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Comprehensive human cell-type methylation atlas
reveals origins of circulating cell-free DNA in health
and disease
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Methylation patterns of circulating cell-free DNA (cfDNA) contain rich information about
recent cell death events in the body. Here, we present an approach for unbiased determi-
nation of the tissue origins of cfDNA, using a reference methylation atlas of 25 human tissues
and cell types. The method is validated using in silico simulations as well as in vitro mixes of
DNA from different tissue sources at known proportions. We show that plasma cfDNA of
healthy donors originates from white blood cells (55%), erythrocyte progenitors (30%),
vascular endothelial cells (10%) and hepatocytes (1%). Deconvolution of cfDNA from
patients reveals tissue contributions that agree with clinical findings in sepsis, islet trans-
plantation, cancer of the colon, lung, breast and prostate, and cancer of unknown primary.
We propose a procedure which can be easily adapted to study the cellular contributors to
cfDNA in many settings, opening a broad window into healthy and pathologic human tissue
dynamics.
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mall fragments of DNA circulate freely in the peripheral

blood of healthy and diseased individuals. These cell-free

DNA (cfDNA) molecules are thought to originate from
dying cells and thus reflect ongoing cell death taking place in the
body!. In recent years, this understanding has led to the emer-
gence of diagnostic tools, which are impacting multiple areas of
medicine. Specifically, next-generation sequencing of fetal DNA
circulating in maternal blood has allowed non-invasive prenatal
testing (NIPT) of fetal chromosomal abnormalities®3; detection
of donor-derived DNA in the circulation of organ transplant
recipients can be used for early identification of graft rejection®>;
and the evaluation of mutated DNA in circulation can be used to
detect, genotype and monitor cancer!®. These technologies are
powerful at identifying genetic anomalies in circulating DNA, yet
are not informative when cfDNA does not carry mutations.

A key limitation is that sequencing does not reveal the tissue
origins of cfDNA, precluding the identification of tissue-specific
cell death. The latter is critical in many settings such as neuro-
degenerative, inflammatory or ischemic diseases, not involving
DNA mutations. Even in oncology, it is often important to
determine the tissue origin of the tumor in addition to deter-
mining its mutational profile, for example in cancers of unknown
primary (CUP) and in the setting of early cancer diagnosis’.
Identification of the tissue origins of ¢fDNA may also provide
insights into collateral tissue damage (e.g., toxicity of drugs in
genetically normal tissues), a key element in drug development
and monitoring of treatment response.

Several approaches have been proposed for tracing the tissue
sources of cfDNA, based on tissue-specific epigenetic signatures.
Snyder et al. have used information on nucleosome positioning in
various tissues to infer the origins of cfDNA, based on the idea
that nucleosome-free DNA is more likely to be degraded upon
cell death and hence will be under-represented in cfDNAS. Ulz
et al. used this concept to infer gene expression in the cells
contributing to cfDNA”. The latter can theoretically indicate not
only the tissue origins of cfDNA, but also cellular states at the
time of cell death, for example whether cells died and released
cfDNA while engaged in the cell division cycle or during
quiescence.

An alternative approach is based on DNA methylation pat-
terns. Methylation of cytosine adjacent to guanine (CpG sites) is
an essential component of cell type-specific gene regulation, and
hence is a fundamental mark of cell identity!?. We and others
have recently shown that ¢fDNA molecules from loci carrying
tissue-specific methylation can be used to identify cell death in a
specific tissue!!-18, Others have taken a genome-wide approach
to the problem, and used the plasma methylome to assess the
origins of cfDNA. Sun et al. inferred the relative contributions of
four different tissues, using deconvolution of cfDNA methylation
profiles from low-depth whole genome bisulfite sequencing
(WGBS)!°. Guo et al. demonstrated the potential of cfDNA
methylation for detecting cancer as well as identifying its tissue of
origin in two cancer types, using a reduced representation
bisulfite sequencing (RRBS) approach?’. Kang et al. and Li et al.
described CancerLocator?! and CancerDetector??, probabilistic
approaches for cancer detection based on cfDNA methylation
sequencing.

While these studies show the potential of DNA methylation in
identifying the cellular contributions to cfDNA, it remains to be
seen whether cfDNA methylation can be analyzed in an unbiased
and comprehensive manner, in settings where it is unclear which
cell types contribute to ¢fDNA and which underlying diseases a
patient may have. To address this challenge, we took advantage of
the Ilumina Infinium methylation array, which allows the
simultaneous analysis of the methylation status of >450,000 CpG
sites throughout the human genome. Illumina methylation arrays

have been previously used in the deconvolution of whole blood
methylation profiles to determine the relative proportions of
white blood cells in a sample, a crucial step in Epigenome-Wide
Association Studies (EWAS)?3-25, However, to date, array
deconvolution has been applied only to whole blood samples,
whegeé all contributing cells are well-studied types of white blood
cells=.

Here we demonstrate that plasma methylation patterns can be
used to accurately identify cell type-specific cfDNA in healthy and
pathological conditions. We have generated an extensive refer-
ence atlas of 25 human tissues and cell types, covering major
organs and cells involved in common diseases. As we show, our
approach allows for a robust and accurate deconvolution of
plasma methylation from as little as 20 ml of blood, and using
only a small number (4039) of selected genomic loci. We quantify
the major cell types contributing to cfDNA in healthy individuals,
and demonstrate the origins of cfDNA in islet transplantation,
sepsis and cancer. We propose principles for effective plasma
methylome deconvolution, including the key importance of a
reference atlas consisting of cell type, rather than whole-tissue
methylomes, and discuss the potential of global cfDNA methy-
lation analysis as a diagnostic modality for early detection and
monitoring of disease.

