Table 1. Comparison of proposed SNN and other models on the isolated spoken digit classification task.
Model | Architecture | Learning method | Dataset | Speakers | Accuracy |
---|---|---|---|---|---|
SNNs | |||||
Verstraeten et al. [19] | RC | Pseudo matrix inversion | TI46 | 5 | >97.5 |
Zhang et al. [21] | RC | Abstract learning rule | TI46 | 16 | 92.3 |
Wade et al. [27] | FC | STDP/BCM | TI46 | 16 | 95.25 |
Tavanaei et al. [28] | FC | Hebbian/anti-Hebbian STDP | Aurora | 50 | 91 |
Tavanaei et al. [29] | CSNN | STDP | Aurora | >50 | 96 |
Dibazar et al. [50] | FC | Backpropagation | TIDIGITS | <80 | 85.1 |
Our model | CSNN | STDP | TIDIGITS | 200 | 97.5 |
ANNs | |||||
van Doremalen et al. [51] | HTM | Coincidence memorization | TIDIGITS | 150 | 91.43 |
Neil et al. [52] | RNN | Backpropagation | TIDIGITS | 200 | 96.1 |
Neil et al. [53] | DN | Backpropagation | TIDIGITS | 200 | 97.5 |