCTAATTG, GGTGA

GAATCTTTGACTCC and GCAAAGATGTACTCGTAAG, respectively. Lentiviral vectors

were obtained by cotransfection of 293T cells with VSV-G, p8.91 and the modified pHSIREN-

S vector at a ratio of 0.5:1:1.5, respectively. Supernatants containing lentiviral particles were

concentrated by ultracentrifugation and human primary CD4+ T cells were transduced by

spin-infection at 2000 x g for 2 h at room temperature. 48 h after transduction, 2.5 x 104 cells/

well were seeded in a 96 well plate and treated or not with IFNα. 24 h later, cells were chal-

lenged with 30 ng p24Gag of NL4.3/Nef-IRES-Renilla at 2000 x g for 2 h at room temperature.

After 48 h, infection was assessed by measuring Renilla luciferase activity on a luminometer.

Fluorescence microscopy

HeLa cells stably expressing MX2 bearing a C-terminal FLAG-tag were obtained by transduc-

tion with LV-PuromycinR [1] encoding MX2-FLAG and selection with 1 μg/ml puromycin

for 72 h. Stable cells were then transfected twice, 24 h apart, with 20 nM siRNA in 24-well
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plates as described above. Transfected cells were seeded onto coverslips at ~50,000 cells per

well in 12-well plates; 24 h later, cells were washed with 1x phosphate buffer saline and fixed in

4% paraformaldehyde (EM Sciences) for 15 min, permeabilized with 0.2% Triton X-100 for 15

min, and blocked/quenched in buffer NGB (50 mM NH4Cl, 2% goat serum, 2% bovine serum

albumin) for 1 h. MX2-FLAG was detected using a mouse anti-FLAG monoclonal M2 (Sigma)

and secondary donkey anti-mouse antibody conjugated to Alexa 594 (Invitrogen). Endoge-

nous NUP214 was detected using rabbit anti-NUP214 polyclonal antibody (Abcam ab70497)

and secondary donkey anti-rabbit antibody conjugated to Alexa 488 (Invitrogen). Endogenous

TNPO1 was detected using rat anti-TNPO1 monoclonal L5G3 (antibodies-online.com) and

secondary goat anti-rat antibody conjugated to Alexa 647 (Invitrogen). DAPI (4’,6-diamidino-

2-phenylindole) staining was used to demarcate the nucleus (0.1 mg/ml for 5 min) Cells were

visualized using a Nikon A1 point-scanning laser confocal microscope (Nikon Instruments).

Blinded quantification of MX2 cellular localization was determined visually for 100 randomly

selected cells.

Supporting information

S1 Fig. Screen for co-factors required for full anti-viral activity of MX2 in U87-MG cells.

U87-MG CD4+ CXCR4+ cells were transduced with EasiLV vectors expressing FLAG-tagged

MX2 or Luciferase (control). After 48 h, transduced cells were transfected twice, 24 h apart,

with a panel of siRNAs at a concentration of 20 nM. For the first siRNA transfection, cells were

treated with specific siRNAs, most of these targeting candidate interactors from the Y-2-H

screen (Fig 1) including NUP358, NUP214, NUP98, hRIP, PNRC1, KLHL6 and a non-targeting

siRNA was included as a control (CTRL). For the second siRNA transfection, cells were treated

with a panel of specific siRNAs targeting a number of nucleoporins and transport receptors in

addition to the Y-2-H candidates. Expression of MX2 or Luciferase was then induced by treat-

ment of cells with doxycycline (0.5 μg/ml) for ~72 h prior to challenge with a HIV-1 based lenti-

viral vector expressing GFP (HIV-1/GFP). Transduction efficiency was assessed 48 h post

challenge by flow-cytometry. Data are representative of two independent experiments.

(TIF)

S2 Fig. (Accompanies Fig 2). Efficiency of siRNA-mediated depletion of endogenous proteins

in U87-MG cells. U87-MG CD4+ CXCR4+ cells were transfected twice, 24 h apart, with 20 nM

siRNA targeting NUP358, NUP214, NUP153, NUP62, NUP98, hRIP, KLHL6, NUPL2 and

PNRC1. After 72 h, protein levels were analyzed by immunoblotting, with α-tubulin or HSP90

included as loading controls. No reduction in target protein abundance was observed after

treatment with siRNA targeting NUPL2, and PNRC1 expression was not detectable by immu-

noblot.