Results

Development of a DNA methylation atlas. To obtain a com-
prehensive DNA methylation database of human cell types, we
took advantage of datasets which were previously published,
either as part of The Cancer Genome Atlas (TCGA)2° or by
individual groups that deposited data in the Gene Expression
Omnibus (GEO). In selecting datasets to be included in the
database, we used the following criteria: (1) we only used primary
tissue sources, which have not been passaged in culture—rea-
soning that culture may change methylation patterns or alter the
cellular composition of a mixed tissue, e.g., enriched for fibro-
blasts; (2) used the methylomes of healthy human tissues, which
are expected to be universally conserved (that is, be nearly
identical among cells of the same type, among individuals,
throughout life, and be largely retained even in pathologies)?’; (3)
excluded tissue methylomes that contained a high proportion of
blood-derived DNA, as previously described?$; (4) merged the
methylomes of highly similar tissues (e.g., rectum and colon,
stomach and esophagus, cervix and uterus); and (5) preferred the
methylomes of specific cell types, rather than whole tissues. We
reasoned that since whole tissues are a composite of multiple
heterogeneous cell types (e.g., different types of epithelial cells,
blood, vasculature and fibroblasts), methylation signatures of
minority populations might be difficult to identify, and unique
tissue signatures might be masked by the methylome of stroma.
Unfortunately, other than isolated blood cell types, the vast
majority of publically available methylomes comes from bulk
tissues. We therefore generated methylation profiles of key
human cell types, which have not been previously published. We
have isolated primary human adipocytes, cortical neurons,
hepatocytes, lung alveolar cells, pancreatic beta cells, pancreatic
acinar cells, pancreatic duct cells, vascular endothelial cells and
colon epithelial cells. As detailed in the Methods and Supple-
mentary Data 1, surgical samples from each tissue were enzy-
matically dissociated, stained with antibodies against a cell type of
interest, and isolated using either flow cytometry (FACS) or
magnetic beads (MACS). We then prepared DNA from sorted
cells, and obtained the genome-wide methylome using Illumina
450K or EPIC BeadChip array platforms. The result of this effort
was a comprehensive human methylome reference atlas, com-
posed of 25 tissues or cell types (Fig. 1a).
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Fig. 1 Identification of tissue-of-origin of cfDNA using deconvolution of the plasma methylome aided by a comprehensive methylation atlas. a Methylation
atlas composed of 25 tissues and cell types (columns) across ~8000 CpGs (rows). For each cell type, we selected the top 100 uniquely hypermethylated
(top) and 100 most hypomethylated (bottom) CpG sites, giving a total of 5000 tissue-discriminating individual CpGs. We then added neighboring (up to
50 bp) CpGs, as well as 500 CpGs that are differentially methylated across pairs of otherwise similar tissues. Overall, we used 7890 CpGs that are located
in 4039 500 bp genomic blocks. b Deconvolution of plasma DNA. Cell-free DNA (cfDNA) is extracted from plasma and analyzed with a methylation array.
It is then deconvoluted using a reference methylation atlas to quantify the contribution of each cell type to the cfDNA sample

Deconvolution algorithm using cell type-specific CpGs. To
analyze novel DNA methylation samples, composed of admixed
methylomes from various cell types, we devised a computational
deconvolution algorithm. We approximate the plasma cfDNA
methylation profile as a linear combination of the methylation
profiles of cell types in the reference atlas. According to this
model, the relative contributions of different cell types to plasma
cfDNA can be determined using non-negative least squares linear
regression (NNLS)232%30, In addition, the relative contributions
of cfDNA can be multiplied by the total concentration of cfDNA
in plasma to obtain the absolute concentrations of cfDNA ori-
ginating from each cell type (genome equivalents/ml) (Fig. 1b).

For accurate inference, we first selected a subset of CpG sites in
the genome that are differentially methylated among the cell types
and tissues in our atlas. We chose to use only a subset of the
methylome for deconvolution based on several considerations.
First, almost half of the CpG sites represented in the Illumina
arrays show similar methylation patterns across all cells and are
therefore uninformative. Second, we found that using a limited
subset of CpGs, that are uniquely methylated or unmethylated in
a cell type, allows one to detect rare cell types contributing only
small amounts of cfDNA and reduces false detection of
contributors (Supplementary Figures 1, 2). Third, a smaller
subset of genomic regions can be the basis of a simpler, capture-
based method, increasing the feasibility of routine use.

After removing CpG sites with little variance across cell types,
we selected, for each tissue or cell type in the atlas, 100 CpG sites
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uniquely hypermethylated and 100 sites uniquely hypomethylated
when compared to other tissues, as well as CpGs located
adjacently (within 50 bp) to the originally selected set (Methods,
Supplementary Data 1). This process resulted in ~7390 CpGs, to
which we added 500 CpGs, by iteratively identifying the two most
similar cell types in the atlas, and adding the CpG site upon
which these two cell types differ the most (Methods, Supple-
mentary Data 1). In total, our selection includes ~8000 CpGs,
covering ~4000 genomic regions. We found this set of CpGs to
perform favorably on simulated datasets when compared to other
selection criteria, including the full set of CpGs (Supplementary
Figures 1, 2).

In silico mix-in simulations. We initially performed in silico
experiments to assess the performance of the deconvolution
approach in determining the relative contributions of various cell
types to a methylation profile of DNA from a heterogeneous
mixture of cell types. For an exhaustive and realistic assessment,
we used whole-blood samples from 18 individuals measured
using EPIC Tllumina arrays3!. We then computationally mixed-in
methylation profiles of individual samples of cell types and tissues
at varying admixtures, reapplied the feature selection and
deconvolution algorithms using an atlas from which the indivi-
dual mixed-in sample was removed. We then compared the
actual percentage with the predicted one. We simulated such data
for every cell type in the reference methylation atlas, except for
white blood cells, at mixing levels varying from 0 to 10% (in 1%
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Fig. 2 DNA methylation patterns allow for accurate deconvolution of simulated admixed samples. a The methylome of each cell type was mixed in silico
with the methylome of leukocytes such that it contributed between 0 and 10% of DNA, in 1% intervals (x-axis of each plot) and compared to the prediction
of deconvolution using our reference methylation atlas (y-axis). Red horizontal bars represent the median predicted contribution for each mixed-in level,
across 36-180 replicates for each cell type (2-10 replicates of measured cell type methylomes, each mixed within any of 18 leukocyte replicates). The blue
area represents a box plot spanning the 25th to 75th percentiles for each mixing ratio, with black vertical lines marking the 9th to 91st percentiles.

b Primary tissue methylome allows a more accurate deconvolution than whole-tissue or a cell line. Hepatocyte methylome was mixed in silico with blood
methylome as in a. The level of inferred admixture (y-axis) was calculated using a reference tissue methylome atlas that included other hepatocyte
samples (green), whole liver methylomes (blue) or the methylome of the HepG2 cell line (red). Dotted red line marks accurate prediction. ¢ Cell type-
specific methylomes allow a more accurate deconvolution than whole tissue methylomes. The methylome of pancreatic acinar, duct, or beta cells was
diluted in silico into leukocyte methylomes (left, middle, and right, respectively); the level of admixture was calculated using a comprehensive reference
atlas that contained either independent samples of the spiked-in pancreas cell types (green lines), or a whole pancreas methylome (blue lines). Note assay

linearity, but reduced sensitivity, when using a whole pancreas methylome

intervals) across 36-180 replicates (18 independent leukocyte
samples, times 2-10 replicates for each cell type). As shown in
Fig. 2a, the deconvolution algorithm performed well for almost all
cell types. Most cell types were accurately detected when com-
posing >1% of the mixture, with many cell types detected even
below 1% (Supplementary Figure 1).

