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Abstract: An Artificial Neural Network (ANN) based on the Quick Propagation (QP) 
algorithm was used in conjunction with an experimental design to optimize the  
lipase-catalyzed reaction conditions for the preparation of a triethanolamine (TEA)-based 
esterquat cationic surfactant. Using the best performing ANN, the optimum conditions 
predicted were an enzyme amount of 4.77 w/w%, reaction time of 24 h, reaction 
temperature of 61.9 °C, substrate (oleic acid: triethanolamine) molar ratio of 1:1 mole and 
agitation speed of 480 r.p.m. The relative deviation percentage under these conditions was 
less than 4%. The optimized method was successfully applied to the synthesis of the  
TEA-based esterquat cationic surfactant at a 2,000 mL scale. This method represents a 
more flexible and convenient means for optimizing enzymatic reaction using ANN than 
has been previously reported by conventional methods. 
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1. Introduction 

In the past two decades, triethanolamine (TEA)-based esterquat has been the primary ingredient in 
European fabric softeners and is becoming the global molecule of choice for various industries [1]. To 
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date, esterquat cationic surfactants were mainly used as textile softening agents. In particular, several 
investigations have been carried out during recent years that demonstrate esterquat cationic surfactants 
are promising ingredients in softener products, hair and cosmetic conditioner formulations [2]. In 
addition, they are highly biodegradable and biocompatible because their ester bonds are easily 
hydrolyzed [3-5]. Besides biodegradability additional advantages such as excellent softening properties, 
suitability for various fabrics and simple preparation procedures, have been discovered with the use of 
esterquat cationic surfactants as textile softening agents. 

Chemical synthesis is the typical means to esterify triethanolamine and fatty acids. This reaction 
occurs in the presence of a phosphinic acid catalyst, producing various combinations of mono-, di- and 
tri-esteramines [6]. Esteramines are finally reacted with a quaternizing agent, such as dimethyl 
sulphate [(CH3)2SO4], to introduce the positive charge onto the molecule and thus from the esterquats. 
However, such a synthesis normally requires high temperatures and pressures as well as  
corrosion-resistant equipment, which often result in undesired by-products. The preparation of the fatty 
acid substrates, for example, produces many impurities giving a dark-coloured product. Subsequent 
downstream processes such as bleaching and distillation are needed to obtain purer and  
lighter-coloured products [7]. In addition, most of chemical syntheses employ toxic organic solvents as 
the reaction media due to their high capability of solvating the raw materials. Those toxic solvents are 
potentially harmful to the workers in chemical plants. The product esters containing toxic solvent 
residue are not permitted in the food and pharmaceutical industries. A complete removal of the 
solvents from products is very laborious, and is not economically feasible for industry [8]. Extra costs 
are incurred for the high consumption of energy, special vessels suitable for high temperatures and 
pressures, plant infrastructure (e.g., establishment of a power-supply plant), and facility maintenance. 

Since conventional chemical synthesis has the shortcomings discussed above, researchers have been 
exploring alternative methods. Enzymatic preparation of fatty esters has drawn great interest for the 
past twenty years. Because of the bio-catalytic selectivity of enzymes, the final products contain fewer 
isomers and side-products [8]. Moreover, the reaction conditions of an enzymatic synthesis are 
considerably mild by comparison with the conventional means. Thus, reactor design is relatively 
simple. Also industries desire to reduce the operation and equipment expenses and to improve safety in 
the workplace. 

In the production of TEA-based esterquat cationic surfactant by the lipase-catalyzed synthesis 
method there are several factors that are important to obtain high conversion yields, as the percentage 
of reaction conversion obtained by lipase-catalyze synthesis methods are affected by various 
parameters such as the amount of enzyme in the reaction, reaction time, reaction temperature, molar 
ratio of substrate (OA:TEA) and agitation speed. The interrelationships between the above parameters 
are complex, and the analysis of this chemical reduction system to optimize the factors is a time and 
labor-consuming work. Hence, the analyses using conventional experimental methods are inefficient. 