(TIF)

S3 Fig. (Accompanies Fig 3). Efficiency of siRNA-mediated depletion of endogenous proteins

in HeLa cells. HeLa cells were transfected twice, 24 h apart, with 20 nM siRNA targeting

NUP358, NUP214, NUP153, NUP62, NUP98, hRIP, KLHL6, PNRC1, NUP88, NUP188,

TNPO1, TNPO3 and NUP214 together with TNPO1 (and CTRL siRNA). After 72 h, protein

levels were analyzed by immunoblotting, with α-tubulin included as loading control.

(TIF)

S1 Table. (Accompanies Fig 1A). Complete list and PBS of known genes identified in the

yeast-two-hybrid screens.

(DOCX)
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S2 Table. (Accompanies Figs 1B and 4B). Quantification of co-immunoprecipitation of

FLAG-tagged NUP214-CTD, NUP98, NUPL2, RUNX3, PNRC1, KLHL6, hRIP or TNPO1

with HA-tagged GFP, MX1, MX2 or RRR11-13A MX2. Values represent the ratio between

protein input (IN) and the protein detected in the IP, normalized against wild-type MX2 inter-

actions.

(DOCX)
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17. Goujon C, Moncorgé O, Bauby H, Doyle T, Barclay WS, Malim MH. Transfer of the amino-terminal

nuclear envelope targeting domain of human MX2 converts MX1 into an HIV-1 resistance factor. Jour-

nal of virology. 2014; 88(16):9017–26. https://doi.org/10.1128/JVI.01269-14 PMID: 24899177

18. Busnadiego I, Kane M, Rihn SJ, Preugschas HF, Hughes J, Blanco-Melo D, et al. Host and viral deter-

minants of Mx2 antiretroviral activity. Journal of virology. 2014; 88(14):7738–52. https://doi.org/10.

1128/JVI.00214-14 PMID: 24760893

19. Goujon C, Greenbury RA, Papaioannou S, Doyle T, Malim MH. A triple-arginine motif in the amino-ter-

minal domain and oligomerization are required for HIV-1 inhibition by human MX2. Journal of virology.

2015; 89(8):4676–80. https://doi.org/10.1128/JVI.00169-15 PMID: 25673704

20. Schulte B, Buffone C, Opp S, Di Nunzio F, Augusto De Souza Aranha Vieira D, Brandariz-Nuñez A,

et al. Restriction of HIV-1 Requires the N-terminal Region of MxB/Mx2 as a Capsid-Binding Motif but

not as a Nuclear Localization Signal. Journal of virology. 2015.

21. Formstecher E, Aresta S, Collura V, Hamburger A, Meil A, Trehin A, et al. Protein interaction mapping:

a Drosophila case study. Genome research. 2005; 15(3):376–84. https://doi.org/10.1101/gr.2659105

PMID: 15710747

22. Hoelz A, Debler EW, Blobel G. The structure of the nuclear pore complex. Annual review of biochemis-

try. 2011; 80:613–43. https://doi.org/10.1146/annurev-biochem-060109-151030 PMID: 21495847

23. Konig R, Zhou Y, Elleder D, Diamond TL, Bonamy GM, Irelan JT, et al. Global analysis of host-pathogen

interactions that regulate early-stage HIV-1 replication. Cell. 2008; 135(1):49–60. https://doi.org/10.

1016/j.cell.2008.07.032 PMID: 18854154

24. Schaller T, Ocwieja KE, Rasaiyaah J, Price AJ, Brady TL, Roth SL, et al. HIV-1 capsid-cyclophilin inter-

actions determine nuclear import pathway, integration targeting and replication efficiency. PLoS patho-

gens. 2011; 7(12):e1002439. https://doi.org/10.1371/journal.ppat.1002439 PMID: 22174692

25. Di Nunzio F, Danckaert A, Fricke T, Perez P, Fernandez J, Perret E, et al. Human nucleoporins promote

HIV-1 docking at the nuclear pore, nuclear import and integration. PloS one. 2012; 7(9):e46037. https://

doi.org/10.1371/journal.pone.0046037 PMID: 23049930

26. Hutten S, Kehlenbach RH. Nup214 is required for CRM1-dependent nuclear protein export in vivo.

Molecular and cellular biology. 2006; 26(18):6772–85. https://doi.org/10.1128/MCB.00342-06 PMID:

16943420

27. Ebina H, Aoki J, Hatta S, Yoshida T, Koyanagi Y. Role of Nup98 in nuclear entry of human immunodefi-

ciency virus type 1 cDNA. Microbes and infection. 2004; 6(8):715–24. https://doi.org/10.1016/j.micinf.