Importantly, almost no non-leukocyte cells (<0.25%) were
detected at mixing level of 0% (namely, analysis of pure
leukocytes) (Fig. 2a, leftmost side of each plot; Supplementary
Figure 1). In preliminary analysis we noticed that some confusion
might occur between cell types of similar developmental origin
(e.g., cervix/uterus, stomach/esophagus, colon/rectum), and there-
fore have merged these samples in the reference atlas (Methods).
Opverall the confusion between cell types was minimal, as shown
using confusion matrices (Supplementary Figures 3, 4).

Cell-type vs whole-tissue reference methylomes. We then tested
the importance of using cell type-specific versus tissue-specific or

cell-line-derived methylomes. A reference methylation atlas
containing the methylome of purified hepatocytes outperformed
atlases containing either whole liver or HepG2 hepatoma cell line
methylomes, with the former leading to overestimation of hepa-
tocyte in the mixture, and the latter leading to a gross under-
estimation (Fig. 2b). Similarly, an atlas containing the
methylomes of purified pancreatic cells (acinar, duct and beta
cells) was superior in detecting pancreatic DNA within blood,
compared to a reference atlas containing the methylome of the
whole pancreas, with the latter being ineffective in detecting small
contributions (<2%) of pancreatic DNA (Fig. 2¢). These findings
support the feasibility of highly sensitive deconvolution of the
plasma methylome, and highlight the importance of using a
comprehensive, cell type-specific DNA methylation atlas for
sensitive detection of rare contributors to mixed methylomes.

In vitro DNA mixing. We then mixed DNA samples from four
specific tissues (Liver, Lung, Neurons and Colon, each from a
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Fig. 3 In vitro mixing experiments. Genomic DNA derived from liver (a), lung (b), neurons (c), and colon (d) (each from a single donor) was mixed in nine
different combinations (detailed in Supplementary Data 1) with genomic DNA extracted from the blood of a single healthy donor, in the proportions
indicated in the X axis. A total of 250 ng DNA from each mixture was subjected to an Illumina EPIC array, and the resulting methylome was deconvoluted
to predict the contribution of each mixed-in tissue (Y axis). Each dilution point represents one mixing experiments

single donor), into leukocyte DNA from a healthy donor, at
different proportions varying from 0 to 10%, and reapplied the
computational deconvolution analysis (Fig. 3, Supplementary
Data 1). For all samples, our algorithm identified the correct cell
type in a specific and sensitive manner (Pearson’s r 0.88-0.99, p-
value < 1e-3 for all mixes). These findings lend further support to
the feasibility of deconvolution, but they do not fully address real-
life issues such as inter-individual variation in methylation.

Tissue origins of healthy c¢fDNA. To determine the main con-
tributors to cfDNA in healthy individuals, we collected plasma
from multiple healthy donors (n = 105). The samples were clas-
sified by sex and age (young: 19-30 or old: 67-97; see Supple-
mental File 1), and c¢fDNA was pooled accordingly to obtain
250 ng cfDNA in each pool.

We then obtained methylation profiles of each sample (n = 8)
using Illumina arrays and performed a deconvolution analysis to
estimate the relative contribution of each tissue/cell-type to the
cfDNA. The predicted distribution of contributing tissues/cell
types was similar among all pools (Fig. 4a, b). Additionally,
cfDNA from four additional healthy individuals was analyzed and
found to be consistent with the findings in the pooled samples
(Supplementary Data 1). As previously reported®?, we found that
the main contributors to c¢fDNA were of hematopoietic origin.
On average, 32.0% (£1.1% mean SD) of ¢fDNA came from
granulocytes, 29.7% (+0.8%) from erythrocyte progenitors, 10.5%
(+1.1%) from monocytes, and 12.1% (£0.7%) from lymphocytes.
The main solid tissue sources of cfDNA were vascular endothelial
cells (8.6 +0.9%) and hepatocytes (1.2 +0.4%). The signal from
erythrocyte progenitors, endothelial cells and hepatocytes is
expected to be present in ¢fDNA but not in DNA isolated from
leukocytes. Indeed, deconvolution of blood cell (leukocyte)
methylomes predicted signals from these tissues at much
lower levels than in plasma, supporting validity of the algorithm
(p < 1e—10, Fig. 4¢).

Furthermore, the predicted proportions of monocytes, neu-
trophils and lymphocytes in whole blood methylomes were in
excellent agreement with the actual proportions of these cell types
in each individual blood sample, as obtained from a complete
blood count (CBC) (Fig. 4d).

Unexpectedly, deconvolution of the healthy plasma methylome
revealed also a signal from neurons, accounting for as much as
2% of cfDNA (Fig. 4a, b). The significance of this finding remains
to be determined, as it is not consistent with findings using PCR-
sequencing of specific brain markers!!; we favor the idea that the
neuronal signal is an artifact of the assay, perhaps reflecting

contribution from a tissue not included in our atlas (see
Discussion).

While the young and old samples showed similar relative
contributions of the different cell types, the plasma of older
people showed a significantly higher levels of total cfDNA, as
measured in genome equivalents per ml of plasma (Supplemen-
tary Figure 5). The similar proportions of cfDNA origins may
suggest a slower clearance rate of circulating DNA in older
individuals (Fig. 4b), rather than an increased rate of cell death in
all tissues. Further work is required to define the determinants of
cfDNA clearance in difference physiologic and pathologic
conditions. In summary, these findings provide the first detailed
description of the composition of cfDNA in healthy people.

