

# **HHS Public Access**

Author manuscript Anim Genet. Author manuscript; available in PMC 2019 December 01.

Published in final edited form as: Anim Genet. 2018 December ; 49(6): 564–570. doi:10.1111/age.12717.

## Generation of an equine biobank to be used for Functional Annotation of Animal Genomes Project

Erin N. Burns<sup>1</sup>, Matthew H. Bordbari<sup>1</sup>, Michael J. Mienaltowski<sup>2</sup>, Verena K. Affolter<sup>3</sup>, Marietta V. Barro<sup>1</sup>, Francesca Gianino<sup>4</sup>, Giuliana Gianino<sup>1</sup>, Elena Giulotto<sup>5</sup>, Theodore S. Kalbfleisch<sup>6</sup>, Scott A. Katzman<sup>7</sup>, Mary Lassaline<sup>7</sup>, Tosso Leeb<sup>8</sup>, Maura Mack<sup>4</sup>, Eliane J. Müller<sup>9</sup>, James N. MacLeod<sup>10</sup>, Brittni Ming-Whitfield<sup>1</sup>, Carolina Ramirez Alanis<sup>1</sup>, Terje Raudsepp<sup>11</sup>, Erica Scott<sup>2</sup>, Savanna Vig<sup>4</sup>, Huaijun Zhou<sup>2</sup>, Jessica L. Petersen<sup>12</sup>, Rebecca R. Bellone<sup>1,4</sup>, and Carrie J. Finno<sup>1</sup>

<sup>1</sup>Department of Population Health and Reproduction, School of Veterinary Medicine, University of California-Davis, Davis, CA, 95616, USA <sup>2</sup>Department of Animal Science, College of Agricultural and Environmental Sciences, University of California-Davis, Davis, CA, 95616, USA <sup>3</sup>Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California-Davis, Davis, CA, 95616, USA <sup>4</sup>Veterinary Genetics Laboratory, School of Veterinary Medicine, University of California-Davis, Davis, CA, 95616, USA <sup>5</sup>Department of Biology and Biotechnology, University of Pavia, via Ferrata 1, I-27100 Pavia, Italy <sup>6</sup>Department of Biochemistry and Molecular Genetics, School of Medicine, University of Louisville, Louisville, KY, 40292, USA <sup>7</sup>Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California-Davis, Davis, CA, 95618, USA 8 Institute of Genetics, Vetsuisse Faculty, University of Bern, Bern, 3001, Switzerland <sup>9</sup>Department of Biomedical Research, Molecular Dermatology and Stem Cell Research & Institute of Animal Pathology, Vetsuisse Faculty, University of Bern & Department of Dermatology, Inselspital, Bern University Hospital, Bern, Switzerland, University of Bern, Bern, 3001, Switzerland <sup>10</sup>Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY, 40546, USA <sup>11</sup>Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas, 77845, USA <sup>12</sup>Department of Animal Science, University of Nebraska - Lincoln, Lincoln, NE, 68583, USA

## Summary

The Functional Annotation of Animal Genomes (FAANG) project aims to identify genomic regulatory elements in both sexes and across multiple stages of development in domesticated animals. This study represents the first stage of the FAANG project for the horse, *Equus caballus*. A biobank of 80 tissue samples, two cell lines and six body fluids was created from two adult Thoroughbred mares. *Ante-mortem* assessments included full physical examinations, lameness, ophthalmologic and neurologic evaluations. Complete blood counts and serum biochemistries were also performed. At necropsy, in addition to tissue samples, aliquots of serum, ethylenediaminetetraacetic acid plasma, heparinized plasma, cerebrospinal fluid, synovial fluid, urine and microbiome samples from all regions of the gastrointestinal and urogenital tracts were

Correspondence to: Carrie J. Finno.

Corresponding Author Email ID: cjfinno@gmail.com.

collected. Epidermal keratinocytes and dermal fibroblasts were cultured from skin samples. All tissues were grossly and histologically evaluated by a board-certified veterinary pathologist. The results of the clinical and pathological evaluations identified subclinical eosinophilic and lymphocytic infiltration throughout the length of the gastrointestinal tract as well as a mild clinical lameness in both animals. Each sample was cryo-preserved in multiple ways, and nuclei were extracted from selected tissues. These samples represent the first published systemically healthy equine-specific biobank with extensive clinical phenotyping *ante-* and *post-mortem*. The tissues in the biobank are intended for community-wide use in the functional annotation of the equine genome. The use of the biobank will improve the quality of the reference annotation and allow all equine researchers to elucidate unknown genomic and epigenomic causes of disease.

