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Abstract

In this article we analyse diary reports concerning childhood symptoms of illness, these data

are part of a larger study with other types of measurements on childhood asthma. The chil-

dren are followed for three years and the diaries are updated, by the parents, on a daily

basis. Here we focus on the methodological implications of analysing such data. We investi-

gate two ways of representing the data and explore which tools are applicable given both

representations. The first representation relies on proper alignment and point by point com-

parison of the signals. The second approach takes into account combinations of symptoms

on a day by day basis and boils down to the analysis of counts. In the present case both

methods are well applicable. However, more generally, when symptom episodes are occur-

ring more at random locations in time, a point by point comparison becomes less applicable

and shape based approaches will fail to come up with satisfactory results. In such cases,

pattern based methods will be of much greater use. The pattern based representation

focuses on reoccurring patterns and ignores ordering in time. With this representation

we stratify the data on the level of years, so that possibly yearly differences can still be

detected.

Introduction

Medical research often revolves around experiments or measurements which can only be con-

ducted in the clinic or performed at the lab. Logistics, costs and man power often limits the

numbers of visits of participants to the clinic. This can be a serious bottleneck in cases where

one is interested in detecting more subtle variations over time. A partial solution is found in

augmenting the clinical investigations with other types of data that are more easily collected.

In this article we analyse diary reports concerning childhood symptoms of illness, these data

are part of a larger study on childhood asthma [1]. The children are followed for three years
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and the diaries are updated, by the parents using pen and paper, on a daily basis. Comparable

studies in the literature are for instance [2] and [3].

The aim of this diary study at large is to combine these data with other types of data in

order to come to a better understanding of childhood asthma. On a lower level it is the idea to

cluster the symptoms as recorded in the diaries and use these for better phenotyping in a next

step. Because of the unusual properties of the diary data, which will be discussed below, we

devote this paper to the methodological implications of analysing the diaries. A more thorough

discussion of the background of the data and a clinical interpretation of the findings will be

presented elsewhere.

All variables in the diaries are measured on a binary scale. Analysing such data raises

two major methodological issues. The first deals with what kind of representation is suitable

for these type of data and also facilitates further analysis. At a general level we take two

approaches, both will be briefly introduced here, but are extensively discussed in the next sec-

tion. The first approach is based on aligning and summarizing the diaries in such a way that

they can be compared in a point by point fashion (we call this a shape based representation).

The second approach is inspired on applications in text mining and treats every diary as a col-

lection of patterns (which is called pattern based representation in the following).

The second issue we address follows from the first and concerns the actual (statistical) tools

that are most applicable to analyse the (restructured) data. One of the choices here is whether

the data should be analysed as having a three-way structure, or bring it back to a two way

structure. Because the aim of this paper is exploratory, only unsupervised methods are used, all

are introduced in the methods section.

The characteristics of the collected data and the properties of the missing values in the dia-

ries are discussed in the next section. The methods section is followed by a discussion of the

results. We close with a discussion of the relative merits and demerits of the different methods

and draw some conclusions with respect to the approaches taken.

Materials and methods

Data representation

The study was conducted in accordance with the guiding principles of the Declaration of Hel-

sinki and was approved by the Local Ethics Committee (COPSAC2010: H-B-2008-093) and

the Danish Data Protection Agency (2015-41-3696). All parents gave written informed consent

before enrolment. The dataset consists of 700 diary reports concerning ten common childhood

symptoms of illness. This research is designed and conducted by COPSAC (Copenhagen Pro-

spective Studies on Asthma in Childhood) [1]. The first children entered the study in 2009,

data collection ended in 2014. The aim was to monitor each child for three years and children

could enter the study at any time of the year.

For each child or diary we have a matrix X , consisting ofM columns for the symptoms,

one column registering the date and T rows for the total number of registrations. One column

from such a matrix can be thought of as a binary signal over time. Every day a particular symp-

tom occurs, the signals equals one. If the symptom is absent the signal is zero. Three examples

of such a signal, stretching over one year, are depicted in Fig 1.