Deconvolution of cfDNA in islet transplant recipients. We
analyzed the plasma methylome of patients with long standing
type 1 diabetes, 1h after receiving a cadaveric pancreatic islet
transplant (pool of n =5 recipients). The total concentration of
cfDNA in these samples was ~20-fold higher than healthy control
levels, suggesting a massive process of cell death shortly after islet
transplantation. The deconvolution algorithm identified a large
proportion (~20%) of cfDNA as derived from pancreatic origin
(from beta, acinar and duct cells, Fig. 5a, b), in stark contrast to
cfDNA from healthy plasma. These findings strongly support the
validity of our deconvolution procedure. Strikingly, we observed
that most of the increase in cfDNA levels in islet transplant
recipients was of an immune cell origin (granulocytes, monocytes
and lymphocytes). This finding suggests an acute immune
response to the infusion of islets into recipient blood, or alter-
natively a response to the procedure itself and/or pre-transplant
immune suppression treatment, resulting in massive immune cell
death (Fig. 5b). Follow-up studies will attempt to distinguish
between these possibilities.

To examine the dynamics of cfDNA of pancreatic origin, we
determined the plasma methylome of three individual recipients
before (<1 day), 1h after, and 2h after transplantation. As
expected, the algorithm identified no pancreas cfDNA before islet
transplantation, a large increase immediately after transplanta-
tion, and a subsequent decrease in levels of pancreatic cfDNA
(Fig. 5¢). Interestingly, cfDNA originating from immune cells as
inferred by deconvolution showed a different dynamics, likely
reflecting the response of the innate immune system to the
transplantation (Supplementary Figure 6). In addition, we used a
previously described targeted bisulfite-sequencing approach to
quantify the amount of unmethylated CpGs at a haplotype block
located over the insulin promoter'!. We observed a high
correlation (r=0.995, p <2.6e—8) between the amount of beta
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cell cfDNA estimated by deconvolution and by targeted PCR-
based method, further supporting validity of the deconvolution
algorithm (Fig. 5d). Finally, we tested the deconvolution
algorithm using a reference matrix containing either whole-
tissue or cell type-specific methylomes. Consistently with results
from deconvolution of in silico mixes (Fig. 2b, ¢), a reference
matrix containing cell type-specific methylomes showed higher
sensitivity compared with an atlas containing a whole-tissue
methylome, which failed to identify pancreatic cfDNA in one of
the three recipients (Fig. 5e).

The origin of cfDNA in sepsis. An increase in total cfDNA levels
in septic patients has been previously documented, and even
shown to have a prognostic value’33%. However, it is unclear
which cell types are contributing to the elevated cfDNA. We
analyzed the cfDNA methylation profile of 14 samples from
patients with sepsis. In most patients (13/14) the main con-
tributors to the increase in cfDNA were leukocytes (mainly
granulocytes), elevated >20-fold relative to healthy levels (Fig. 6a,
b). In some cases, varying amounts of hepatocyte cfDNA were
detected (patients SEP-026, SEP-017, SEP-016). Importantly, the
levels of hepatocyte cfDNA were strongly correlated (Pearson’s

r=0.931, p<5e—7) with levels of alanine aminotransferase
(ALT) in circulation, a marker of hepatocyte damage (Fig. 6¢).

Identifying tumor origin by cfDNA methylation. We decon-
voluted the cfDNA methylation profiles of patients with meta-
static colon cancer (n = 4), lung cancer (n =4), and breast cancer
(n=3) (Supplementary Data 1). All had elevated concentration
of cfDNA compared to healthy individuals (>20-fold increase).
The tissue of origin was the strongest signal (most genome
equivalents/ml) in the majority of cases (8/11 total, 3/4 colon, 2/4
lung, 3/3 breast, Fig. 7a—c). These findings indicate the ability of
the deconvolution algorithm to correctly detect cfDNA from
advanced cancer, despite potential changes to the epigenome of
cancer cells.

To assess the accuracy of cancer detection using deconvolution,
we performed a mixing experiment, where plasma from a patient
with colon cancer was mixed with plasma of healthy donors at
different proportions (Supplementary Data 1), and the methy-
lome of the resulting mixture was deconvoluted. The algorithm
correctly identified the presence of colon DNA in the mixes, in
the correct proportion, down to 3% (33-fold dilution of the
original cancer plasma sample, r = 0.92, p < 1.2e—3) (Fig. 7d).
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To further assess the performance of the deconvolution
algorithm, we applied it to recently published dataset where
plasma samples of prostate cancer patients were assessed using
Mumina 450K arrays, before and after treatment with Abirater-
one Acetate, including patients that were responsive or not
responsive to therapy>>. As shown in Fig. 7e, the algorithm
detected prostate DNA in most patients (as compared to a lack of
signal in all healthy controls). Strikingly, the deconvolution
algorithm also detected a sharp decline in the levels of prostate
cfDNA in treatment-sensitive patients (p <0.019, paired t-test)
but not in treatment-resistant patients (p <0.909, paired t-test),
further supporting validity of the method.

Finally, we tested whether an wunbiased deconvolution
approach could be useful in identifying a cancer tissue of origin,
even in the absence of an identifiable primary tumor. To this end,
we analyzed the plasma cfDNA of four patients with Cancer of
Unknown Primary (CUP). All patients had metastatic disease
with no clear pathological identification of the primary source of
cancer (detailed in Supplementary Data 1). In each case the

suspected origin of the tumor, based on clinical history and
pathology reports, showed a strong signal in the deconvolution
analysis (Fig. 7f). Patient 3, for example, presented with
metastases in bones and lungs without identifiable histopathol-
ogy. Six years earlier, the patient had a local bladder carcinoma
that was treated and removed. Deconvolution analysis of plasma
cfDNA identified a significant contribution by bladder cells
(>5000 genome equiv./ml), suggesting that the current disease
originated from previously disseminated bladder cancer cells
(Fig. 7f).

These findings indicate that cfDNA methylation deconvolution
can be the basis of a non-invasive approach to identify the origin
of cancer, similar to what has been described using biopsy
material3®.

Discussion
In many diseases, DNA from dying cells is released into the
bloodstream. Tools that can identify the source tissue of this
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DNA could be instrumental in identifying and locating disease.
DNA methylation reflects cell identity, and is therefore an ideal
marker of the origin of DNA in circulation. In this study, we
present a method to decipher the cellular origins of cfDNA by
deconvoluting genome-wide methylation profiles, and use it to
determine which cells release DNA into blood in several clinically
relevant situations.

