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Abstract

The pleiotropic functions of circulating high density lipoprotein (HDL) on peripheral vascular health are well
established. HDL plays a pivotal role in reverse cholesterol transport and is also known to suppress inflammation,
endothelial activation and apoptosis in peripheral vessels. Although not expressed in the central nervous system, HDL
has nevertheless emerged as a potential resilience factor for dementia in multiple epidemiological studies. Animal
model data specifically support a role for HDL in attenuating the accumulation of β-amyloid within cerebral vessels
concomitant with reduced neuroinflammation and improved cognitive performance. As the vascular contributions to
dementia are increasingly appreciated, this review seeks to summarize recent literature focused on the vasoprotective
properties of HDL that may extend to cerebral vessels, discuss potential roles of HDL in dementia relative to brain-
derived lipoproteins, identify gaps in current knowledge, and highlight new opportunities for research and discovery.
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The pleiotropic functions of high density
lipoprotein (HDL)

Like other mature lipoproteins, HDL consists of a
core of hydrophobic lipids surrounded by a phospho-
lipid and free cholesterol monolayer studded by proteins
(Fig. 1)[1]. A key protein found in most HDL particles is
apolipoprotein A-I (apoA-I), which makes up 70% of its
protein content[2]. The major lipid classes found on
HDL include cholesterol and other steroids, phospho-
lipids, cholesteryl esters, sphingolipids, and triglycer-
ides[3]. Overall, HDL particles consist of approximately

85-95 distinct proteins[4] and hundreds of lipid
subtypes[5] that together mediate diverse functions
including lipid transport and metabolism, anti-oxida-
tion, immune response, hemostasis, metal binding, and
vitamin transport[5–7].
HDL is the smallest and densest of the plasma

lipoproteins and contains an estimated 85-95 distinct
proteins, 200 lipid species and several other nonpolar
cargo molecules. HDL components and subclass
distribution can vary between individuals and is altered
by diseased states. The compositional profile of HDL
confers pleiotropic functions to the population of
circulating particles.
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HDL-C and cardiovascular disease

The association between low HDL cholesterol (HDL-
C) levels and elevated cardiovascular disease (CVD)
was first suggested in the 1960s in the Framingham
Heart Study[8]. Since then, a multitude of clinical
studies have strengthened this relationship[9–11].
Although Mendelian randomization studies have now
demonstrated that HDL-C levels per se have no causal
relationship with CVD[12–14], the question remains as to

whether HDL-C, a static measure of HDL's cholesterol
content, adequately reflects the beneficial functions of
HDL on vascular health.
In humans, genetic deficiency of APOA-I or the ATP

binding cassette transporter 1 (ABCA1) leads to very
low levels of HDL-C that can be associated with
increased risk of and accelerated onset of coronary
artery disease (CAD)[15]. Similar outcomes are observed
in some but not all cases of lecithin cholesterol
acyltransferase (LCAT) deficiency[15]. However, other

Fig. 1 Pleiotropic contents and functions of HDL. apoA-I: apolipoprotein A-I; apoA-II: apolipoprotein A-II; apoC-IV: apolipoprotein C-IV;
apoE: apolipoprotein E; apoM: apolipoprotein M; EC: endothelial cell; eNOS: endothelial nitric oxide synthase; LDL: low density lipoprotein;
miR-223: micro RNA 223; NO: nitric oxide; oxLDL: oxidized LDL; p: phosphate group; PL: phospholipid; PON-1: paraoxonase 1; S1P:
sphingosine-1-phosphate; SAA: serum amyloid A; SM: sphingomyelin.
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forms of genetically altered HDL-C levels suggest that
there is more complexity to the role of HDL in health
and disease. For example, carriers of the APOA-I
mutation known as apoA-I Milano have very low HDL-
C levels but similar levels of atherosclerosis and CAD
as controls with normal HDL-C levels[16]. Conversely,
carriers of mutations in SCARB1, the gene encoding
HDL receptor scavenger receptor class B type I (SR-
B1), have abnormally high HDL-C levels and yet are at
increased risk for CAD[17].
Unlike humans where the major plasma lipoprotein is

low-density lipoprotein (LDL), the major plasma
lipoprotein in mice is HDL. The innately high HDL:
LDL ratio in mice renders them generally resistant to
CVD and advanced atherosclerosis compared to
humans[18]. As a result, atherosclerosis studies in mice
overwhelmingly depend on genetically modified mod-
els, including deficiency of either apoE or low-density
lipoprotein receptor (LDLR), to allow the effects of
HDL on atherosclerosis to be studied[19]. For example,
genetic deletion of either apoA-I, ABCA1, LCAT and
SR-B1 in apoE–/– or LDLR–/– animals alters murine
HDL-C levels. In addition, the effects on atherosclerosis
can also vary with strain background and animal
diet[20]. Nonetheless, HDL-targeted therapies in murine
models of atherosclerosis appear, overall, to be
beneficial. For example, transgenic overexpression of
apoA-I, gene transfer of human apoA-I, adenoviral
transfer of apoA-I, and infusion with recombinant
apoA-I or HDL can reduce or stabilize atherosclerotic
plaques in apoE–/– or LDLR–/– mice[21].