#### **Keywords**

horse; genome regulation; tissue collection; nuclei isolation; necropsy; biorepository

## Introduction

The Encyclopedia of DNA Elements (ENCODE) Consortium was established in 2003 to identify functional elements within the human genome (ENCODE Project Consortium 2004). At the conclusion of the pilot phase, in 2007, it was abundantly clear that the human genome was composed of more than just protein-coding genes (ENCODE Project Consortium *et al.* 2007). Information gained from the project allowed researchers to assign a biochemical function to 80% of the genome (ENCODE Project Consortium 2012). According to the ENCODE website, as of July 2017 ENCODE data have been utilized in over 700 publications linking functional data to disease in humans (ENCODE Project Consortium 2017). The number of publications will continue to expand as additional genomic regions associated with disease are identified. Realizing the need for better annotation to advance discovery in animal species, the animal genomic research community developed the Functional Annotation of Animal Genomes (FAANG) Consortium

The FAANG Consortium, organized in 2014, is working to use the assays and analysis techniques developed during the ENCODE project to annotate the majority of functional elements in the genomes of domesticated animal species (Andersson *et al.* 2015). Biobanks have been created for human (Bao *et al.* 2013) and porcine datasets (Abbott 2015; Albl *et al.* 2016). These biobanks have aimed to standardize tissue collection and preservation to improve downstream molecular analyses. The FAANG consortium has worked to standardize tissue sets, methods of collection, assays and meta-data analyses (Tuggle *et al.* 2016). The necessity of these datasets in the horse cannot be overstated.

Putative causal variants in coding regions have been identified for simple, Mendelian diseases in the horse such as hyperkalemic periodic paralysis (Ptacek *et al.* 1994), hereditary equine regional dermal asthenia (Tryon *et al.* 2007) and dwarfism in Frisian horses (Leegwater *et al.* 2016). However, complex inherited diseases, such as fracture risk (Blott *et al.* 2014), osteochondrosis (van Grevenhof *et al.* 2009; Lykkjen *et al.* 2010; Teyssedre *et al.* 2012; McCoy *et al.* 2016) and recurrent laryngeal neuropathy (Dupuis *et al.* 2011) have

failed to be localized to coding regions of the genome despite extensive research. Better annotation of genes and functional elements within the genome will help to identify variations causative of complex diseases such as these. The objective of the current study was to create a biobank of tissues from two systemically healthy Thoroughbred mares to be used in the functional annotation of the equine genome.

## Materials and Methods:

#### Animals

Two Jockey Club registered Thoroughbred mares deemed systemically healthy by the University of California Davis (UCD) Veterinary Medical Teaching Hospital were donated to the project. The horses (ECA\_UCD\_AH1 and ECA\_UCD\_AH2) were five and four years of age respectively at the time of necropsy. Neither mare had a history of traumatic injuries nor had they been bred. The animals were more than one year out of athletic training programs prior to euthanasia. All protocols were approved by the UCD Institutional Animal Care and Use Committee (Protocol #19037). A pedigree for both animals was obtained prior to their donation to the project.

## **Clinical phenotyping**

Both mares were evaluated at the UC Davis Veterinary Hospital prior to euthanasia. Clinical evaluations were performed by a board-certified internist (CJF), surgeon (SAK) and ophthalmologist (ML) for signs of abnormalities in dermatologic, cardiopulmonary, gastrointestinal, neurologic, urogenital, lymphatic, orthopedic or ophthalmic systems. Videos were taken of the lameness and neurological examinations. A complete blood count and serum biochemistry were also performed on each horse.

## Karyotyping

Metaphase chromosome spreads were prepared from Pokeweed-stimulated blood lymphocyte cultures according to standard protocols (Raudsepp & Chowdhary 2008). Chromosomes were stained with Giemsa for initial counting. Sex chromosomes were identified by CBG banding (Arrighi & Hsu 1971). Refined chromosome analysis and karyotyping were carried out by GTG banding (Seabright 1971). Twenty cells were captured and analyzed for each experiment using ISIS V5.2 (MetaSystems GmbH) software.