When assessing the tissues that contribute to human cfDNA,
we first made an effort to define the healthy baseline. Previous
studies used plasma from female patients who had received bone
marrow transplants from male donors, and concluded that most
cfDNA is derived from cells of hematopoietic origin3% however,
the contribution of individual blood cell types was not assessed,
nor was the contribution of non-blood cells. More recently, Guo
et al. analyzed the plasma methylome of healthy and cancer
patients using WGBS, and reported the contribution of white
blood cells (without subtypes) as well as nine solid tissues and two
tumor types?). Our deconvolution assay revealed the specific
contributors to healthy plasma, namely granulocytes, monocytes,
lymphocytes, and erythrocyte progenitors. The latter is consistent
with a recent report that used specific erythroid lineage methy-
lation markers to identify erythroid lineage-derived cfDNAL.
Note that unlike the other sources of cfDNA, in this case the
process reflected by cfDNA might be cell birth (the generation of
enucleated red blood cells) rather than cell death. Refinement
of the methylome atlas will likely result in further refinement of
cfDNA interpretation, even retrospectively on the samples
reported here. For example, it should be possible to determine the
relative contribution of neutrophils and other cell types to the
granulocyte cfDNA pool, and of circulating monocytes and tissue
resident macrophages to the monocyte ¢fDNA pool.

Beyond blood cells, we found that ~10% of cfDNA in healthy
individuals is derived from vascular endothelial cells (a finding
made possible by the generation of a vascular endothelial cell
methylome reference), and that ~1% of cfDNA is derived from
hepatocytes, which is consistent with our recent observation of
hepatocyte ¢fDNA in healthy plasma using three targeted hepa-
tocyte markers!8. The cfDNA signal from the vasculature and the
liver reflects the sum of multiple parameters: total cell number in

these organs, the degree of baseline turnover, and the fact that
cfDNA from these tissues is apparently cleared via blood. The
absence of a cfDNA signal from other tissues in the body, known
to have a high turnover rate, likely reflects alternative clearance
routes: for example, dying intestinal epithelial cells under healthy
conditions likely shed ¢fDNA into the lumen of the intestine,
rather than to blood. Similar considerations apply to the lung,
kidney and skin. The algorithm also detected a neuronal-derived
signal comprising as much as ~2% of the healthy plasma
methylome. While this finding may reflect a baseline turnover of
central or peripheral neurons®’, we cannot rule out the possibility
that it is an artifact of the deconvolution algorithm, due to a
partial and imperfect reference atlas. One argument in favor of
the latter interpretation is that our directed PCR-sequencing
assays using brain-specific methylation markers show only a
negligible neuronal signal in healthy individuals (~0.1%), while
positive controls with brain damage do show a clear signal
(manuscript in preparation and ref. !'). More experiments are
needed to determine the actual contribution of neuronal DNA to
the healthy cfDNA.

We also performed a preliminary analysis of cfDNA compo-
sition as a function of age, using pools of samples from healthy
individuals aged 75 and above and between the ages of 19 and 30.
Two striking findings emerge from the analysis of these samples:
first, the total concentration of cfDNA in aged individuals is
about twice that of people in their 3rd decade of life; second,
deconvolution revealed a distribution of sources that is highly
similar between aged and young individuals. We propose that this
similarity reflects a decrease in the rate of cfDNA clearance in old
age, rather than a concordant increase in cell death within all
tissues. Additional studies are required to definitively interpret
the biology of the circulating methylome in old age.

The application of c¢fDNA deconvolution to selected patholo-
gies provided further support as to the validity of the approach.
This included the identification of pancreas cfDNA in islet
transplant recipients (but not in healthy controls) and the iden-
tification of elevated hepatocyte cfDNA in patients with sepsis,
which correlated with an independent circulating liver marker. In
both transplantation and sepsis we found that elevated cfDNA

8 | (2018)9:5068 | DOI: 10.1038/541467-018-07466-6 | www.nature.com/naturecommunications


www.nature.com/naturecommunications

NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-07466-6

ARTICLE

a b 40K ¢ 150
= I Breast cfDNA z Colon cfDNA - M Lung cfDNA
3 3 3
qg)_ 50K ::'J_ ag)_ 100
g g 20K g
) 25K S e 50
[ ko jo
S (O] (0
0K - K 0
1234 1234 123 1234 1234 1234 123 1234 1234 1234 1283 1234
Colon Lung Breast Healthy Colon Lung Breast Healthy Colon Lung Breast Healthy
cancer cancer cancer cancer cancer cancer cancer cancer cancer
d CRC plasma mix-in e Prostate cancer f Cancer of unknown primary cfDNA
40 < :28 CUP 1 Metastases Presumed
= origin
. , 5 R _
o o 50 o Brain, lungs, Lungs
o 2 | Iy
12% 5 30 —o 400 =
o s = Jy CUP 2
2 10% < E 200
B s o ones rostate
8 8% g2 -— " 6
o 8K
R 6% 2 = : cuP3
4% g 10 U\EJ 4K Bones, lungs Bladder
o (0
2% B 300 ; -
o | 0 = CUP 4 Liver. b
o0 2% a% 6% 8% 10% 12% Pre Post Pre Post 5 150 ones ’
% CRC plasma mixed Treatrlnlent Trealtment 9] _*. L m Family history of GI tumors
sensitive resistant DN DD D DD ESE DO T x
828282985808 888s¢
5953888823 0a5828
3533 ©CCO0ET 2859 >3 9
S2S8 WSFgBLIFTONCEYOEL 0Q
2z% wes=Es0 T oaF o}
© Q ©goao S = 4
< [0) PR | (@] » 2
T 2.8c 82
G2 )
[o = ]
a ©O

Fig. 7 Cellular contributors to cfDNA in cancer. a-c Predicted contributions of breast, colon, and lung DNA to the plasma methylome of four patients with
colon cancer (CC), four patients with lung cancer (LC), three patients with breast cancer (BRC), and four healthy donors (H). All patients were at advanced
stages of disease. d A mix-in experiment. The plasma of a patient with advanced colon cancer was mixed with three healthy plasma samples in varying
proportions (detailed in Supplementary Data 1), and the fraction of colon-derived cfDNA was assessed using deconvolution of the methylome.