2004.04.002 PMID: 15207818

MX2 and the nucleoporins

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1007408 November 29, 2018 22 / 24

http://www.ncbi.nlm.nih.gov/pubmed/3000619
http://www.ncbi.nlm.nih.gov/pubmed/9060610
http://www.ncbi.nlm.nih.gov/pubmed/8411374
http://www.ncbi.nlm.nih.gov/pubmed/9405443
https://doi.org/10.1128/JVI.02247-15
http://www.ncbi.nlm.nih.gov/pubmed/26446602
https://doi.org/10.1126/sciadv.1701264
http://www.ncbi.nlm.nih.gov/pubmed/28929138
https://doi.org/10.1038/nature08972
https://doi.org/10.1038/nature08972
http://www.ncbi.nlm.nih.gov/pubmed/20428112
https://doi.org/10.1128/JVI.03730-14
http://www.ncbi.nlm.nih.gov/pubmed/25568212
https://doi.org/10.1128/JVI.01269-14
http://www.ncbi.nlm.nih.gov/pubmed/24899177
https://doi.org/10.1128/JVI.00214-14
https://doi.org/10.1128/JVI.00214-14
http://www.ncbi.nlm.nih.gov/pubmed/24760893
https://doi.org/10.1128/JVI.00169-15
http://www.ncbi.nlm.nih.gov/pubmed/25673704
https://doi.org/10.1101/gr.2659105
http://www.ncbi.nlm.nih.gov/pubmed/15710747
https://doi.org/10.1146/annurev-biochem-060109-151030
http://www.ncbi.nlm.nih.gov/pubmed/21495847
https://doi.org/10.1016/j.cell.2008.07.032
https://doi.org/10.1016/j.cell.2008.07.032
http://www.ncbi.nlm.nih.gov/pubmed/18854154
https://doi.org/10.1371/journal.ppat.1002439
http://www.ncbi.nlm.nih.gov/pubmed/22174692
https://doi.org/10.1371/journal.pone.0046037
https://doi.org/10.1371/journal.pone.0046037
http://www.ncbi.nlm.nih.gov/pubmed/23049930
https://doi.org/10.1128/MCB.00342-06
http://www.ncbi.nlm.nih.gov/pubmed/16943420
https://doi.org/10.1016/j.micinf.2004.04.002
https://doi.org/10.1016/j.micinf.2004.04.002
http://www.ncbi.nlm.nih.gov/pubmed/15207818
https://doi.org/10.1371/journal.ppat.1007408


28. Zolotukhin AS, Felber BK. Nucleoporins nup98 and nup214 participate in nuclear export of human

immunodeficiency virus type 1 Rev. Journal of virology. 1999; 73(1):120–7. PMID: 9847314

29. Le Rouzic E, Mousnier A, Rustum C, Stutz F, Hallberg E, Dargemont C, et al. Docking of HIV-1 Vpr to

the nuclear envelope is mediated by the interaction with the nucleoporin hCG1. The Journal of biological

chemistry. 2002; 277(47):45091–8. https://doi.org/10.1074/jbc.M207439200 PMID: 12228227

30. Ben-Efraim I, Gerace L. Gradient of increasing affinity of importin beta for nucleoporins along the path-

way of nuclear import. The Journal of cell biology. 2001; 152(2):411–7. PMID: 11266456

31. Terry LJ, Wente SR. Flexible gates: dynamic topologies and functions for FG nucleoporins in nucleocy-

toplasmic transport. Eukaryotic cell. 2009; 8(12):1814–27. https://doi.org/10.1128/EC.00225-09 PMID:

19801417

32. Matreyek KA, Engelman A. The requirement for nucleoporin NUP153 during human immunodeficiency

virus type 1 infection is determined by the viral capsid. Journal of virology. 2011; 85(15):7818–27.

https://doi.org/10.1128/JVI.00325-11 PMID: 21593146

33. Matreyek KA, Yucel SS, Li X, Engelman A. Nucleoporin NUP153 phenylalanine-glycine motifs engage

a common binding pocket within the HIV-1 capsid protein to mediate lentiviral infectivity. PLoS patho-

gens. 2013; 9(10):e1003693. https://doi.org/10.1371/journal.ppat.1003693 PMID: 24130490

34. Monette A, Ajamian L, Lopez-Lastra M, Mouland AJ. Human immunodeficiency virus type 1 (HIV-1)

induces the cytoplasmic retention of heterogeneous nuclear ribonucleoprotein A1 by disrupting nuclear

import: implications for HIV-1 gene expression. The Journal of biological chemistry. 2009; 284