#### PCR analysis of sex chromosomes

Genomic DNA was isolated from blood lymphocyte cultures. PCR analysis was carried out using primers for the equine *sex determining region* Y(SRY) and *androgen receptor* (*AR*) gene, as described earlier (Raudsepp *et al.* 2004,2010).

## Peripheral blood mononuclear cell collection and preservation

Peripheral blood mononuclear cells were isolated from 10 ml of heparinized blood using Histopaque® and density gradient centrifugation (Hida *et al.* 2002).

#### **Fluid collection**

Blood was collected *ante-mortem* from an intravenouscatheter into ethylenediaminetetraacetic acid, heparin and additive-free vacutainers. The blood was shielded from light, preserved on ice and returned to the lab for centrifugation. Immediately *post-mortem*, cerebrospinal fluid (CSF), synovial fluid and urine were collected. CSF was collected at the atlanto-occipital site, as previously described (Finno *et al.* 2015). Synovial fluid was collected via syringe aspiration of the carpal and tarsal joints from ECA\_UCD\_AH1. For ECA\_UCD\_AH2 synovial fluid was collected via syringe aspiration of the carpal joint. All blood, CSF and synovial fluid samples were centrifuged at 2000 *g* for 10 min at 4 °C, and the supernatant was flash frozen in 1-ml aliquots. Plasma, serum and buffy coat were transferred to storage tubes and flash frozen. Urine was freely caught postmortem. All fluid samples are stored at -80 °C.

#### Tissue collection

Tissue samples for cell culture were collected concurrently with CSF and synovial fluid. All tissues to be collected were assigned to one of seven collection stations based on organ system (Table 1). Organs or organ samples were labeled and delivered to the stations by veterinarians ensuring proper identification. All tissues were examined by a board-certified pathologist (VKA) for any evidence of gross pathology. Additionally, tissue samples for histopathology were collected. Two sets of samples were then collected for the biobank: the first set was directly proximal and the second set distal to the sampling site for histopathology (Fig. 1). For each biobank sample, 1-cm<sup>3</sup> aliquots of tissues were collected. At least two, and a maximum of 12, aliquots of each tissue were preserved.

#### Tissue preservation

After collection, the samples were preserved multiple ways. Histopathologic samples were labeled and preserved in 10% buffered formalin. All but two of the proximal site samples were flash frozen in liquid nitrogen and stored at -80 °C until further use. The two remaining proximal site samples were maintained on ice before cross-linking and preservation for ChIP-seq using a modification of the iDEAL chip-seq kit protocol from Diagenode®. The samples collected distal to the histopathologic sites were sectioned, flash frozen and are stored at -80 °C. Nuclei isolation was carried out, according to the standards developed in the mouse ENCODE project (Yue *et al.* 2014), on 16 of the tissues from a tertiary sample collected distal to the histopathologic site (Table 2).

#### Cell isolation and preservation

Immediately *post-mortem*, skin above the gluteal muscle and the medial aspect of the upper hindlimb were cleaned with phosphate-buffered saline (PBS), shaved and sterilized. Full-thickness strips were excised from each region and stored in media appropriate for isolation of either epidermal keratinocytes or dermal fibroblasts (Caldelari & Muller 2010; Raimondi *et al.* 2011). Keratinocyte cultures were established from upper hind-limb biopsies after being sectioned into 0.5 cm  $\times$  1 cm pieces and treated with dispase (Roche) for 24 hours at 4 °C. The epidermis was then separated from the dermis and incubated in CnT Accutase100 (CELLnTEC Advanced Cell Systems AG) at room temperature. The keratinocytes were

Burns et al.

detached, collected in a cell suspension, passed through a cell strainer, centrifuged and resuspended to count. Keratinocytes were seeded at  $5 \times 10^4$  cells/cm<sup>2</sup> in CnT-09 complete

resuspended to count. Keratinocytes were seeded at  $5 \times 10^4$  cells/cm<sup>2</sup> in CnT-09 complete medium (CELLnTEC Advanced Cell Systems AG), which was changed every two days until confluence. To passage, keratinocytes were treated with Accutase100, centrifuged, counted and re-seeded at  $5 \times 10^4$  cells/cm<sup>2</sup>. Keratinocytes were cryopreserved after passages 2 and 3 (ECA\_UCD\_AH1) or passage 4 (ECA\_UCD\_AH2) using CnT-CRYO-50 (CELLnTEC Advanced Cell Systems AG), according to manufacturer instructions, and were stored in cryotubes in liquid nitrogen (Caldelari & Müller 2010).