e |dentification of prostate-derived cfDNA in published plasma methylomes of patients with prostate cancer3® before and after treatment. Patients
classified as abiraterone acetate (AA) treatment responsive (blue) show a dramatic drop in prostate-derived cfDNA, compared with the AA-resistant
patients (red). f Deconvolution of cfDNA methylation predicts cfDNA origin for CUP cancer patients. Shown are the predicted cellular contributors for
cfDNA samples from four patients diagnosed with a Cancer of Unknown Primary (CUP). Blood cell types and cells contributing <1% are not shown. For
each patient, the location of metastases and the presumed tissue source of cancer according to clinical history are listed. Deconvolution results agreeing
with clinical predictions are shown as orange bars. Error bars: SD, as estimated using Bootstrapping

was mostly derived from immune cells. Both scenarios likely
involve strong immune reactions and the increase in leukocyte-
derived cfDNA may be derived from cells that died during cell
division or as part of an immune response. We also demonstrated
that deconvolution can identify cfDNA from a cancer’s tissue of
origin, even in advanced tumors presumably presenting with
epigenomic instability. While more studies with plasma samples
from cancer patients are needed, in particular from early stage
diseases, our findings from multiple type of cancer (colon, lung,
breast, and prostate) are highly encouraging in this respect.
Lastly, using plasma samples from patients with cancer of
unknown primary, we showed that the tissue source of metastases
can be identified by analysis of cfDNA methylation, even in cases
where the primary tissue of the cancer is missing and unclear.
Whilst most current approaches aim to monitor cancer via
identification of mutations in cfDNA, we propose that combining
such an analysis with ¢fDNA methylation deconvolution may
eventually allow for early and unbiased diagnosis of cancer and its
location”’.

Our work provides a proof of concept for the utility of plasma
methylome deconvolution in studying human tissue dynamics in
health and disease, adding insights beyond those of recent reports
in this emerging field!°-22, Furthermore, our approach can easily
be adapted to determine the cellular contributors to cfDNA in
virtually any setting in which there is a question regarding the

composition of cfDNA. We selected to work with Illumina arrays
as a platform for both the tissue reference atlas and the plasma
methylome assay. This platform has multiple advantages, perhaps
most importantly the vast amount of public data available that
can be used to construct a tissue methylome atlas. Additionally, it
is the most affordable method available for obtaining high-
resolution genome-wide methylation profiles and is simple to
perform and analyze as well as scalable. However, arrays have also
important limitations: they cover only a small fraction of the
genome-wide methylome; they report on the methylation status
of individual CpG sites, missing the information embedded in the
status of methylation haplotype blocks'1:?0; they suffer from
batch effects; they require a relatively large amount of DNA
(100 ng cfDNA, shown here to be sufficient for deconvolution,
requires about 40 ml of blood); and their sensitivity (ability to
detect a small fraction of molecules with a different methylation
status in a mixture) is limited compared with sequencing of
individual molecules. We believe that in the long run, for appli-
cations requiring maximal sensitivity and affordability (such as
for early detection of cancer in asymptomatic individuals), a
cfDNA methylation deconvolution approach based on deep
sequencing of a collection of informative CpG blocks,
possibly following capture of key loci from plasma, using a
sequencing-based comprehensive atlas, will likely be the preferred
approach.
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Nonetheless, our study does provide some important insights
into design principles of effective plasma methylome technology,
which are general and would hold for other platforms including
massively parallel bisulfite sequencing or nanopore sequencing.
These include: (1) the key importance of generating a compre-
hensive methylation atlas composed of individual cell types
(purified from fresh tissue), rather than whole tissues. The
inclusion of cell-type specific methylomes allows the identifica-
tion of important tissue contributions to cfDNA, including cell
types that comprise a small minority of their host tissue (e.g. beta
cells in the pancreas), and cell types that are present within
multiple organs and hence might be masked (e.g. vascular
endothelial cells). (2) Not all CpG sites contribute to accurate
deconvolution; in fact, deconvolution based on a defined
subset of informative sites performs better than an approach
taking into account all sites, including those that are not
differentially methylated between tissues and hence contribute
mostly noise; (3) a specific subset of ~4000 CpG sites that is
informative enough for accurate estimation of cfDNA con-
tributors. We propose that a capture-based approach, applying
deep bisulfite sequencing to probe multiple neighboring CpGs
from the same molecule around selected loci, would offer
deconvolution at a much greater resolution, and potentially using
lower amount of DNA.

In summary, we report a method for interpreting the circu-
lating methylome using a reference methylome atlas, allowing
inference of tissue origins of cfDNA in a specific and sensitive
manner. We propose that deconvolution of the plasma methy-
lome is a powerful tool for studying healthy human tissue
dynamics and for identifying and monitoring a wide range of
pathologies.

Methods

Reference matrix. All DNA methylation profiles were determined either on the
Ilumina Infinium Human Methylation 450K or EPIC BeadChip arrays. DNA
methylation data for white blood cells (neutrophils, monocytes, B-cells, CD4+
T-cells, CD8+ T-cells, NK-cells, n =6 each) were downloaded from GSE110555
(EPIC)*. Data for erythrocyte progenitors (n = 5) were downloaded from
GSE63409 (450K)3°, and data for left atrium (n = 4) were downloaded from
GSE62727 (450K)40. Data for bladder (n = 19), breast (n = 98), cervix (n = 3),
colon (n = 38), esophagus (n = 16), oral cavity (n = 34), kidney (n = 160), prostate
(n=50), rectum (n=7), stomach (n =2), thyroid (n = 56), and uterus (n = 34)
were downloaded from TCGA?C. DNA methylation data for adipocytes (n =3,
450K), hepatocytes (n = 3, 450K and EPIC), alveolar lung cells (n = 3, EPIC),
neurons (n = 3, 450K and EPIC), vascular endothelial cells (n =2, EPIC) pan-
creatic acinar cells (n = 3, 450K and EPIC), duct cells (n = 3, 450K and EPIC), beta
cells (n = 4, 450K and EPIC), colon epithelial cells (n = 3, EPIC) were generated in
house and are available from the corresponding authors upon reasonable request.
Detailed sample information is available in Supplementary Data 1.