Changes in HDL cholesterol efflux capacity

The cholesterol efflux capacity (CEC) of HDL is
modified in CVD[22–26], metabolic syndrome[27], and
during acute inflammation[28]. How distinct CEC and
HDL-C are as biomarkers of disease has been debated,
with some studies observing reduced CEC independent
of changes in HDL-C[22-23,25,28–30], while others find
that CEC and HDL-C changes correlate[24,26-27].
Possible mechanisms to explain diminished CEC in
most of these studies is increased HDL-associated
serum amyloid A (SAA)[28] and reduced HDL-asso-
ciated paraoxonase 1 (PON-1)[26] in inflammatory
states, which will be discussed below. Importantly,
despite its obvious implication for reverse cholesterol
transport (RCT), CEC is not the only known function of
HDL. Here, we will discuss additional vasoprotective
properties of HDL, with a focus on HDL's anti-
inflammatory, anti-oxidative, vasodilatory and anti-
apoptotic functions.

Anti-inflammatory effects of HDL

Several mechanisms by which HDL exerts anti-
inflammatory effects on endothelial cells have been
described. These include pathways dependent on the
HDL receptor SR-B1[31–33] as well as through vascular
sphingosine 1 phosphate (S1P) receptor 1 and 3[34],
which trigger a signaling cascade through the PI3K/Akt
pathway leading to phosphorylation of endothelial nitric
oxide synthase (eNOS). The vasoprotective effects of
nitric oxide produced by eNOS phosphorylation are
well-established, and include vasodilation, reduced
endothelial cell permeability, and inhibition of vascular
cell adhesion molecule-1 (VCAM-1) expression via
downregulation of the pro-inflammatory NFkB signal-
ing pathway[35]. HDL-S1P action can also directly
inhibit NFkB signaling to suppress adhesion molecule
expression[34], reduce endothelial exocytosis[31], and
maintain annexin-1 expression[33]. Additionally, HDL
can indirectly increase eNOS activity via actions of the
lipid transporter ABCG1 to maintain proper membrane
fluidity for eNOS function[36,37]. The HDL-associated
protein PON-1 prevents lipid and LDL oxidation,
thereby protecting endothelial cells from oxidative
damage, pro-inflammatory signaling, and apopto-
sis[38-39].
Many disease states, particularly those with an

inflammatory component, can affect HDL's vasopro-
tective functions (Table 1). For example, HDL isolated
from CVD patients exhibits reduced ability to phos-
phorylate eNOS[6,40-41] and displays a distinct repertoire
of immune cell trafficking proteins[41]. HDL isolated
from children with chronic kidney disease exhibits
reduced ability to protect from endothelial cell activa-
tion [42-43]. Acute inflammation, as in the case of
periodontal therapy, can also alter the ability of HDL to
induce eNOS phosphorylation[44]. In abdominal aortic
aneurysm (AAA), a quantitative reduction in apoA-I-
mediated vasoprotection may result from decreased
levels of circulating small HDL, a process which itself
may partially be due to the sequestering of apoA-I at the
site of inflammation in thrombotic aortic tissue[45-46].
Moreover, inflammatory-remodelling of HDL composi-
tion during AAA by the inclusion of pro-oxidant
proteins may further reduce HDL quality and contribute
to the observed loss of anti-thrombotic and anti-
oxidative capacity[46]. In contrast, exercise training
improves the ability of HDL to protect endothelial cells
from tumor necrosis factor-α induced injury, monocyte
adhesion, and VCAM-1 expression in metabolic
syndrome while also elevating eNOS activation[47].
Importantly, changes to the anti-inflammatory functions
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of HDL have even been observed in disease in the
absence of changes in circulating HDL-C levels[43-44].