The choice for binary scales facilitates filling in the diaries. Especially in the case of young

children, it is more easy to decide on the actual presence or absence of a symptom compared

to scoring the severity of the symptom on e.g. a Likert scale. At the same time this also restricts

the scope of the analysis. Comparisons of the symptom burden between children are made in

terms of the (co)occurrence of symptoms and not their severity.

Analysis of binary diary data of children
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To compare all diaries they need to be combined, however the different entrance dates of

the children complicates a simple merger into one data file. In addition, not all diaries have

data for the complete three years. More details on the incomplete diaries are given in the next

section. Thereafter we discuss two strategies to align the different files in order to make them

comparable.

Incomplete diaries. From the 700 children, 403 have a diary that is filled-in for the total

of three years, 570 diaries contain information stretching 1000 days or more. The number of

recorded days for all diaries is visualized in the upper left panel of Fig 2. Missing values some-

times occur for a short period somewhere during the three years of study. In most cases the

missing records occur towards the end of the diary and are often concentrated in one or a few

episodes. The proportion of missings, given age (ignoring different entrance dates), is depicted

in the right top panel of Fig 2. For example, when the children have reached the age of 2.5

years, 10 percent of the data are missing at that point. Interesting are the small upward jumps

at each half year, this suggests parents most often quit the study at well defined in time, e.g.

when the child is one or two years of age or after a (planned) visit to the clinic.

It might be that the actual drop out in the study is related to the symptom burden. This is

more formally known as nonignorable nonresponse or missing not at random [4]. It could be

that parents find it to difficult to keep the diary while having a child with many complaints.

Or, on the contrary, when the child shows no signs of asthma, they think it is needless to fill in

Fig 1. The observed binary scores for three symptoms measured over the first year of the life of one child. Highlighted by the grey bars are three (arbitrary)

periods. One with both cold and cough symptoms (A), a second with only cold symptoms (B), the third one marks a number of days with cough and wheezing

symptoms (C).

https://doi.org/10.1371/journal.pone.0207177.g001
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the diary. The lower panel in Fig 2 plots the total length of the diaries (number of participated

days) against the average symptom burden calculated over all symptoms. The data shows some

increased variance in the symptom burden towards the end of the diaries, but the relation

between drop out and the average burden up to that point seems very weak. In summary it

seems that, apart from the strong relation with time, drop-out is not related to important vari-

ables in the study.

Fig 3 shows how many diaries are used, depending on the type of data representation.

The shape based approach relies on monthly averages, as will be explained in the next section.

The advantage of taking means is that, in addition to the 403 complete diaries, potential many

more can be included for analysis. To include more samples, diaries are allowed to have up to

15 days of missings per month. This adds 88 diaries and results in a total of 491 diaries, in Fig

3 depicted in the blue rectangle.

Fig 2. Inspecting the missing values in the diaries. The left upper panel shows that almost 60 percent of the diaries are complete. The missings are clearly related to

the time the child and parents are enrolled in the study, as can be seen in the right top panel. The bottom panel shows that there is no relation between the symptom

burden and drop-out.

https://doi.org/10.1371/journal.pone.0207177.g002
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In the pattern based representation the data are stratified over years. Meaning that every

diary has one row for every year of data included, which results in three rows for each of the

just described 491 diaries. On top of these, we included an additional 101 diaries. These diaries

have sufficient data in the first two years, but too many missings in the third. As such they all

have two rows of data in the matrix. The total set of samples for the pattern based representa-

tion is depicted in the green rectangle of Fig 3.

Shape based comparisons. The shape based representation follows the traditional way of

thinking when comparing signals or repeated measurements. This amounts to point by point

comparisons of all the samples. It essentially means we are comparing differences in shape and

magnitude of the signals over the time dimension.