(45):31350–62. https://doi.org/10.1074/jbc.M109.048736 PMID: 19737937

35. Monette A, Pante N, Mouland AJ. HIV-1 remodels the nuclear pore complex. The Journal of cell biology.

2011; 193(4):619–31. https://doi.org/10.1083/jcb.201008064 PMID: 21576391

36. Ocwieja KE, Brady TL, Ronen K, Huegel A, Roth SL, Schaller T, et al. HIV integration targeting: a path-

way involving Transportin-3 and the nuclear pore protein RanBP2. PLoS pathogens. 2011; 7(3):

e1001313. https://doi.org/10.1371/journal.ppat.1001313 PMID: 21423673

37. Christ F, Thys W, De Rijck J, Gijsbers R, Albanese A, Arosio D, et al. Transportin-SR2 imports HIV into

the nucleus. Current biology: CB. 2008; 18(16):1192–202. https://doi.org/10.1016/j.cub.2008.07.079

PMID: 18722123

38. Davis LI, Blobel G. Identification and characterization of a nuclear pore complex protein. Cell. 1986; 45

(5):699–709. PMID: 3518946

39. King MC, Raposo G, Lemmon MA. Inhibition of nuclear import and cell-cycle progression by mutated

forms of the dynamin-like GTPase MxB. Proceedings of the National Academy of Sciences of the

United States of America. 2004; 101(24):8957–62. https://doi.org/10.1073/pnas.0403167101 PMID:

15184662

40. Favre N, Camps M, Arod C, Chabert C, Rommel C, Pasquali C. Chemokine receptor CCR2 undergoes

transportin1-dependent nuclear translocation. Proteomics. 2008; 8(21):4560–76. https://doi.org/10.

1002/pmic.200800211 PMID: 18846510

41. Melén K, Keskinen P, Ronni T, Sareneva T, Lounatmaa K, Julkunen I. Human MxB protein, an inter-

feron-alpha-inducible GTPase, contains a nuclear targeting signal and is localized in the heterochroma-

tin region beneath the nuclear envelope. The Journal of biological chemistry. 1996; 271(38):23478–86.

PMID: 8798556

42. Lee K, Ambrose Z, Martin TD, Oztop I, Mulky A, Julias JG, et al. Flexible use of nuclear import pathways

by HIV-1. Cell Host Microbe. 2010; 7(3):221–33. https://doi.org/10.1016/j.chom.2010.02.007 PMID:

20227665

43. Yamashita M, Engelman AN. Capsid-Dependent Host Factors in HIV-1 Infection. Trends in microbiol-

ogy. 2017; 25(9):741–55. https://doi.org/10.1016/j.tim.2017.04.004 PMID: 28528781

44. Krishnan L, Matreyek KA, Oztop I, Lee K, Tipper CH, Li X, et al. The requirement for cellular transportin

3 (TNPO3 or TRN-SR2) during infection maps to human immunodeficiency virus type 1 capsid and not

integrase. Journal of virology. 2010; 84(1):397–406. https://doi.org/10.1128/JVI.01899-09 PMID:

19846519

45. Port SA, Monecke T, Dickmanns A, Spillner C, Hofele R, Urlaub H, et al. Structural and Functional Char-

acterization of CRM1-Nup214 Interactions Reveals Multiple FG-Binding Sites Involved in Nuclear

Export. Cell reports. 2015; 13(4):690–702. https://doi.org/10.1016/j.celrep.2015.09.042 PMID:

26489467

46. Trotman LC, Mosberger N, Fornerod M, Stidwill RP, Greber UF. Import of adenovirus DNA involves the

nuclear pore complex receptor CAN/Nup214 and histone H1. Nature cell biology. 2001; 3(12):1092–

100. https://doi.org/10.1038/ncb1201-1092 PMID: 11781571

47. Twyffels L, Gueydan C, Kruys V. Transportin-1 and Transportin-2: protein nuclear import and beyond.

FEBS letters. 2014; 588(10):1857–68. https://doi.org/10.1016/j.febslet.2014.04.023 PMID: 24780099