HDL-C is an imperfect marker

The disassociation between HDL functions and HDL-
C levels may help to explain why the epidemiological
associations of HDL and CVD risk are not easily
captured by mere HDL-C measures. HDL functional
assays may also be more informative than HDL-C
measures in clinical trials. For example, efforts to use
statins, niacin, and cholesteryl ester transfer protein
(CETP) inhibitors to raise HDL-C levels and protect
against CVD have been disappointing[48–50]. Although
statins consistently reduce CVD events, the prognostic
utility of HDL-C in statin users is unclear[51–54]. Two
large randomized control trials to test the effect of niacin
on CVD showed no statistically significant reduction in
CVD despite elevated HDL-C levels[42,55–57]. CETP
inhibitors also failed to reduce CVD events despite

raised HDL-C levels[49]. A meta-analysis of randomized
controlled trials for niacin, fibrates, and CETP inhibitor
therapies in conjunction with statin therapy found no
change to mortality, CAD mortality and myocardial
infarction compared to patients treated with statins
alone[58].

HDL heterogeneity and modification in
disease

HDL can be classified by a variety of schemes
including apolipoprotein content, size, surface charge,
and density (Fig. 1)[2]. The distribution of HDL-C
among different sizes has been observed to vary with
exercise, CVD risk factors, and CVD disease status and
lipid-lowering medications. However, the direction of
association between HDL subclass and disease out-
comes has been controversial. Many studies have found
that large HDL subclasses appear to be beneficial for
cardiovascular health with stronger associations with

Table 1 HDL compositional and functional heterogeneity in disease
Disease Proteome Lipidome Size Function

Cardiovascular ↓/–PON-1[26,63,71] ↓S1P[90], SM[240] ↓/↑ large HDL[23,59-61,64] ↓ cholesterol efflux[25,26]

disease ↑ SAA[41, 84, 239] ↑/↓PL[239-241] ↓ small HDL[63] ↓ eNOS phosphorylation[23,41,75]

↓ apoA-I, apoA-II, apoE[84] ↑TG[239,240] ↑ inflammatory activity[242]

Acute
inflammation

↓ PON-1[28,44,74]

↑ SAA, apoA-II, complement C3[44,74]

↓/↑apoA-I[44,74]

↓S1P, SM[74,243]

↑TG, FFA[243]
↓/– cholesterol efflux[28,44,74]

↓ NO production[44,74]

↑ inflammatory activity[44]

↑ oxidative activity[44]

Chronic
kidney disease

↓/–PON-1[76,77,82]

↑SAA, SDMA, apoC-II[43,75,81,98]

↓ apoA-I, apoA-II[75,81]

↑ TG[81]

↓ PL[81]
↓ small HDL[244] ↓ NO production[43]

↓ cholesterol efflux[43,81]

↑ inflammatory activity[42,43]

↑ oxidative activity[43,98]

↓ EC proliferation and migration[42]

Cirrhosis ↓/↑ PON-1[58,73]

↓ apoA-I, -II, apoC-II, -III[72]

↑ SAA, apoE[72]

↑ PL[73] ↑ large HDL[72,73] ↓ cholesterol efflux[72]

↓ PON1 activity[73]

Aging – PON-1[78,79]

↓ apoE[78]

↑ SAA, complement C3[78]

↑ SM[245] ↑ oxidative activity[78,79]

↓/– cholesterol efflux[78,245]

↓ PON1 activity[78,79]

Arthritis ↓ PON-1[77]

↑ SAA[77]
↑ SM, PL[246] ↑ inflammatory activity[247]

Type 2
diabetes
mellitus

↓ apoA-I[85]

↑ apoA-II[85]
↑TG, S1P[85,90,248] – cholesterol efflux[27]

↓ NO production[27]

↑ inflammatory activity[248]

Alzheimer's
disease

? ? ? ↓ cholesterol efflux[249]

↑ inflammatory activity[249]

Age-related
macular
degeneration

↑ SAA[250] ? ? ↑ anti-inflammatory activity[250]

apoA-I: apolipoprotein A-I; apoA-II: apolipoprotein A-II; apoC-II: apolipoprotein C-II; apoC-III: apolipoprotein C-III; apoE: apolipoprotein E; EC:
endothelial cell; eNOS: endothelial nitric oxide synthase; FFA: free fatty acid; NO: nitric oxide; PL: phospholipid; PON-1: paraoxonase 1; S1P: sphingosine-
1-phosphate; SAA: serum amyloid A; SM: sphingomyelin; SMDA: symmetrical dimethylarginine; TG: triglyceride; ↓: decrease; ↑: increase; –: no change; ?:
unknown in literature.