Cell isolation. Cancer-free primary human tissue was obtained from consenting
donors, dissociated to single cells, sorted using cell type-specific antibodies and
lysed to obtain genomic DNA, from which 250 ng were applied to an Illumina
methylation array. Adipocytes (n = 3) were isolated from fat tissue according to the
collagenase procedure of Rodbell#!. In brief, tissue was cut into =20 mg pieces and
incubated (10 g tissue/25 ml buffer) in Krebs-Ringer phosphate (KRP buffer, pH
7.4) containing 4% bovine serum albumin (BSA) and 0.5 mg/ml of collagenase type
1 for 45 min at 37 °C in a shaking water bath. The isolated adipocytes were col-
lected through a 250 um nylon mesh filter and were washed 3-4 times with 1%
KRP-BSA washing buffer. The stromal vascular fraction (SVF) in the washing
buffer was collected by 500 x g centrifuge at 4 °C for 10 min. Cells were then
homogenized in lysis buffer (0.32 M sucrose, 25 mM KCI, 5 mM MgCl2, 0.1 mM
EDTA, 10 mM Tris-HCI pH 7.5, 0.005% NP-40, 1 mM DTT) transferred to
ultracentrifuge tubes, layered onto a sucrose cushion solution (1.8 M sucrose,
25mM KCl, 5mM MgCl,, 0.1 mM EDTA, 10 mM Tris-HCI pH 7.5, 1 mM DTT)
and centrifuged at 106,750 x g for 1 h at 4 °C to isolate nuclei. Cortical neurons (n
= 1) were isolated from human occipital cortex by sucrose-gradient centrifugation
and labeled with Alexa Fluor 647 conjugate of neuron-specific monoclonal anti-
NeuN antibody (A-60) (Millipore, 1:1000). NeuN-positive and negative nuclei were
sorted by FACS and DNA was extracted*>*3. Hepatocytes (n = 2) were isolated as
previously described*4. Pancreatic acinar cells and duct cells (n = 3) were obtained
from cadaveric donors as described®®. Pancreatic beta cells (n = 4) were isolated
from cadaveric islets as previously described*®. Vascular endothelial cells were

isolated from the saphenous vein, surgically excised due to chronic insufficiency.
Dissociated endothelial cells were captured using mouse anti-human CD105
magnetic beads (cat #130-051-201, Miltenyi, 1:5) (n =3 donors, pooled to 2 sam-
ples, one containing material from two donors and one containing material from
one sample). Distal lung tissue (n =3 donors, 3 samples) was dissociated using an
adaptation of previous protocols*’->0. Briefly, alveolar epithelial cells were enriched
using mouse anti-human CD105 magnetic beads for depletion of endothelial cells
(cat #130-051-201, Miltenyi, 1:5) and subsequently mouse anti-human Epcam
(CD326) magnetic beads to capture epithelial cells (cat #130-061-101, Miltenyi,
1:4) or by FACS sorting using the following antibodies: CD45 eFluor 450 (cat #48-
9459-41), CD31 eFluor 450 (cat #48-0319-42) and CD235a eFluor 450 (cat #48-
9987-42) (all from eBioscience, 1:20) and CD326-APC (cat #130-113-260, Miltenyi,
1:50). Colon epithelial cells were dissociated using an adaptation of a published
protocol®! and were sorted by FACS using CD45 eFluor 450 (cat #48-9459-41),
CD31 eFluor 450 (cat #48-0319-42) and CD235a eFluor 450 (cat #48-9987-42,
eBioscience, 1:20) (for blood and endothelial cell lineage depletion), and CD326-
APC (Miltenyi, 1:50, cat #130-113-260) antibodies. FACS gating strategies are
shown in Supplementary Figure 8.

Blood samples. Donors were consented and whole blood (usually 20 ml) was
drawn, collected into an EDTA tube, and spun quickly to separate plasma, which
was stored at —20 °C until isolation of cfDNA.

Human research participants. Tissue and plasma samples were obtained in
accordance with the principles endorsed by the Declaration of Helsinki and written
informed consent was obtained from all subjects. Protocols were approved by the
Institutional review boards of Hadassah-Hebrew University Medical Center, The
University of Alberta, Karolinska Institute and Oregon Health & Science
University.

Sample pooling. Pooled DNA samples were obtained by mixing DNA from several
individuals. DNA was extracted from 8ml of plasma and samples were added until
250 ng reached (7-19 samples per pool). No individual contributed more than two
times as much DNA to a pool than another individual.

DNA extraction. 250 ng was collected from each sample, except where otherwise
specified. DNA concentration was measured with Qubit. cfDNA extraction from
plasma was performed with the QIAsymphony liquid handling robot. cfDNA was
treated with the Illumina Infinium FFPE restoration kit and hybridized to the
Illumina 450K or EPIC arrays.

For adipocytes, we used a modified protocol from Miller et al.>2. Five hundred
microliters DNA lysis buffer (200 mM NaCl, 5mM EDTA, 100 mM Tris-HCI pH
8, 1 % SDS) and 6 pl Proteinase K (20 mg/ml) were added to the collected nuclei
and incubated at 55 °C overnight. RNase cocktail (Ambion) was then added and
incubated at 55 °C for 1 h. Half of the existing volume of 5M NaCl solution was
added and the mixture agitated for 15 s. The solution was spun down at 16,000 x g
for 3 min. The supernatant containing DNA was transferred to a new Eppendorf
tube. Three times of the existing volume of 95% ethanol was added and the tube
was inverted several times to precipitate adipocytes or SVF DNA. The DNA
precipitate was washed three times in 75% ethanol and air-dried at 55 °C for 2 h.
500 ul DNase/RNase-free water was used to suspended the dried DNA. All DNA
samples were quantified and purity-checked by UV spectroscopy (Nanodrop).