MX2 and the nucleoporins

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1007408 November 29, 2018 23 / 24

http://www.ncbi.nlm.nih.gov/pubmed/9847314
https://doi.org/10.1074/jbc.M207439200
http://www.ncbi.nlm.nih.gov/pubmed/12228227
http://www.ncbi.nlm.nih.gov/pubmed/11266456
https://doi.org/10.1128/EC.00225-09
http://www.ncbi.nlm.nih.gov/pubmed/19801417
https://doi.org/10.1128/JVI.00325-11
http://www.ncbi.nlm.nih.gov/pubmed/21593146
https://doi.org/10.1371/journal.ppat.1003693
http://www.ncbi.nlm.nih.gov/pubmed/24130490
https://doi.org/10.1074/jbc.M109.048736
http://www.ncbi.nlm.nih.gov/pubmed/19737937
https://doi.org/10.1083/jcb.201008064
http://www.ncbi.nlm.nih.gov/pubmed/21576391
https://doi.org/10.1371/journal.ppat.1001313
http://www.ncbi.nlm.nih.gov/pubmed/21423673
https://doi.org/10.1016/j.cub.2008.07.079
http://www.ncbi.nlm.nih.gov/pubmed/18722123
http://www.ncbi.nlm.nih.gov/pubmed/3518946
https://doi.org/10.1073/pnas.0403167101
http://www.ncbi.nlm.nih.gov/pubmed/15184662
https://doi.org/10.1002/pmic.200800211
https://doi.org/10.1002/pmic.200800211
http://www.ncbi.nlm.nih.gov/pubmed/18846510
http://www.ncbi.nlm.nih.gov/pubmed/8798556
https://doi.org/10.1016/j.chom.2010.02.007
http://www.ncbi.nlm.nih.gov/pubmed/20227665
https://doi.org/10.1016/j.tim.2017.04.004
http://www.ncbi.nlm.nih.gov/pubmed/28528781
https://doi.org/10.1128/JVI.01899-09
http://www.ncbi.nlm.nih.gov/pubmed/19846519
https://doi.org/10.1016/j.celrep.2015.09.042
http://www.ncbi.nlm.nih.gov/pubmed/26489467
https://doi.org/10.1038/ncb1201-1092
http://www.ncbi.nlm.nih.gov/pubmed/11781571
https://doi.org/10.1016/j.febslet.2014.04.023
http://www.ncbi.nlm.nih.gov/pubmed/24780099
https://doi.org/10.1371/journal.ppat.1007408


48. Lee BJ, Cansizoglu AE, Suel KE, Louis TH, Zhang Z, Chook YM. Rules for nuclear localization

sequence recognition by karyopherin beta 2. Cell. 2006; 126(3):543–58. https://doi.org/10.1016/j.cell.

2006.05.049 PMID: 16901787

49. Bernis C, Swift-Taylor B, Nord M, Carmona S, Chook YM, Forbes DJ. Transportin acts to regulate

mitotic assembly events by target binding rather than Ran sequestration. Molecular biology of the cell.

2014; 25(7):992–1009. https://doi.org/10.1091/mbc.E13-08-0506 PMID: 24478460

50. Strawn LA, Shen T, Shulga N, Goldfarb DS, Wente SR. Minimal nuclear pore complexes define FG

repeat domains essential for transport. Nature cell biology. 2004; 6(3):197–206. https://doi.org/10.1038/

ncb1097 PMID: 15039779

51. Kane M, Rebensburg SV, Takata MA, Zang TM, Yamashita M, Kvaratskhelia M, et al. Nuclear pore het-

erogeneity influences HIV-1 infection and the antiviral activity of MX2. Elife. 2018; 7.

52. Matheson NJ, Peden AA, Lehner PJ. Antibody-free magnetic cell sorting of genetically modified primary

human CD4+ T cells by one-step streptavidin affinity purification. PLoS One. 2014; 9(10):e111437.

https://doi.org/10.1371/journal.pone.0111437 PMID: 25360777

MX2 and the nucleoporins

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1007408 November 29, 2018 24 / 24

https://doi.org/10.1016/j.cell.2006.05.049
https://doi.org/10.1016/j.cell.2006.05.049
http://www.ncbi.nlm.nih.gov/pubmed/16901787
https://doi.org/10.1091/mbc.E13-08-0506
http://www.ncbi.nlm.nih.gov/pubmed/24478460
https://doi.org/10.1038/ncb1097
https://doi.org/10.1038/ncb1097
http://www.ncbi.nlm.nih.gov/pubmed/15039779
https://doi.org/10.1371/journal.pone.0111437
http://www.ncbi.nlm.nih.gov/pubmed/25360777
https://doi.org/10.1371/journal.ppat.1007408