Vasoprotective functions of high density lipoproteins (HDL) 167



disease than total HDL-C[23,59–62]. By contrast, other
studies have observed that CAD patients have lower
levels of small HDL[63] and elevated levels of large
HDL[64]. Investigations on the effect of statins on HDL
subclass is also not as clearly defined as their well-
established ability to elevate total HDL-C levels[65]. For
example, statins have been found to exert no effect[66] or
to lead to elevated levels of the large HDL2 subclass
while decreasing levels of small HDL3 levels[67-68],
although contrasting reports indicate an increase in
HDL3 levels[69]. Fibrates increase HDL3 levels while
decreasing those of HDL2[65] whereas niacin has the
opposite effect on HDL subclass by promoting conver-
sion to mature HDL2 particles[65]. Combination treat-
ments of lipid lowering drugs present no net change in
HDL subclass compared to monotherapy[67] or have
reported an additive effect with improved HDL
functionality[70]. Variations in cohort, drug regimen
and experimental techniques likely contribute to the
varying observations of medication use on HDL
subclass distribution and net function.
To add further complexity to the matter of HDL

subclass, a recent report has found that HDL appears to
be secreted from the liver in all of its unique sizes and
remains in those size classes for several days before
excretion[71]. This is contrary to the traditional view of
how HDL subclasses are formed, which posits that HDL
is first secreted from the liver as small, lipid-poor,
discoidal HDL that is lipidated to evolve into the larger
spherical forms over time.
Another measure of interest is the heterogeneity of

the HDL proteome. The HDL proteome varies con-
siderably between individuals based on disease, diet,
age, and inflammatory status (Table 1). For example,
PON-1 content or activity on HDL is reduced in patients
with CVD[26,72] liver cirrhosis[73-74], acute inflamma-
tion[28,44,75], chronic kidney disease[76-77], rheumatoid
arthritis[78], in the elderly[79-80], and is elevated with
exercise[47] or a diet rich in olive oil[81]. Conversely, the
SAA content on HDL has been found to increase in
chronic kidney disease[76,82], aging[79], acute inflamma-
tion[44,75], rheumatoid arthritis[78] and cirrhosis[73].
Proteomic analysis of plasma specimens of AAA
patients identify disease-associated reductions in
HDL's major lipoproteins, namely apoA-I[45,83] and
apoA-II[45]. Contrasting reports, however, observe an
upregulation in apoA-I and apo-J levels in this patient
population[84]. Importantly, in several cases, changes to
the HDL proteome can be observed in inflammatory or
disease states without a change in total plasma HDL-
C[44,79], again highlighting the importance of looking
beyond HDL-C when considering lipoprotein function
in the etiology of disease. Other alterations to the HDL

proteome that have been observed in vascular and
inflammatory pathologies include reduced or elevated
apoA-I, apoA-II, apoC-II and apoE, and elevated
complement C3 and apoC-III[44,73,75-76,79,82,85-86].
The HDL proteome, and by implication HDL

function, is also subject to change by hypolipidemic
agents. Green et al.[87] report that CAD-associated
changes in the HDL3 apolipoprotein profile, including
increased levels of apoE coupled with decreased levels
of apoF and phospholipid transfer protein, are reversed
by combination therapy of atorvastatin and niacin.
Niacin is also shown in a separate study to exhibit a
synergistic enhancement of apoA-I in concert with
atorvastatin[70]. Fibrates increase apoA-I levels and, to a
greater extent, boost apoA-II levels[88]. The recent study
by Gordon et al.[89] reports that rosuvastatin dramati-
cally increases the levels of alpha-1-antitrypsin in the
large HDL fraction which in turn enhances HDL's anti-
inflammatory properties. Additionally, lipid lowering
drugs also alter the activity of HDL-associated anti-
oxidant proteins such as PON-1 to augment its
vasoprotective function[65].
The HDL lipidome is another field of emerging

interest. While most of the work thus far has
investigated the lipidome of HDL from healthy subjects,
it is becoming clear that changes to the proportions of
HDL lipids in disease can have functional conse-
quences. For example, the CEC, antioxidant, and anti-
inflammatory activities of HDL are impaired with
excess triglyceride, cholesteryl ester, oxidized lipids,
and sphingomyelin[90]. Awell-studied bioactive lipid on
HDL is S1P, which is well known to be at least partially
responsible for the anti-inflammatory actions of HDL.
S1P on HDL can be reduced in CVD[91] and acute
inflammation[75] resulting in impaired signaling to
eNOS. In type 2 diabetes mellitus (T2DM), S1P has
been observed to be elevated on HDL possibly as a
compensatory mechanism[92]. Many other changes to
the HDL lipidome have been observed including
changes to triglyceride, phospholipid, and sphingomye-
lin content (Table 1).
Among other cargo carried on HDL are small non-