To collect dermal fibroblasts, skin biopsies were washed three times in ice cold PBS containing  $3\times$  antibiotics ( $100\times$  penicillin and streptomycin, Sigma-Aldrich). Dermis was then separated, and  $2-3\text{mm}^2$  fragments were placed into a 24-well tissue-culture-treated plate. Complete medium (Dulbecco's Minimum Essential Medium, 20% fetal bovine serum,  $2\times$  non-essential amino acids, 2 mM L-glutamine,  $2\times$  penicillin/streptomycin, 2 µg/ml amphotericin B and 1 µg/ml fluconazole) was added to cover each tissue fragment. For the first week, complete medium was added to keep the tissue covered. Afterwards, medium was changed weekly until confluence, at which point the cells were trypsinized, counted and seeded in a 12-well plate. With each passage, cells were seeded in a larger well size: 1.9 cm<sup>2</sup> (primary), 3.8 cm<sup>2</sup> (passage 1), 9.5 cm<sup>2</sup> (passage 2), 25 cm<sup>2</sup> (passage 3) and 75 cm<sup>2</sup> (passage 4). Dermal fibroblasts were cryopreserved after passages 3 and 4 for both horses using DMSO-based freezing medium (Raimondi *et al.* 2011) and stored in liquid nitrogen.

#### Pathological evaluation

The tissues preserved in formalin were embedded in paraffin, sectioned and evaluated by a board certified veterinary pathologist (VKA). The sections were stained using hematoxylin and eosin (HE) then visualized using light microscopy.

## Results

## **Clinical phenotyping**

The lameness examinations revealed a grade 2 out of 5 lameness in both horses (Table S1). ECA\_UCD\_AH1 was lame on the right hind leg. No tissues were collected from this leg. ECA\_UCD\_AH2 was bilaterally lame on both forelimbs (see supplementary video at https:// youtu.be/OrfyVtYr1iQ), but it was noted that the horse's front shoes were removed the day prior to the exam. Results of the serum biochemistry, complete blood count, neurological exam (see supplementary Video at https://youtu.be/seWYe69ZhUs) and ophthalmic exam were all within normal limits (Table S1). A karyotype and PCR analysis of sex chromosomes was completed for each individual (TR) with no abnormalities detected. Interpretation of all clinical examinations determined both mares were systemically healthy at the time of euthanasia.

#### Tissue and fluid collection and preservation

All tissues were collected within three hours of euthanasia. Eighty tissues and six body fluids were collected. The samples were preserved via one of four methods (Table 2) and subsequently stored at -80 °C. Serum, plasma, urine, CSF, synovial fluid and buffy coat

were aliquoted after centrifugation and stored at -80 °C. Dermal fibroblasts and epidermal keratinocytes established from skin biopsies were cryopreserved in liquid nitrogen (Table S2). Peripheral blood mononuclear cells's were isolated from UCDAH1 only and stored at--80 °C (Table 2).

#### Pathology report

The conclusions from the pathology report for each tissue of each horse are listed in Table S3. Most of the tissues collected showed no significant abnormalities. However, the gastrointestinal tract of both horses contained substantial, subclinical, eosinophilic and lymphocytic inflammatory cell infiltrate in the lamina propria and submucosa (Fig. S1). This inflammation extended from the duodenum through the small colon in both horses (Table S3).