The past decade has seen a host of data analysis tools based on biological phenomena develop into 
well-established modeling techniques, such as artificial intelligence and evolutionary computing. 
Artificial neural networks (ANNs) are now the most popular artificial learning tool in biotechnology [9]. 
Thus, ANNs have been shown to be a powerful tool for the optimization of multivariate parameters in a 
great variety of areas of interest, such as in lipase-catalyzed synthesis [9-12], fermentation media 
optimization [13-15] and in the pharmaceutical developments [16-18]. Artificial neural network 
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modeling based on the multilayer perceptron (MLP) has successfully been used for multivariate analysis. 
A recent trend in this and other fields of research is the development of ANN models with as limited 
number of weights as possible, which constitutes an additional significant objective to that of minimizing 
the errors in the generalization set. In fact, this kind of network model will be more appropriate to avoid 
over training, which increases its generalization ability over a new set of data [19]. 

2. Results and Discussion 

ANNs are computer programs designed to model the relationships between independent and 
dependent variables and are capable of modeling complex, non-linear relationships directly from the 
raw data. Unlike classical statistical techniques, such as response surface methodology, ANNs do not 
require the prior assumption of the nature of the relationships between input and output parameters, 
nor do they require the raw data to be transformed prior to model generation. Several neural network 
structures have been described [20,21]. The most common architecture is the multilayer perceptron 
(MLP). This network comprises an input and output layer of processing units termed nodes 
interconnected via one or more “hidden” layers. The number of nodes in the input and output layers is 
determined by the number of independent and dependent variables, respectively. 

The number of hidden layer nodes is defined by the user. Model development is achieved by a 
process of training in which the input parameters of a set of experimental records are presented to the 
input layer of the network. These data are then multiplied by a weighting factor and fed forward to the 
nodes of the first hidden layer. The weighted outputs from the input layer are summed and transformed 
by a transfer function. The resultant output is weighted and fed to the subsequent layer. The output 
from the output layer comprises a prediction of the dependent variables of the model. Comparison of 
the predicted properties with the observed properties of the formulation process yields the prediction 
error from which a performance function (often the mean squared error) is derived. The performance 
function is used by a backpropagation training algorithm to adjust the weights applied at the 
connections between nodes in each layer. By iteratively presenting the training set to the network and 
adjusting the weight matrix, the performance function can be minimized. In this way, the network 
learns the relationships between ingredients and properties and develops a model capable of predicting 
the properties of any formulation/process problem lying within the model space. 

There are many types of learning algorithms in the literature which can be used for training of  
the network [22]. However, it is so difficult to know a priori which learning algorithm will be more 
efficient for a given problem [23]. The algorithm used to train ANN in this study was Quick 
Propagation. This algorithm belongs to the gradient descent backpropagation algorithm class [16]. The 
gradient descent backpropagation algorithm is one of the most popular learning algorithms. It works by 
determining the output error, calculating the gradient of this error, and adjusting the ANN weights (and 
biases) in the descending gradient direction [24]. This algorithm includes different versions such as: 
Standard or Incremental backpropagation (IBP): the network weights are updated after presenting each 
pattern from the training data set, rather than once per iteration; Batch backpropagation (BBP): the 
network weights update takes place once per iteration, while all training patterns are processed through 
the network [25]; Quick propagation (QP) is a heuristic modification of the standard backpropagation 
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algorithm and is very fast [26]. QP is also defined as: mixed learning heuristics without momentum, 
learning rate optimized during training [16]. 

Table 1. Actual and predicted values of the ANN model of TEA-based esterquat cationic 
surfactant synthesis. 

Run No. 
Enzyme 
Amount 
(w/w%) 

Reaction 
Time 

(hour) 

Reaction 
Temperature 

(°C) 

Molar Ratio 
of Substrates 

(mole) 

Agitation 
Speed 

(r.p.m.) 