coding RNAs including tRNA-derived RNA fragments,
RNase P-derived RNA fragments, and microRNA
(miRNA)[93]. MiRNAs in particular have emerged as
an exciting topic in lipid research for their potential as
biomarkers and in therapeutic approaches. HDL has
been found to be regulated by and to carry a number of
miRNAs that vary between individuals according to a
number of factors including diet[94], weight loss[95], and
CAD[72]. As with changes to the HDL proteome,
changes to the miRNA profile of HDL can be observed
even when there is no change in total plasma HDL-
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C[72,95] or apoA-I levels[94]. Interestingly, HDL-asso-
ciated miR-223, which can be altered with diet or
weight loss[94-95], has even been found to be transferred
to endothelial cells[96] and to alter gene expression of
intercellular adhesion molecule-1 in those cells[97].
HDL also carries a number of other nonpolar

molecules including fat-soluble vitamins, vitamin bind-
ing proteins, carotenoids, steroids and other hormones,
potentially serving as a transporter for delivery to other
tissues[93]. Polar metabolites have also been found on
HDL, some of which correlate with the insulin
resistance[98]. An additional molecule of interest on
HDL is symmetric dimethylarginine, a metabolite that is
increased in children with chronic kidney disease and
may be partially responsible for impaired vasoprotec-
tive actions of HDL in these patients[99].
A further layer of complexity to HDL heterogeneity

includes modifications to its protein components
including the addition of aldehydes such as acro-
lein[100], modifications of apoA-I by myeloperoxi-
dase[101], or carbamylation of HDL-associated
proteins[77]. These protein modifications are associated
with CVD and compromise HDL functions including
cholesterol efflux, antioxidant properties, and promo-
tion of endothelial cell migration and prolifera-
tion[77,100-101].

Cerebral vessel disease and dementia

The brain comprises only 2% of total body mass but
consumes approximately 12% of total cardiac out-
put[102]. The intimate association of neurons with
vessels via neurovascular coupling regulates cerebral
blood flow (CBF) in response to changes in neuronal
activity. This coupling also maintains the necessary
influx of oxygen, glucose and ions balanced by
homeostatic clearance of neurotoxic by-products from
the brain throughout the lifespan. As the brain cannot
always easily or quickly compensate for restricted blood
supply, structural and functional impairments in the
cerebrovasculature can profoundly impact brain func-
tion. Central nervous system (CNS) microvessels are
distinguished by the presence of the blood brain barrier
(BBB), which stringently controls the movement of
solutes into the brain to maintain a CNS ionic
environment optimal for neuronal activity.
Cerebral vessel disease (CeVD) is one of the most

common vascular pathologies of the aging brain with
heterogeneous changes that undermine the integrity and
function of cerebral vessels (arteries, arterioles, venules
and capillaries) including atherosclerosis, arteriosclero-
sis, lipohyalinosis, and cerebral amyloid angiopathy

(CAA)[103-104]. Increased by CVD risk factors[105],
CeVD can restrict CBF causing local or global ischemia
in the brain through narrowing of the vessel lumen,
arterial occlusion, loss of cerebrovascular resistance and
micro and macro hemorrhage. Resulting brain damage
from this process can lead to vascular cognitive
impairment or vascular dementia (VaD), which is
clinically identified by impaired locomotor function in
addition to memory loss and executive dysfunction[104].
In particular, cerebral small vessel disease (CSVD),
which manifests as white matter lesions (i.e. lacunes,
lacunar infarcts, and leukoaraiosis), is a leading
contributor to VaD[106]. How impaired cerebrovascular
function may relate to cognitive decline and dementia is
an area of intense interest.
Alzheimer's disease (AD), the most common form of

dementia[107], is clinically characterized by memory
loss and conclusively diagnosed by the presence of β-
amyloid (Aβ) plaques and neurofibrillary tangles in
brain tissue[108]. The amyloid hypothesis of AD, which
proposes that accumulation of Aβ aggregates is the
primary pathogenic factor that initiates and drives
neurodegeneration in AD, was founded on the dis-
covery of genetic mutations that cause aberrant over-
production of Aβ in familial early onset AD (EOAD)
( < 65 years old) and evidence that Aβ is neurotoxic[108].
However, as only 1-3% of AD cases are attributed to
causal mutations[109] and Aβ aggregates can be present
in elderly people who show no signs of cognitive
decline[110], major efforts are being deployed to under-
stand the etiology of sporadic or late onset AD (LOAD)
(> 65 years old). Cardiovascular risk factors including
hypertension, T2DM and mid-life dyslipidemia are all
associated with increased AD risk[111]. The majority of
AD patients possess extensive damage to their cerebral
blood vessels[112] and exhibit mixed vascular pathology
with CeVD (atherosclerosis of the circle of Willis and
its branches) as well as cerebrovascular lesions includ-
ing leukoaraiosis, and lacunar infarcts, microbleeds,
microinfarcts, and CAA[113]. Importantly, increased
severity of CeVD in subjects over 65 years of age is
associated with lower scores across several cognitive
domains including episodic memory and perceptual
speed, the respective neuropsychological hallmarks of
AD and VaD, which remain even after adjusting for
established genetic AD or vascular risk factors[114].
Intriguingly, white matter hyperintensities indicative of
CSVD were recently found to be elevated in EOAD
mutation carriers (mean age 39 years) that were
detectable at least 6 years prior to clinical onset[115].
That these EOAD subjects were too young to exhibit
classical age-related cardiovascular risk factors provides
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compelling support that cerebrovascular dysfunction
may be an important driver of neuronal compromise and
cognitive decline.
The brains of AD patients show a plethora of