## Discussion

Biobanks have been created for samples from healthy humans (Triendl 2003; Ronningen *et al.* 2006; Jaddoe *et al.* 2007; Roden *et al.* 2008; Sudlow *et al.* 2015), diseased humans (Triendl 2003; Garcia-Merino *et al.* 2009), a diabetic pig model (Albl *et al.* 2016), cancer cell lines (Barretina *et al.* 2012; van de Wetering *et al.* 2015) and canine mammary tumors (Milley *et al.* 2015). In humans, the list continues to grow, but the availability of published biobanks for domesticated animals is much more limited (Groeneveld *et al.* 2016). The 80 tissue samples, two cell lines and six body fluids in the biobank described here are intended to be used by the equine research community in the functional annotation of the equine genome. This report also provides guidelines on the tissue sampling and collection to ensure congruency with future biobanks. Samples from the biobank may be used by any interested researchers in the equine community to further the annotation of the genome.

The phenotyping and histopathologic results are intended to provide context for future sequencing and related molecular analyses. The lameness observed in both horses was evaluated for plausible causes to determine if samples should be excluded from the biobank. No plausible cause of the right hind lameness for UCDAH1 could be elucidated. Therefore, all musculoskeletal limb samples were collected from the left legs for UCDAH1. UCDAH2 had her shoes removed the day prior to her lameness exam, which could have contributed to the lameness. Hoof tester examination was positive bilaterally on UCDAH2's soles, and the lameness improved with the addition of shoes prior to euthanasia. For this reason, it is suspected the lameness was due to the shoe removal and the samples were included in the biobank.

Underlying pathology will have a significant impact on the annotation in abnormal tissues. For example, the eosinophilic and lymphocytic infiltration within the gastrointestinal tract of these two horses may result in a difference in observed gene expression and epigenetic modifications as compared to healthy animals, as the presence of these inflammatory cells changes the cellular composition of the tissue. The presence of eosinophils and lymphocytes is indicative of underlying inflammation; therefore, transcriptional changes such as an increase in the expression of interleukins, cytokines and chemokines (Davanian *et al.* 2012; Brady *et al.* 2015) should be expected in future RNA-sequencing data. Along with an

elevation of transcription of these genes, it is possible that histone modifications, methylation, transcription factor binding and open chromatin regions will also be altered because these modifications influence transcription (ENCODE Project Consortium et al. 2007). Observation of inflammatory cells post-mortem underscores the importance of histological evaluation in the establishment of a biobank.

This is the first published report of a systemically healthy equine specific biobank and the first non-human biobank to include extensive ante- and post-mortem phenotypic data. The use of this biobank in the functional annotation of the equine genome will lead to advances in both equine and human medicine. Similar to ENCODE pioneering the field of personalized human medicine, FAANG will advance individualized care of animals for production and companion purposes. Researchers can access sample availability and associated metadata on data.faang.org. It is recommended to then contact the corresponding author to coordinate shipping of samples. Accession information for each horse can be found in Table S1.

## Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

#### Acknowledgements

The authors would like to acknowledge members of the Zhou and Ross laboratories at UC Davis for their technical assistance

Funding Sources

Funding for sample collection was provided by the Grayson Jockey Club Foundation, USDA NRSP-8 and the UC Davis Center for Equine Health. Support for M.J.M. was provided by UC Davis Agriculture Experiment Station. Support for C.J.F. was provided by the National Institutes of Health (NIH) (1K010D015134and L40 TR001136). E.N.B was supported by USDA NIFA National Need Fellowship Award #20143842021796. All listed funding agencies provided support for sample collection or salary support for the investigators listed above. None of the funding agencies had any role in the design of the study, analysis, interpretation of the data or writing of the manuscript.

## References

Abbott A (2015) Inside the first pig biobank. Nature 519, 397-8. [PubMed: 25810182]

- Albl B, Haesner S, Braun-Reichhart C, Streckel E, Renner S, Seeliger F, Wolf E, Wanke R & Blutke A (2016) Tissue sampling guides for porcine biomedical models. Toxicologic Pathology 44, 414–20. [PubMed: 26883152]
- Andersson L, Archibald AL, Bottema CD et al. (2015) Coordinated international action to accelerate genome-to-phenome with FAANG, the Functional Annotation of Animal Genomes project. Genome Biologu 16, 57.
- Arrighi FE & Hsu TC (1971) Localization of heterochromatin in human chromosomes. Cytogenetics 10, 81-6. [PubMed: 4106483]
- Bao WG, Zhang X, Zhang JG, Zhou WJ, Bi TN, Wang JC, Yan WH & Lin A (2013) Biobanking of fresh-frozen human colon tissues: impact of tissue ex-vivo ischemia times and storage periods on RNA quality. Annals of Surgical Oncology 20, 1737-44. [PubMed: 22711177]
- Barretina J, Caponigro G, Stransky N et al. (2012) The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity. Nature 483, 603-7. [PubMed: 22460905]

Burns et al.