Conversion% 

Actual Predicted 

Training 
Set 

       

1 5 16 60 2:1 400 56.44 51.36
2 5 16 60 2:1 137.5 47.78 44.99
3 3 24 55 1:1 550 48.22 54.60
6 3 24 65 1:1 550 63.56 63.11
11 5 16 51.25 2:1 400 39.56 37.92
13 5 16 60 2:2 400 51.11 51.36
14 3 8 55 1:1 250 44.44 43.22
17 5 30 60 2:1 400 60.00 60.26
18 7 8 55 3:1 250 25.00 27.67
20 3 8 55 3:1 250 25.56 26.36
21 5 16 60 2:1 662.5 46.22 55.09 
22 7 24 65 1:1 250 63.33 63.33
24 7 8 55 3:1 550 33.78 33.41
25 8.5 16 60 2:1 400 48.44 53.85
26 5 16 60 3.75:1 400 38.00 35.86
27 7 24 55 3:1 250 35.33 38.86
30 5 16 60 2:1 400 62.44 51.36
32 5 16 60 2:1 400 58.00 51.36
33 5 16 60 2:1 400 55.33 51.36
35 3 8 65 3:1 550 44.89 47.34
36 3 24 55 3:1 250 34.89 35.22
37 7 24 65 3:1 550 67.11 62.35
39 7 24 65 1:1 550 71.33 64.32
40 1.5 16 60 2:1 400 44.22 48.65
41 7 8 65 1:1 250 48.89 55.78
43 5 16 60 2:1 400 46.89 51.36
44 5 16 60 2:1 400 52.00 51.36
47 3 8 65 3:1 250 35.78 37.32
48 5 16 60 2:1 400 53.11 51.36 
49 5 2 60 2:1 400 38.00 38.91

Test Set        
4 3 8 55 1:1 550 46.44 45.55
5 7 8 65 1:1 550 57.56 58.28
7 7 8 55 1:1 250 48.89 44.31
8 3 24 65 1:1 250 62.89 62.15
9 7 8 65 3:1 550 50.67 51.19
10 3 24 55 3:1 550 44.00 44.59
12 3 8 55 3:1 550 32.00 30.58
15 3 8 65 1:1 550 57.78 56.47 
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Table 1. Cont. 

19 7 8 55 1:1 550 52.67 47.29 
23 3 24 55 1:1 250 52.22 53.69 
28 7 24 55 1:1 550 59.11 56.27
29 3 8 65 1:1 250 54.44 54.03
31 7 24 65 3:1 250 58.00 57.47
34 3 24 65 3:1 550 64.89 60.32
38 7 24 55 1:1 250 52.67 54.77
45 3 24 65 3:1 250 54.22 54.04
46 7 8 65 3:1 250 41.33 41.31
50 7 24 55 3:1 550 49.33 48.53

 
In the multivariate optimization of reaction, gradient descent backpropagation algorithm in QP 

version was used to train neural networks. The experimental data of central composite design were 
divided into two sets: 30 of the data sets were used as the training set and the remaining 18 data sets 
were used as the test set (Table 1). The training data was used to compute the network parameters. The 
testing data was used to ensure robustness of the network parameters. If a network “learns too well” 
from the training data, the rules might not fit as well for the test of the cases in the data. To avoid this 
“overfitting” phenomenon, the testing stage was used to control error; when it increased, the training 
was stopped [27]. 

In order to determine the optimum number of neurons in hidden layer, a series of topologies  
was examined, in which the number of neurons was varied from 1 to 15. The root mean square error 
(RMSE) was used as the error function. Also, the coefficient of determination (R2) and the absolute 
average deviation (AAD) were used as a measure of the predictive ability of the network. Decision on 
the optimum topology was based on minimum error of testing. Each topology was repeated ten times 
to avoid any random correlation due to the random initialization of the weights [28].  

Figure 1. Performance of the network at different hidden nodes using QP algorithm. 
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value. The optimum reaction parameters were: enzyme amount of 4.77 wt%, reaction time of 24 hours, 
reaction temperature of 61.9 °C, substrates molar ratio (OA:TEA) of 1:1 mol (708 mmol of OA and 
TEA) and agitation speed of 480 r.p.m. 