structural and functional vascular abnormalities that
correlate with severity of neurodegeneration, including
reduced microvascular density with remaining vessels
appearing tortuous and string-like[112,116]. One potential
cause of this brain vessel atrophy may be the Aβ-driven
vascular pathology of CAA, in which Aβ is deposited in
the walls of the arteries, arterioles and capillaries in the
leptomeninges and cerebral cortex[117]. CAA preva-
lence in AD is 80-90%[118] and CAA may contribute to
degeneration of mural cells in arteries, arterioles, and
capillaries, leading to vessel stiffening and impaired
vasomotor function[117]. Notably, weakening of cerebral
vessels increases their susceptibility to rupture and CAA
is also associated with ischemic lesions, micro- and
macro-hemorrhages, and impaired CBF[118]. Micro-
scopic cerebral hemorrhages, also known as cerebral
microbleeds (CMBs) are a type of CSVD that indicates
weakness within the microvascular system[119]. Studies
show that CAA-associated vasculopathies lead to the
development of CMBs in the lobar temporal and parietal
cortex although there is some debate as to the direct
association between CAA and CMBs[120]. In contrast,
CMBs in non-lobar deep white matter regions are
associated with vascular risk factors such as stroke and
hypertension[121]. Recent findings from a prospective
analysis of the Rotterdam cohort suggest CMBs may
prove to be useful predictors of future cognitive decline
and pre-clinical dementia regardless of their location in
the brain[122]. Whether microhemorrhages affect cogni-
tive status and are a reliable biomarker of cognitive
decline is a key debate, with one study reporting no
effect of CMBs on cognitive function[123] contrasting
with another study that found an association between
frontal lobe lacunar infarcts and pre-dementia[124].
The close relationship between AD and cerebral

vascular pathology raises the hypothesis that vascular
damage may plays a considerable role in precipitating
and driving AD pathogenesis. The two-hit vascular
hypothesis proposes that vascular risk factors (hit one)
leads to the cerebrovascular dysfunction (i.e. BBB
dysfunction, oligaemia) that precedes cognitive impair-
ment[116]. This vascular damage induces early neuronal
dysfunction due to the accumulation of neurotoxic
molecules, capillary hypoperfusion and altered Aβ
metabolism that accelerates Aβ retention and accumula-
tion in the brain[116]. Increased cerebral Aβ represents
hit two, which amplifies neuronal dysfunction leading
to a self-propagating acceleration of neurodegeneration,
cognitive decline and ultimately dementia[116].

VaD is the second most common dementia[125],
wherein, unlike AD, various types of vascular injury
including ischemic, hemorrhagic, or hypoperfusion
directly causes cognitive impairment. It is increasingly
appreciated that AD and VaD share considerable
overlap in clinical[126], pathological[103] and epidemio-
logical features[127]. Interestingly, up to 45% of clinical
dementia cases have evidence of mixed neuropathology
for both AD and VaD[128] and the prevalence of mixed
dementia (AD and VaD) increases with age[129]. This
lends support to the argument that vascular dysfunction
interacts synergistically with other pathogenic neurode-
generative pathways to promote various forms of
dementia. Mirroring the worsening cognitive decline
seen in humans exhibiting cerebral hypoperfusion[103],
experimental restriction of CBF in animals recapitulates
both the amyloid and vascular neuropathology of mixed
dementia[130]. Chronic cerebral hypoperfusion as a
result of cerebrovascular dysfunction may therefore
serve as a common catalyst for the development of CAA
and subsequent Aβ-associated pathologies[130]. Stroke
is an established risk factor for AD[105], and while an
initial report of increased cerebral Aβ levels in ischemic
stroke patients[131] failed to reproduce in a subsequent
larger cohort[132], new evidence that cerebral hypoxia
may diminish enzymatic Aβ-degradation[133] offers a
potential mechanism by which cerebrovascular inci-
dents may accelerate AD pathogenesis.
An important point for potential therapeutic con-

siderations is that cerebrovascular lesions may correlate
with more severe cognitive dysfunction in early AD
rather than late in progression[103]. As 20 years of
research on the amyloid hypothesis and Aβ- targeting
therapies have not yet produced an approved treatment
for AD, it is imperative that the multifactorial aspects of
AD be addressed in the future. Given the beneficial
vasoprotective roles of HDL in peripheral vessels,
expanding HDL research toward the cerebrovasculature
and neurodegeneration may be highly promising.