- Blott SC, Swinburne JE, Sibbons C, Fox-Clipsham LY, Helwegen M, Hillyer L, Parkin TD, Newton JR & Vaudin M (2014) A genome-wide association study demonstrates significant genetic variation for fracture risk in Thoroughbred racehorses. BMC Genomics 15, 147. [PubMed: 24559379]
- Brady RA, Bruno VM & Burns DL (2015) RNA-Seq analysis of the host response to *Staphylococcus aureus* skin and soft tissue infection in a mouse model. PLoS One 10, e0124877. [PubMed: 25901897]
- Caldelari R & Muller EJ (2010) Short- and long-term cultivation of embryonic and neonatal murine keratinocytes. Methods in Molecular Biology 633, 125–38. [PubMed: 20204625]
- Davanian H, Stranneheim H, Bage T, Lagervall M, Jansson L, Lundeberg J & Yucel-Lindberg T (2012) Gene expression profiles in paired gingival biopsies from periodontitis-affected and healthy tissues revealed by massively parallel sequencing. PLoS ONE 7, e46440. [PubMed: 23029519]
- Dupuis MC, Zhang Z, Druet T, Denoix JM, Charlier C, Lekeux P & Georges M (2011) Results of a haplotype-based GWAS for recurrent laryngeal neuropathy in the horse. Mammalian Genome 22, 613–20. [PubMed: 21698472]
- ENCODE Project Consortium (2004) The ENCODE (ENCyclopedia Of DNA Elements) Project. Science 306, 636–40. [PubMed: 15499007]
- ENCODE Project Consortium (2012) An integrated encyclopedia of DNA elements in the human genome. Nature 489, 57–74. [PubMed: 22955616]
- ENCODE Project Consortium (2017) encodeproject.org.
- ENCODE Project Consortium, Birney E, Stamatoyannopoulos JA et al. (2007) Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project. Nature 447, 799–816. [PubMed: 17571346]
- Finno CJ, Estell KE, Katzman S, Winfield L, Rendahl A, Textor J, Bannasch DL & Puschner B (2015) Blood and cerebrospinal fluid alpha-tocopherol and selenium concentrations in neonatal foals with neuroaxonal dystrophy. Journal of Veterinarian Internal Medicine 29, 1667–75.
- Garcia-Merino I, de Las Cuevas N, Jimenez JL, Gallego J, Gomez C, Prieto C, Serramia MJ, Lorente R, Munoz-Fernandez MA & Spanish HIVB (2009) The Spanish HIV BioBank: a model of cooperative HIV research. Retrovirology 6, 27. [PubMed: 19272145]
- Groeneveld LF, Gregusson S, Guldbrandtsen B, Hiemstra SJ, Hveem K, Kantanen J, Lohi H, Stroemstedt L & Berg P (2016) Domesticated animal biobanking: land of opportunity. PLoS Biology 14, e1002523. [PubMed: 27467395]
- Hida N, Maeda Y, Katagiri K, Takasu H, Harada M & Itoh K (2002) A simple culture protocol to detect peptide-specific cytotoxic T lymphocyte precursors in the circulation. Cancer Immunology, Immunotherapy 51, 219–28. [PubMed: 12012109]
- Jaddoe VW, Bakker R, van Duijn CM et al. (2007) The Generation R Study Biobank: a resource for epidemiological studies in children and their parents. European Journal of Epidemiology 22, 917– 23. [PubMed: 18095172]
- Leegwater PA, Vos-Loohuis M, Ducro BJ et al. (2016) Dwarfism with joint laxity in Friesian horses is associated with a splice site mutation in *B4GALT7*. BMC Genomics 17, 839. [PubMed: 27793082]
- Lykkjen S, Dolvik NI, McCue ME, Rendahl AK, Mickelson JR & Roed KH (2010) Genome-wide association analysis of osteochondrosis of the tibiotarsal joint in Norwegian Standardbred trotters. Anim Genet 41 Suppl 2, 111–20. [PubMed: 21070284]
- McCoy AM, Beeson SK, Splan RK, Lykkjen S, Ralston SL, Mickelson JR & McCue ME (2016) Identification and validation of risk loci for osteochondrosis in standardbreds. BMC Genomics 17, 41. [PubMed: 26753841]
- Milley KM, Nimmo JS, Bacci B, Ryan SD, Richardson SJ & Danks JA (2015) DogMATIC--a remote biospecimen collection kit for biobanking. Biopreservation and Biobanking 13, 247–54. [PubMed: 26186583]
- Ptacek LJ, Tawil R, Griggs RC et al. (1994) Dihydropyridine receptor mutations cause hypokalemic periodic paralysis. Cell 77, 863–8. [PubMed: 8004673]
- Raimondi E, Piras FM, Nergadze SG, Di Meo GP, Ruiz-Herrera A, Ponsa M, Ianuzzi L & Giulotto E (2011) Polymorphic organization of constitutive heterochromatin in *Equus asinus* (2n = 62) chromosome 1. Hereditas 148, 110–3. [PubMed: 21756256]