Very important in this approach is that all samples are properly aligned. Yet, aligning the

diary data, as measured in the current setting, is non trivial. We distinguish interfering effects

at three different levels:

• Age

• Season

• Year

Children entered the study at any date, roughly between early 2009 and the spring of 2011. As

such, aligning the children based on their age might be the most simple solution. This corrects

for effects like maturation of the immune system and admission to daycare. However, next

to these influences, there are very strong seasonal effects. One example is the common cold,

which is much more abundant in the winter compared to the summer. In addition, it might be

that variations between years, like the severity of the winter or prevalence of fever, influences

the symptom burden of the children as well.

Fig 4 shows a schematic representation of two diaries measured at different points in time.

The upper panel presents the two unaligned sequences. We assume that both data series have

measurements for the complete three years. To keep the example simple, we have depicted the

measurements as if taken at the level of months (instead of days for the real data). The first

child enrolled the study in July of the first year, the second in November of year two.

Fig 3. A block diagram showing the number of samples included in both representations.

https://doi.org/10.1371/journal.pone.0207177.g003
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Different strategies can be adopted to (partially) correct for the distortions listed above. A

quick approach is to align both diaries based on the day of the year, as (schematically) depicted

for one symptom in panel B of Fig 4. By aligning the data, for instance, around the first day of

a calendar year, the age differences are kept to a minimum while seasonal effects are preserved.

Effects on the level of years are neglected, but they can be included as a covariate in the analy-

sis. In addition, this approach preserves the ordering of the time dimension of the individual

signals and one could utilize the serial correlation in further analysis. A downside is that it

leads to empty positions at the beginning and end of the time domain and not all statistical

methods will be able to deal with that.

This problem can be resolved by cutting the signals at the centering date (the first of Janu-

ary) and reposition the part in front of the cut at the same position, only twelve months later

along the time axis. The data occupying these positions are moved to the same positions

twelve months later in time, this process is repeated for the whole signal. The lower panel

of Fig 4) (C) shows a graph of the result. The serial correlation of the data is lost, as is the

information about the actual year when the measurements were taken. The advantage is that

this type of restructuring leads to a matrix (or cube) without empty cells. Merging all matri-

ces results in the I ×M × T tensor X , with (i = 1, . . ., I) diaries or children, (m = 1, . . ., M)

symptoms and (t = 1, . . ., T) points in time. Notice that we have chosen to summarize the

signals on the levels of months, after centering, cutting and repositioning which makes

T = 36. Fig 5 presents the monthly average scores for all symptoms calculated over all chil-

dren, given this alignment. All symptoms are split over two plots just for clarity. The sea-

sonal patterns are preserved and can be clearly observed in the patterns of cold and cough.

The serial correlation between the years is lost and seems to cause some increased irregulari-

ties in the curves when jumping from December to January. Notice that the lines in the plot

are averages and as such only serve as rough indication of the development of all symptoms

over time.

Pattern based comparisons. One of the problems often occurring when analysing long

signals is that it becomes increasingly difficult to correct for shifts and distortions in the time

dimension (see e.g. [5] for a discussion). In the previous section we have tried to correct for

distortions by reordering of the data and by summarizing the data on the level of months. This

is clearly a compromise because although the seasonal effects are covered, (small) age differ-

ences do still exists.

Fig 4. A schematic presentation of the alignment two diaries. Unaligned data (A), two diaries centered around January the first, neglecting year of birth (B) and

centered and restructured samples neglecting year of birth and serial correlation of a single dataseries (C).

https://doi.org/10.1371/journal.pone.0207177.g004
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An alternative, which bypasses discussions about optimal aligning strategies, is the ‘bag of

patterns’ representation of data (see e.g. [6]). This technique is used in text mining to assess

the degree of similarity between text documents. In such an analysis the words present in a

text are the defining features, the overlap in the words (and their frequency) between docu-

ments is used as a measure of closeness. This idea is adapted for the analysis of signals by [7].