Table 2. Optimum conditions derived by central composite design and ANN for  
TEA-based esterquat cationic surfactant synthesis. 

Optimal Conditions Conversion % 

Enzyme  
Amount  
(w/w%) 

Reaction  
Time  

(hour) 

Reaction  
Temperature  

(°C) 

Molar Ratio 
of Substrates 

(mole) 

Agitation 
Speed  

(r.p.m.) 

 

Actual Predicted 
Relative 

Deviation% 

4.77 24 61.9 1:1 480  63.57 61.14 3.98 

 
The experimental reaction gave a reasonable percentage conversion of 63.57%. This result 

confirmed the validity of the model, and the experimental value was determined to be quite close to the 
ANN predicted value (61.14%; less of 4% in relative deviation), implying that the empirical model 
derived from the central composite design can be used to adequately describe the relationship between 
the independent variables and response. A lower amount of Novozym 435 is required to produce the 
respective value of product in the aforementioned experiment. In the experimental run numbers 37 and 
39 higher yields were observed than under the optimum conditions even though the authors chose the 
optimum conditions because from the process point of view, it would be desirable to use the lowest 
amount of enzyme possible to achieve maximum conversion of substrate [29]. This is because 
Novozym 435 is more expensive that the other substrates, thus high reaction conversion with a low 
amount of enzyme. Moreover, shorter reaction time, lower reaction temperature and suitable range of 
agitation speed were considered in optimization process because longer reaction times and higher 
reaction temperatures lead to enzyme denaturation. Slow liquid movement would prevent the collision 
between enzyme and substrate, whilst an excessive agitator speed would cause shear effects on the 
immobilized enzyme, both of which could result in lower reaction conversion, especially with longer 
reaction times. 

3. Experimental 

3.1. Materials 

Novozym 435, Candida antarctica lipase B immobilized on a macroporous acrylic resin (10,000 
propyl laurate units per gram), was purchased from Novo Nordisk A/S (Bagsværd, Denmark). The 
enzyme is a granular product with a particle size of 0.2-0.6 mm. The bulk density of Novozym 435 is 
350-450 kg/m3. n-Hexane obtained from J.T. Baker (USA) was used as the organic solvent. Oleic acid 
and triethanolamine were purchased from Merck (Germany). All other chemicals used in this study 
were of analytical reagent grade. 
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3.2. Methods 

3.2.1. Experimental Design 

A 5-level-5-factor central composite design (CCD) was employed. The fractional factorial designs 
consisted of 32 factorial points, 10 axial points (two axial points on the axis of each design variable at 
a distance of 1.75 from the design center), and eight center points. The variables and their levels 
selected for the study were represented in Table 3. 

3.2.2. Enzymatic Esterification and Analysis of Samples 

The reactions were performed in a 2,000 mL reactor and specified volumes of hexane were added 
as solvent. The reactor consisted of a screw cap and a glass flask with a capacity of 2-liter and an inner 
diameter of 10 cm. A four bladed impeller (4.5 cm in diameter) was immersed in the reaction mixture 
a 2 cm-height from the bottom of the flask to provide agitation effect. The impeller was connected by a 
shaft to motor for speed controlling purpose. A baffle was connected to the cap and immersed to the 
reaction mixture in the reactor. The reaction temperature was controlled by immersing reactor in a 
temperature-controlled water bath. The reactions were catalyzed by various amount of Novozym  
435 from 1.5 to 8.5 wt% of oleic acid for experimental design, respectively, at different temperature 
(51.25-68.75 °C) and agitation speed (137.5-662.5 r.p.m.) values. The studied ranges of the substrates 
were 708 mmol for OA as a constant amount while concentrations of TEA were varied according 
Table 1 for the experimental design. All experiments were carried out in the range of 2-30 h, as 
showed in Table 1. 

Table 3. Variables and their levels employed in the central composite design. 