Neuronal DNA was extracted by adding 500 pl DNA lysis buffer (100 mM Tris-
HCI [pH 8.0], 200 mM NaCl, 1% SDS, and 5mM EDTA) and 6 pl Proteinase K
(20 mg/ml, Invitrogen) to the sorted nuclei and incubated overnight at 65 °C.
Following overnight incubation, an RNase cocktail was added (3 ul, Ambion) and
incubated at 65 °C for 45 min. Half of the existing volume of 5 M NaCl solution
was added and the mixture agitated for 15 s and centrifuged at 16,000 x g for 3 min.
The supernatant containing the DNA was transferred to a 12 ml glass vial. Three
times the volume of 95% ethanol was added to the glass vial and inverted several
times to precipitate the DNA. The DNA precipitate was washed in DNA-washing
solution (70% [v/v] ethanol and 0.5 M NaCl) for 15 min for three times and
transferred to 200 ul DNase-/ RNase-free water (Gibco/Life Technologies) and air-
dried at 65 °C overnight. Finally, the DNA was dissolved in 500 ul TE buffer (pH
8.0) (10 mM Tris-HCI [pH 8.0] and 1 mM EDTA). The DNA was quantified and
its purity was verified using a NanoDrop 2000 spectrophotometer
(ThermoScientific).

Data processing. Methylation array data were processed with the minfi package in
R. For each sample analyzed on the Illumina Methylation array, CpG sites were
filtered out if they were represented by less than 3 beads on the array, if the
detection p-value (representing total fluorescence of the relevant probes) was >0.01,
or if they mapped to a sex chromosome. Background correction and normalization
were performed with the preprocessIllumina function, which removes background
calculated based on internal control probes and normalizes all samples to a pre-
determined control sample.
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Comparison of EPIC and 450K platforms. As the reference database included
samples analyzed with two highly similar yet not identical platforms, the Illumina
450K array and the Illumina EPIC array, we looked to identify and remove sites
with low reproducibility between the platforms. To this end, we collected data from
samples analyzed on both platforms: 15 samples from GSE86833%3, 12 samples
from GSE92580°%, and one sample from our generated dataset (hepatocytes). For
each overlapping CpG, we then calculated the median absolute error (MAE)
between the 450K samples and the corresponding EPIC samples, and removed
37,747 CpGs with an MAE > 0.05.

CpG feature selection. First, CpGs whose variance across the entire methylation
atlas was below 0.1%, or CpGs with missing values were excluded. We then selected
the K= 100 most specific hypermethylated CpGs for each cell type. Let us denote
the methylation matrix X, composed of N rows (CpGs) by d columns (cell types).
We then divided each row (the methylation pattern of one CpG over all cell types)

by its sum X;" = S

. For each cell type j, we identified the top K hyper-

i Xij
methylated CpGs with the highest X’;; values. To identify uniquely hypomethylated
CpGs, we performed a similar process for the reversed methylation matrix (1—X).
Finally, for each cell type we included both the top K hypermethylated and the top
K unmethylated CpGs in the reference matrix (Supplementary Data 1). To this set
of CpGs, we added neighboring CpGs, up to 50 bp.

Pairwise-specific CpGs were iteratively selected as follows: given the current set
S of CpGs, we projected the reference atlas on those coordinates, and calculated the
Euclidean distances between pairs of cell types. Once the closest pair of cell types
was identified, we selected the CpG site where they differ the most, and added it
into the set S. This process was iteratively repeated, focusing on the most confusing
pair of cell types in each iteration.

Deconvolution. To calculate the relative contribution of each cell type to a given
sample, we performed non-negative least squares, as implemented in the nnls
package in MATLAB (an efficient alternative to Isqnonneg). Given a matrix X of
reference methylation values with N CpGs and d cell types, and a vector Y of
methylation values of length N, we identified non-negative coefficients f3, by solving
argming||XB — Y||,, subject to 8> 0. We then adjusted the resulting 3 to have a

To obtain absolute levels of

sum of 1, where for each f; we defined B’ = Z'Bﬁ,ﬂ.

ij "l
cfDNA (genome equivalent/ml) per cell type, we multiplied the resulting ;' by the
total concentration of cfDNA present in the sample, as measured by Qubit. It was
assumed that the mass of a haploid genome is 3.3 pg and as such, the concentration
of cfDNA could be converted from units of ng/ml to haploid genome equivalents/
ml by multiplying by a factor of 303. To estimate deconvolution error rates, we
used a bootstrap approach, where we also analyzed the observation vector (Y) using
n =100 different instances of the methylation atlas. Following Houseman et al.3",
and due to the limited number of replicate per cell type, we used a parametric
approach, where the original replicates for each tissue were used to estimate the
mean CpG methylation and its standard deviation. We then generated n = 100 new
methylation atlases (X’) by sampling from Normal distributions centered at these
values for each CpG/tissue. Finally, we deconvoluted the observation vector (Y)
using each atlas, and estimated the empirical standard deviation of the admixture
parameters across atlases (X*). The same approach was used to estimate the var-
iation for contribution of specific cell types, including DNA mixes (Fig. 3a-d),
pancreas (Fig. 5c—e), hepatocytes (Fig. 6¢), and plasma mixes (Fig. 7d).

Simulations. We analyzed 18 leukocyte samples (whole-blood) with Illumina
methylation EPIC arrays. For each cell type, we mixed in every available replicate
with each leukocyte sample in ratios of 0 to 100, 0.1 to 99.9, 1 to 99, 2 to 98, etc. up
to 10 to 90. For every combination of leukocytes and cell type replicate, we updated
the reference atlas by excluding the mixed-in sample and then re-computing the
average methylome for that cell type using all other replicates. We then re-applied
the feature selection process (using the new atlas), applied the deconvolution
algorithm, and estimated the admixture coefficients for all cell types. This proce-
dure ensures that the training set is completely separated from the test set. Finally,
we calculated for each cell type, at each admixture ratio, the average predicted
proportion over all replicates, its median, and the range between the 1st and 3rd
quartiles.

Reproducibility. We assayed three cfDNA samples in duplicate (Supplementary
Figure 7a-c). The predicted proportions of cell types contributing to the samples
were highly correlated (r > 0.99). Furthermore, as the amount of cfDNA available is
often limited, we also evaluated the possibility of using less than the 250 ng cfDNA
(as recommended by Illumina for analysis with methylation array). The results
were reproducible with as little as 50 ng of cfDNA (r>0.9) (Supplementary Fig-
ure 7a-d).

Code availability. A standalone program for deconvolution of array methylome is
available at https://github.com/nloyfer/meth_atlas or from the corresponding
authors.

Data availability

The datasets generated and analyzed during this study are summarized in Sup-
plementary Data 1 and available at NCBI Gene Expression Omnibus (GEO)
database repository with the dataset identifier GSE122126. A Reporting Summary
for this Article is available as a Supplementary Information file.
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