Long signals are translated into collections of symbols by discretizing both the intensities of

the observed signals and the time dimension. In both applications the feature space is reduced

to a table of counts. This table is used to search for repetitions of patterns within and across

documents or signals. The location of these patterns are considered not important and are not

a part of the model. Any reference to time or seasonality is thereby dropped.

In the present case we define the combination of symptoms on a given day as a single pat-

tern. These patterns are basically codes consisting of zeros and ones. Three example patterns,

highlighted by the grey bars, are given in Fig 1. The first pattern (A) yields the code 110,

because the child coughs and suffers from a cold, but does not wheeze. The second pattern

results in 010, because in that period the child only has a cold. Pattern (C) gives 101 for cough-

ing and wheezing but no cold. Notice that this example is based on only three symptoms,

while in our analysis we use ten. In addition, in the analysis described in this paper, patterns

are derived on the level of a day, this instead of the wide intervals defined in Fig 1.

Fig 5. The monthly average scores for all symptoms calculated over all children.

https://doi.org/10.1371/journal.pone.0207177.g005
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Vector w contains the collection of all (g = 1, . . ., G) observed patterns. Ten different symp-

toms would thus in theory lead to G = 210, however, because some symptoms are very rarely

occurring, only 363 unique patterns are observed. The pattern frequencies are summarized

into matrix F for all (j = 1, . . ., J) diaries stratified over years. A small part of such a table is

depicted in Table 1. For example, the first row contains all patterns observed for the first year

of child one, which suffers 10 days of (only) coughing, 19 days of (only) wheezing and five

days of the combination of coughing and cold. The second row, contains all patterns observed

for the same child, only now for its second year of life. Assuming all diaries are completely

filled-in, this table contains three rows for every child.

Two-way data analysis

Table 2 present a number of exploratory methods applicable to the different representations of

the data, those presented in boldface are explained below. The results of applying these meth-

ods to the data are presented in the next section. We distinguish between methods applicable

to two-way data and three-way data. Notice that the table only shows a selection of the many

methods which can be used for the clustering of symptoms. We start with a discussion of

methods applicable to the matricised data, in a next step three-way decompositions are

discussed.

Matricization of X into a large matrix is very tempting since it enables the use of a wide

range of easy accessible unsupervised algorithms (see [8] for a discussion on the translation

of tensors to matrices). Here we investigate matricization over the features which means that

each child is represented by one row in the obtained matrix. This yields matrix �X of dimen-

sions I ×MT, each column of this matrix gives the burden of symptomm given time t. Notice

that alternative ways of matricization of X are possible, which opens alternative ways of look-

ing at the data.

Matrix factorizations are highly successful in clustering tasks in practically every data

domain. One of the advantages of these methods is that they allows us to reduce the

feature space to a lower number of dimensions which makes the problem at hand more

Table 1. Small example of a frequency table with patterns and diaries.

Child ID Cough Cold Wheeze . . . Cough + Cold . . .

001-y1 10 10 19 . . . 05 . . .

001-y2 11 05 05 . . . 02 . . .

001-y3 21 15 09 . . . 12 . . .

002-y1 17 01 13 . . . 16 . . .

002-y2 08 08 14 . . . 11 . . .

https://doi.org/10.1371/journal.pone.0207177.t001

Table 2. A number of possible methods that can be used given the specific representation of the raw data. Methods

discussed in the text are printed in bold type.

Dimensions Shape Pattern

2-way Heuristics Heuristics

NMF (P)LSA

Mixtures LDA

3-way PARAFAC PARAFAC

INDSCAL INDSCAL

LDA

https://doi.org/10.1371/journal.pone.0207177.t002
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comprehensible. A prominent algorithm is the Singular Value Decomposition (SVD), which

decomposes the data in three matrices. These matrices are subsequently used to investigate

grouping structures in the samples and the variables. We can apply the SVD to the shape based

matrices but also to the frequency matrix F. The latter case is known as Latent semantic analy-

sis (LSA) [9] [10] in text analysis. However, problematic about the SVD is that the new feature

space is in some applications difficult to interpret.

