Skip to main content
. 2018 Nov 29;13(11):e0204596. doi: 10.1371/journal.pone.0204596

Table 1. Comparison of proposed SNN and other models on the isolated spoken digit classification task.

RC: Reservoir computing; FC: Fully-connected layer; CSNN: Convolutional spiking neural network; HTM: Hierarchical temporal memory; RNN: Recurrent neural network; DN: Delta network.

Model Architecture Learning method Dataset Speakers Accuracy
SNNs
Verstraeten et al. [19] RC Pseudo matrix inversion TI46 5 >97.5
Zhang et al. [21] RC Abstract learning rule TI46 16 92.3
Wade et al. [27] FC STDP/BCM TI46 16 95.25
Tavanaei et al. [28] FC Hebbian/anti-Hebbian STDP Aurora 50 91
Tavanaei et al. [29] CSNN STDP Aurora >50 96
Dibazar et al. [50] FC Backpropagation TIDIGITS <80 85.1
Our model CSNN STDP TIDIGITS 200 97.5
ANNs
van Doremalen et al. [51] HTM Coincidence memorization TIDIGITS 150 91.43
Neil et al. [52] RNN Backpropagation TIDIGITS 200 96.1
Neil et al. [53] DN Backpropagation TIDIGITS 200 97.5