Lipoproteins and cognitive function

The brain is the most cholesterol-rich reservoir in the
body, containing 25% of the body's total cholesterol
content[134]. The connection of lipid metabolism to AD
was first noted in Dr. Alois Alzheimer's characterization
of the disease in 1906 that described lipid deposits in the
brain[135]. Today, genome wide association studies
confirm this connection, with the identification of
confirmed AD risk genes that function in various
aspects of lipid metabolism[136]. Of these, genetic
variation in apoE is the strongest genetic risk factor
for AD in humans, with APOE4[137-138], APOE3
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neutral[139], and APOE2 protective[140]. Over 60% of
AD cases possess at least one APOE4 allele[141], and
carriers of the APOE4 allele show increased risk, earlier
onset, and exacerbated cognitive decline[137-138,141].
Despite this strong association, the exact mechanisms
by which apoE, which is produced by both astrocytes
and microglia, modifies AD risk in an isoform-specific
manner are not yet completely defined. One undisputed
function of apoE relates to its role in Aβ deposition, as
APOE4 carriers consistently develop greater Aβ burden
at an earlier age compared to non-APOE4 carriers[142–
146]. APOE4 is the strongest genetic risk factor of
LOAD[137,147], and moreover predisposes carriers to
cardiovascular disease[148], reinforcing the importance
of cholesterol metabolism in the vascular-mediated
pathogenesis of sporadic LOAD. Importantly, apoE
may also impair cerebrovascular function, as apoE4 is
associated with aberrant binding and cell signaling at
the neurovascular unit resulting in diminished Aβ
clearance[149-150], reduced eNOS expression[151], vas-
cular inflammation, and BBB dysfunction[152]. Exacer-
bation of vascular dysfunction by apoE4 would be
expected to aggravate cognitive decline in APOE4
carriers, and while there is a suggestion of such a
relationship[153], others find a lack of association of
APOE4 and cognitive impairment with concurrent
CeVD[154]. How APOE4 may play a multifaceted role
in AD pathogenesis remains to be fully elucidated.
Apo J, or clusterin, is the other major lipoprotein

besides apoE that is abundantly produced within the
CNS[155]. Genetic mutations in the clusterin gene
(CLU) were identified by two independent GWAS
studies as risk factors for LOAD[156-157]. Clusterin is
elevated in AD brains[158], present within Aβ pla-
ques[158-159] and co-localizes with Aβ deposits in CAA-
affected leptomenigeal arteries[160]. Clusterin has been
shown to facilitate Aβ egress from the brain when co-
injected into mice[161]. Recent findings by Miners et
al.[162] also support a role for clusterin in regional Aβ
clearance in humans. Intriguingly, they showed that
although clusterin levels are highest in brain regions
with plaque pathology, the molar ratio of clusterin:
Aβ42 surprisingly declines with insoluble Aβ42 levels
in a region-dependent manner, suggesting that rising
Aβ42 levels outstrip increased clusterin levels, thereby
decreasing Aβ clearance and promoting its region-
specific deposition. In vitro studies suggest that
clusterin acts as a chaperone protein facilitating Aβ
egress at the BBB[161,163] and Aβ transport to microglia
for degradation via interactions with the microglial
receptor TREM-2[164]. Clusterin also interferes with Aβ
peptide aggregation and neutralizes Aβ oligomer
neurotoxicity[165], and deficiency of clusterin signaling

through its receptor, plexin A4, leads to memory and
learning deficits[166]. Clusterin has also been linked to
accelerated atrophy in brain regions first affected by AD
through an unknown interaction with Aβ[167]. Further
work is needed to determine the dynamics of this
glycoprotein in the context of health and neurodegen-
eration.
In addition to brain-derived apoE and apoJ, circulat-