- Raudsepp T & Chowdhary BP (2008) FISH for mapping single copy genes. Methods in Molecular Biology 422, 31–49. [PubMed: 18629659]
- Raudsepp T, Durkin K, Lear TL, Das PJ, Avila F, Kachroo P & Chowdhary BP (2010) Molecular heterogeneity of XY sex reversal in horses. Animal Genetics 41 Suppl 2, 41–52. [PubMed: 21070275]
- Raudsepp T, Lee EJ, Kata SR, Brinkmeyer C, Mickelson JR, Skow LC, Womack JE & Chowdhary BP (2004) Exceptional conservation of horse-human gene order on X chromosome revealed by highresolution radiation hybrid mapping. Proceedings of the National Academy of Sciences of the United States of America 101, 2386–91. [PubMed: 14983019]
- Roden DM, Pulley JM, Basford MA, Bernard GR, Clayton EW, Balser JR & Masys DR (2008) Development of a large-scale de-identified DNA biobank to enable personalized medicine. Clinical Pharmacology & Therapeutics 84, 362–9. [PubMed: 18500243]
- Ronningen KS, Paltiel L, Meltzer HM, Nordhagen R, Lie KK, Hovengen R, Haugen M, Nystad W, Magnus P & Hoppin JA (2006) The biobank of the Norwegian Mother and Child Cohort Study: a resource for the next 100 years. European Journal of Epidemiology 21, 619–25. [PubMed: 17031521]
- Seabright M (1971) A rapid banding technique for human chromosomes. Lancet 2, 971–2.
- Sudlow C, Gallacher J, Allen N et al. (2015) UK biobank: an open access resource for identifying the causes of a wide range of complex diseases of middle and old age. PLoS Medicine 12, e1001779. [PubMed: 25826379]
- Teyssedre S, Dupuis MC, Guerin G, Schibler L, Denoix JM, Elsen JM & Ricard A (2012) Genomewide association studies for osteochondrosis in French Trotter horses. Journal of Animal Science 90, 45–53. [PubMed: 21841084]
- Triendl R (2003) Japan launches controversial Biobank project. Nature Medicine 9, 982.
- Tryon RC, White SD & Bannasch DL (2007) Homozygosity mapping approach identifies a missense mutation in equine *cyclophilin B* (*PPIB*) associated with HERDA in the American Quarter Horse. Genomics 90, 93–102. [PubMed: 17498917]
- Tuggle CK, Giuffra E, White SN et al. (2016) GO-FAANG meeting: a gathering on functional annotation of animal genomes. Animal Genetics 47, 528–33. [PubMed: 27453069]
- van de Wetering M, Francies HE, Francis JM et al. (2015) Prospective derivation of a living organoid biobank of colorectal cancer patients. Cell 161, 933–45. [PubMed: 25957691]
- van Grevenhof EM, Schurink A, Ducro BJ, van Weeren PR, van Tartwijk JM, Bijma P & van Arendonk JA (2009) Genetic variables of various manifestations of osteochondrosis and their correlations between and within joints in Dutch warmblood horses. Journal of Animal Science 87, 1906–12. [PubMed: 19213707]
- Yue F, Cheng Y, Breschi A et al. (2014) A comparative encyclopedia of DNA elements in the mouse genome. Nature 515, 355–64. [PubMed: 25409824]



## Figure 1.

Depiction of collection sites using superficial and deep digital flexor tendon of the left forelimb. The middle sections of tissue were labeled and preserved in formalin for pathological evaluation. The white squares represent proximal samples and the black squares represent the distal samples.