One alternative is non-negative matrix factorization (NMF) [11]. It decomposes �X into two

matrices:

�X ¼ UV 0; ð1Þ

when �X consists of I rows andMT columns, U is a I × Rmatrix and relates the samples with

the new feature space, V is aMT × Rmatrix and represents the weights of the original features

given the new components. Both matrices are non-negative which is a attractive property

when studying data only containing positive values. In contrast to the SVD, NMF does not

impose orthogonality on the R components. Instead of keeping all information in the recon-

struction, one usually retains only a small number of components R<< I, resulting in a sim-

plified or compressed representation of the data.

�X � URV 0R: ð2Þ

Writing the NMF in the outer product form shows its close relation with the tensor decom-

positions which we will discuss later

�X �
XR

r¼1

urv
0

r: ð3Þ

Alternatively, one can employ model based clustering algorithms. The basic assumption

of these models is that the data are generated according to a mixture distribution consisting

of an (unknown) number of components or clusters. A latent variable z is introduced so that

zk represents the unobserved group to which the diary belongs. Most notable in this vein is

the mixture model [12], which is adapted to a wide range of applications. A strongly related

model, tailored to text analysis, is known as probabilistic latent semantic analysis (PLSA)

[13].

Latent Dirichlet allocation (LDA) is a further extension of these models and is presented in

[14] and is also known as a mixed membership model [15]. The idea of LDA is similar to mix-

tures and PLSA, but it takes a Bayesian approach instead of maximum likelihood estimation.

Diaries are represented by a mixture of topics (clusters of variables), each topic is a latent mul-

tinomial variable characterized by a distribution over the (fixed) collection of patterns. Dirich-

let priors are placed over the diary distributions over topics and on the topic distributions over

patterns. The generative process of LDA can be described:

1. Draw distributions over patterns; Kmultinomials βk from a Dirichlet prior η, one for each

topic k

2. Draw vectors of topic proportions; Jmultinomials θj from a Dirichlet prior α, one for each

diary j

3. Pick a topic z with probability p(z|j)

4. Generate a pattern w with probability p(w|z)

Analysis of binary diary data of children
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This corresponds to the joint distribution of the observed and latent variables,

pðb; y; z;wÞ ¼
YK

k¼1

pðbkÞ
YJ

j¼1

pðyjÞ
YG

g¼1

pðzj;g jyjÞpðwj;g jb1:K ; zj;gÞ

" #

: ð4Þ

In practice this process needs to be inverted, which amounts to estimating the posterior dis-

tribution, i.e. the conditional distribution of the topic structure given the observed data:

pðb; y; zjwÞ ¼
pðb; y; z;wÞ

pðwÞ
: ð5Þ

Exact inference of this distribution is intractable, two types of approximation algorithms

are used in the literature. Variational methods [14] and sampling based algorithms [16].

Three-way data analysis

To preserve the three dimensions of the data so-called multi-way methods can be applied.

These methods are popular in chemometrics and psychometrics, for overviews in both areas

we refer to [17] and [18]. Here we consider individual differences scaling (INDSCAL), which

is a special case of parallel factor analysis (PARAFAC) [19] [20]. PARAFAC is a decomposition

method that generalizes the bilinear principal component analysis (PCA) to multi-way data.

An R component PARAFAC model of X can be written as:

xitm ¼
XR

r¼1

airbtrcmr þ eitm: ð6Þ

Where PARAFAC is loosely defined as the multi-way alternative to PCA, INDSCAL is

considered the higher order alternative to Multi Dimensional Scaling (MDS). In MDS a

model is created for a single I × I matrix with dissimilarities. INDSCAL analyses a series

of dissimilarity matrices in one model. We calculate point wise differences, meaning differ-

ences given symptom and time, between the samples in the tensor X , which results in D with

dimensions I × I × TM. INDSCAL is effectively a PARAFAC model with the restriction that

coefficients matrix B = A:

xii0 l ¼
XR

r¼1

airai0rclr þ eii0 l; ð7Þ

with l = 1, . . ., TM. Components derived with PARAFAC or INDSCAL are not orthogonal,

as opposed to PCA. Estimation of PARAFAC and INDSCAL models is done in an iterative

manner and the solutions are unique under mild assumptions. There are a number of suit-

able algorithms to perform this task, very often alternating least squares is used (see e.g.