Variables Units 
Coded Level of Variables 

−1.75 −1 0 1 1.75 

X1 Enzyme amount % w/w 1.5 3 5 7 8.5 
X2 Time Hour 2 8 16 24 30 
X3 Temperature °C 51.25 55 60 65 68.75 
X4 Molar ratio of substrates  OA:TEA (mole:mole) 0.25:1 1:1 2:1 3:1 3.75:1 
X5 Agitation speed r.p.m. 137.5 250 400 550 662.5 

 
At the end of the reaction periods, a 30 mL aliquot was withdrawn from the system using a syringe. 

The reaction sample was terminated by dilution with 10 mL of ethanol-acetone (50:50, v/v). The 
enzyme particles were then separated by filtration and the remaining free acid in the reaction mixture 
was determined by titration of the aliquots of reaction mixture against standard NaOH. The moles of 
acid reacted were calculated from the values obtained for the blank (without enzyme) and test samples. 
The ester formed was expressed as equivalent to conversion of the acid. The accuracy of the method to 
follow ester formation was confirmed by thin-layer chromatography (TLC) using chloroform-methanol 
(95:5) solvent system.  
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3.2.3. Artificial Neural Network  

The commercial ANN software NeuralPower version 2.5 (CPC-X Software) was used throughout 
the study. This software allows the user to select the network type, the number of hidden layers and 
hidden layer neurons, the iterations used during the model training and the transfer functions. A  
self-organizing feature map network was used to predict the enzymatic reaction rates. The network 
architecture consisted of an input layer with five neurons (five variables), an output layer with one 
neuron (one response), and a hidden layer. To determine the optimal network topology, the number of 
neurons in the hidden layer was iteratively determined by developing several networks that vary only 
with the size of hidden layer and simultaneously observing the change in the root mean squared errors 
(RMSE). The transfer function was chosen sigmoid and other parameters for network were chosen as 
the default values of the used software. The experimental data of central composite design were used 
as the training and the test data of the artificial neural network. At the start of the training, weights 
were initialized with random values. The neural network was trained with the data obtained from 30 
experimental points. 

3.2.4. Verification of Predicted Data 

The estimation capability of ANN based on QP was tested. For this purpose, the technique was used 
to predict the responses at 18 experimental points. The predicted responses obtained from ANN were 
compared with the actual responses. The coefficient of determination (R2), root mean squares error 
(RMSE) and absolute average deviation (AAD) were determined. The RMSE and AAD are calculated 
by the following equations: 

                   ܧܵܯ ൌ
1
݊ ሺݕ െ ሻଶݕ



ୀଵ

 ൩                               ሺ1ሻ 

                         ቂܴܧܵܯ ൌ ሺܧܵܯሻଵ
ଶൗ  ቃ                                 ሺ2ሻ  

ሾܦܣܣ ൌ ൝ሺหݕ െ หݕ




ሻ൩ / ݊ൡݕ/  ൈ  100ሿ                ሺ3ሻ 

where n is the number of points, yp is the predicted value obtained from the neural network model,  
ya is the actual value. 

4. Conclusions 

A feed-forward multilayer perceptron artificial neural network based on the quick propagation 
model with one hidden layer and 11 neurons was successfully used to optimize the experimental 
conditions for the synthesis of a TEA-based esterquat cationic surfactant using the lipase-catalyzed 
synthesis method. Enzyme amount, reaction time, reaction temperature, molar ratio of substrates 
(OA:TEA) and agitation speed were chosen as main parameters. Using the best performing ANN, the 
optimum conditions predicted were an enzyme amount of 4.77 w/w%, reaction time of 24 h, reaction 
temperature of 61.9 °C, substrates molar ratio(OA:TEA) of 1:1 mole and agitation speed of 480 r.p.m. 
The relative deviation percentage under these conditions was less than 4%. The optimized method was 
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successfully applied to synthesis of TEA-based esterquat cationic surfactant at a 2,000 mL scale. This 
paper shows that ANN model has a good potential to model non-linear and multi-variable process 
parameters on the reaction conversion, so that the development tasks can be performed rapidly and 
efficiently with an increase of productivity, consistency and quality. 
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