## Table 1

Tissues from each organ system of the body were sorted into stations based on when they became available during a necropsy. This organization of tissues into stations allowed for an expedited collection process.

| Station    | Organ system collected         |
|------------|--------------------------------|
| Station 1  | Cell culture biopsies          |
| Station 1B | Integumentary                  |
| Station 2  | Musculoskeletal                |
| Station 3  | Neurological                   |
| Station 4  | Respiratory and cardiovascular |
| Station 5  | Gastrointestinal               |
| Station 6  | Urogenital                     |

## Table 2.

A complete list of tissues collected from ECA\_UCD\_AH1 and ECA\_UCD\_AH2. Tissues with nuclei isolated and preserved are denoted with an asterisk (\*). Tissues in bold have been prioritized based on the FAANG guidelines for RNA-seq and ChIP-seq of four histone modifications (H3K4me3, H3K4me1, H3K27ac and H3K27me3).

| Tissues collected           |                       |                                   |  |
|-----------------------------|-----------------------|-----------------------------------|--|
| Integumentary system        | Cardiovascular system | Pituitary                         |  |
| Neck skin                   | Left lung*            | Cerebellum vermis                 |  |
| Dorsum (over back) skin     | Heart left atrium     | Cerebellum Lateral Hemisphere*    |  |
| Loin adipose*               | Heart left ventricle* | Pons                              |  |
| Gluteal adipose             | Heart right atrium    | Thalamus                          |  |
|                             | Heart right ventricle | Hypothalamus                      |  |
| Musculoskeletal system      | Mitral valve          | Dura mater                        |  |
| Gluteal muscle              | Tricuspid valve       | Corpus callosum                   |  |
| Sacrocaudalis muscle        | Aortic valve          | C1 spinal cord                    |  |
| Longissimus muscle*         | Pulmonic valve        | C6 spinal cord*                   |  |
| Rib bone marrow             | Trachea               | T8 spinal cord                    |  |
| Long bone marrow            |                       | L1 spinal cord                    |  |
| Coronary band               | Digestive system      | L6 spinal cord                    |  |
| Hoof wall                   | Tongue                | Dorsal root ganglia               |  |
| Lamina*                     | Epiglottis            |                                   |  |
| Metacarpal bone diaphysis   | Esophagus             | Urogenital System                 |  |
| Sesamoid bone               | Stomach               | Urinary bladder                   |  |
| Cartilage                   | Duodenum              | Uterus                            |  |
| Superficial digital flexor* | Jejunum*              | Ovary*                            |  |
| Suspensory ligament         | Ileum                 | Oviduct                           |  |
| Deep digital flexor         | Cecum                 | Cervix                            |  |
|                             | Right ventral colon   | Vagina                            |  |
| Abdominal/thoracic organs   | Left ventral colon    | Mammary gland                     |  |
| Sciatic nerve               | Left dorsal colon     |                                   |  |
| Liver*                      | Right dorsal colon*   | Cell Culture                      |  |
| Spleen*                     | Small colon           | Keratinocytes                     |  |
| Adrenal cortex              |                       | Fibroblasts                       |  |
| Adrenal medulla             | Nervous system        |                                   |  |
| Kidney cortex               | Cornea                | Other                             |  |
| Kidney medulla*             | Retina                | Peripheral blood mononuclear cell |  |
| Larynx                      | Frontal cortex*       |                                   |  |
| Pancreas                    | Parietal cortex       |                                   |  |
| Thyroid                     | Occipital cortex      |                                   |  |
| Lymph node*                 | Temporal cortex       |                                   |  |

<sup>*t*</sup>Sample only collected from UCDAH1.