[21]). In the present models the only parameter that needs to be optimized is the number

of components. Here we rely on heuristics, although a number of alternatives are available.

Some examples are cross-validation and residual plotting, more methods and references can

be found in [17].

Results

This section presents the results of the different analyses. We distinguish between results based

on the shape based representation and the pattern based representation. All analysis are per-

formed in R [22], except for the INDSCAL model which if fitted using the N-way toolbox [23]

available for Matlab.
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Shape based analysis

As a first analysis, NMF is applied to matrix �X . Eight models are fitted, with a rank one solu-

tion for the first up to rank eight for the last model. Because the NMF can end up in local min-

ima, each model is initiated 25 times after which the best fitting solution is stored.

The results of this analysis are presented in Fig 6. The right panel shows the additional

explained variance in the data using the first r components, compared to the model with r − 1

components. Because the components are not orthogonal, this figure should be interpreted in

terms of models and not in terms of the additional contribution of single components. The fig-

ure shows that after three components the additional explained variance levels off. Using this

plot to decide on the number of components, similarly as the scree plot is used in factor analy-

sis, one is most inclined to choose three components. The three component model explains 38

Fig 6. Results of a three component NMF applied to the matrix �X .

https://doi.org/10.1371/journal.pone.0207177.g006
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percent of the variance, adding a fourth or fifth component will explain cumulatively 40 and

43 percent of variance respectively.

The two panels on the left of Fig 6 show the association between the input variables and the

three estimated components, given the three component solution. Every dot in both figures is

a symptom, month—year combination. Some symptoms are labelled (month—year) in order

to unveil possible trends in time. The first component defines the symptoms cold and cough,

since these are the only symptom with substantial weights in this direction. The second compo-

nent is dominated by eczema, the third mainly by cold and also cough has substantial loadings

in this component. Especially eczema behaves relatively independent from the other symptoms.

Increasing the number of dimensions from three to four of five leads to components in which

cough and cold are important, eczema, however, remains in a separate dimension.

To utilize the three-way structure of the data we have also applied INDSCAL. The N-way

toolbox allows a number of constraints, here we apply a non-negativity constraint on the

symptom mode. We choose a three component model, the results are plotted in the two panels

of Fig 7, the dots are (color) coded in the same way as in Fig 6. The left panel shows component

one versus component two. The first component can be interpret as the general prevalence of

the different symptoms. Eczema, coughing and cold are the most abundant symptoms, while

for instance pneumonia is rare. Components two and three are more informative in terms of

single or related groups of symptoms. Component two is discriminative for eczema, the third

component separates cough and cold from the other symptoms. The INDSCAL model with

three components explains 40.2 percentage of variance in the data. When choosing a four

component model, 42.5 percent is explained.

Pattern based analysis

For the pattern based analysis we rely on the LDA model (using the Topicmodels package in

R [24]). After experimenting with three to six topics and compare the results, we fix the the

Fig 7. The components, resulting from the INDSCAL model, plotted against each other.

https://doi.org/10.1371/journal.pone.0207177.g007
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number of topics to be four. For more formal optimization strategies, as used in text mining,

we refer to [25]. The parameters of the model are estimated using a Gibbs sampler, the hyper-

parameters are set to the default values η = 0.1 and α = 50/K (see [16] for discussion) and are

updated in the Markov chain. The chain consisted of 10000 iterations, with a burnin period of

2000 iterations.

After estimation all patterns (symptoms or symptom combinations) are connected to the

topics by a certain weight. For each topic the top five of most relevant patterns are presented in

Table 3. The LDA model provides weights which are directly related to the per term distribu-

tion over topics. These weights are printed in Table 3 for every term and express the impor-

tance of that term within a particular topic.

From the results we observe one topic which strongly focuses on eczema symptoms, a topic

topic which forms a combination of cough a cold symptoms and a third topic which is domi-

nated by cold symptoms. In the fourth topic fever is the most important symptom, neverthe-

less it is a fairly mixed topic since also other (combinations of) symptoms receive considerable

weight.

Discussion and conclusions

Central to this paper are diary data, collected to investigate the asthmatic related symptoms

burden of young children. The characteristics of the data are relative unusual, as such we have

focused on the methodological aspects of analysing these data. We discern two, related, meth-

odological issues. First there is the problem of processing the (binary) diaries in such a way

that they are suitable for analysis. Two types of data representations are discussed, the shaped

based representation and pattern based representation. The second problem follows from the

first and concerns which statistical tools are the most applicable given the data representation.

The shape based representation requires the data to be aligned, after which they can be

compared on a point by point basis. Proper alignment is however delicate, but when feasible

many tools are applicable. The big advantage of this approach that (detailed) information in

the time dimension is preserved and hypotheses involving time effects can be tested. Summa-

rizing the data, say on the level of months, reduces the alignment problems but comes with a

loss of resolution. For the shape based analysis we have applied NMF to the matricised data,

and used INDSCAL for the three-way data. The data are summarized as monthly proportions;

the number of days a certain symptom is present. For both NMF and INDSCAL we choose

a three component model. The components derived from the models are relative similar in

terms of their interpretation, INDSCAL is able to explain slightly more variance. In the present

case there is still a moderate amount of structure in the time dimension, largely due to the sea-

sonal effects. This effect seems to be captured by both the NMF and INDSCAL since the results

of both methods pickup seasonal effects.

When symptom episodes are occurring more at random locations in time, a point by point

comparison becomes less applicable and shape based approaches will fail to come up with

Table 3. Top five terms for each of the four topics found by LDA.

Topic 1 Topic 2 Topic 3 Topic 4

Eczema (0.77) Cough cold (0.46) Cold (0.97) Fever (0.30)

Cold eczema (0.08) Cough cold fever (0.09) Cold fever (0.02) Gastric (0.19)

Cough eczema (0.03) Cough wheeze cold (0.05) Cold gastric (<0.01) Cold fever (0.16)

Cough cold eczema (0.03) Cough wheeze (0.05) Cold fever gastric (<0.01) Earinfection (0.10)

Fever eczema (0.01) Wheeze (0.04) Wheeze cold earinfection (<0.01) Fever gastric (0.05)

https://doi.org/10.1371/journal.pone.0207177.t003
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satisfactory results. In such cases, pattern based methods will be of much greater use. The pat-

tern based representation focuses on reoccurring patterns and ignores ordering in time. With

this representation we stratify the data on the level of years, so that possibly yearly differences

can still be detected. A further stratification of the data, from years to e.g. seasons, is possible.

However, due to the sparseness it might be that a further reduction of the period length makes

the estimates unstable. The data are analysed using Latent Dirichlet allocation, a method popu-

lar in text mining applications. The application of LDA to this data is an interesting experi-

ment since it it usually applied in situations with much more data available, still it derives

sensible topics. The results coming from the LDA are well interpretable and seems to deliver

relative similar (conceptual) dimensions as the shape based method do.

Both methods are in relative agreement with respect to which symptoms are deemed

important in the data. As such it seems that the grouping of the features, basically along the

lines of cold, cough and eczema are robust. At the same time we must conclude that these are

the dominant symptoms in terms of the raw counts and the methods seem to be less capable

of detecting clear patterns in the less abundant symptoms. In a future study, one of the aims

should be to zoom in on these rare occurring symptoms and see whether not their frequency

but maybe their timing or co-occurrence with other symptoms can be related to specific char-

acteristics of the children. In addition, it would be interesting to test both representation in a

supervised setting and accommodate the inclusion of additional covariates.
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