ing lipoproteins may also be important to cerebrovas-
cular health. Along with its defined association with
CVD, high levels of plasma HDL-C in elderly people
are associated with better memory[168-169], lower Aβ
burden[170], and less cognitive decline[171]. Conversely,
HDL-C has been found to be reduced in AD subjects
who have vascular risk factors[172], and plasma apoA-I
has been reported to be reduced in AD patients[173] and
negatively associates with cognitive decline indepen-
dent of Aβ, indicating a protective homeostatic role for
apoA-I against cognitive decline in the elderly[174]. In
symptomatic AD patients, plasma apoA-I levels
negatively correlate with hippocampal and whole
brain volume as well as mean entorhinal cortical
thickness[175]. Compared to age-matched cognitively
healthy controls, levels of cerebrospinal fluid (CSF)
apoA-I increase during aging but are significantly lower
in AD and mild cognitive impairment patients com-
pared to age-matched cognitively normal controls[176].
Additionally, AD patients were found to have signifi-
cantly lower gene expression of APOA1, APOC3 and
APOA4, which correlated with AD severity[177]. How-
ever, controversy exists in the relationship between
HDL-C levels and cognition, as other studies report no
relationship between HDL-C and dementia[178] nor a
link between genetically altered HDL-C and AD using
Mendelian randomization approaches[179-180]. In a
Japanese cohort, the previously reported positive
associations of APOA1 polymorphisms and AD[181-

182] were not reproduced, but a single nucleotide
polymorphism, Rs7659 in apoD, was correlated to
EOAD after stratification against APOE4 genotype[183].
The discovery that methylation of an APOA1 CpG site
increases protein levels of plasma apoA-I and nega-
tively correlates with episodic memory in an older
population again suggests a complex relationship
between HDL and cognition[184]. Notably, this study
identifies epigenetic regulation of cholesterol metabo-
lism and the impact of environmental and lifestyle
influences as new areas of interest in dementia research.
As HDL functions can be discordant with HDL-C
levels, the usefulness of HDL-C as a parameter of HDL
effectiveness in CNS disorders remains to be deter-
mined. On the other hand, changes in HDL's functional
antioxidant activity, as estimated by reduced activity of
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serum PON-1, correlates with cognitive decline parti-
cularly in mixed AD-VaD dementia[185-186].
Associations of HDL reach beyond AD to include

other neurodegenerative diseases. A protective associa-
tion of HDL has been found in multiple sclerosis in
which HDL-C inversely correlates with BBB damage
and leukocyte extravasation[187]. Similarly, in Parkin-
son's Disease, plasma HDL-C levels are reduced
especially in the early stage of the disease[188–190].
Intriguingly, HDL-C levels and RCT function are only
diminished in cases of AD with cardiovascular co-
morbidity when compared to AD without co-cardio-
vascular morbidities or to age-matched, healthy cogni-
tively normal controls[172].

HDL and dementia: mechanisms and
therapeutic potential

Mechanisms by which circulating HDL affects the
CNS likely involve the cerebral vasculature, particularly
with respect to CAA and inflammation. Studies in
experimental models allow such mechanisms to be
explored. For example, genetic deletion of apoA-I in
AD mice[191] worsens CAA and neuroinflammation and
exacerbates cognitive function without an overall
change in parenchymal amyloid. In harmony with this
finding, transgenic overexpression of human apoA-I
from its endogenous promoter that drives expression in
liver and intestine in AD mice selectively ameliorates
CAA and neuroinflammation and partially restores
memory[192]. More recently, intravenous injection of
reconstituted human HDL into AD mice was found to
acutely reduce soluble amyloid levels in the brain[193],
consistent with a previous rodent study in which oral
administration of an apoA-I mimetic reduces Aβ burden
in the brain[194]. As apoA-I is not synthesized in the
brain by glial or neuronal cells yet is present in the CSF
at levels similar to that of its brain-derived apoE
counterpart[195], and lipid-poor plasma apoA-I gains
accesses to the CSF via the choroid plexus in mice[196],
an emerging question is whether apoA-I may affect
cerebral vessels from the “blood side” or “brain side.”
This question has important implications for possible
therapeutic opportunities that could involve systemi-
cally acting agents that do not necessarily need to cross
the BBB. Equally importantly, such therapeutic options
could leverage on the considerable investments already
made to develop cardiovascular therapies. Both in vitro
and in vivo pre-clinical studies report that administra-
tion of plasma-isolated human HDL after cerebrovas-
cular insult improves BBB integrity[197] and limits
neuroinflammation by inhibiting neutrophil extravasa-
tion into the brain[198-199], offering one explanation of

the observed preservation of cognition post-stroke with
this HDL therapy. Conclusive investigation into
whether these improvements in brain microvasculature
directly translate into cognitive enhancement or stabi-
lization has yet to be thoroughly explored and warrants
further research.
While several epidemiological and animal model

studies suggest that statins may protect from dementia,
comprehensive analysis of randomized clinical trials
have found no beneficial effect when statin use was
initiated in late life[200-201]. Studies in the Taiwanese
population suggest the time of drug administration, drug
dosage and duration are important factors for statins to
affect dementia outcome. Lin et al. found that use of
statins prior to definite AD diagnosis associates with
delayed disease progression in mild-moderate AD
patients[202]. Chen et al. observed that dementia risk is
decreased by high dose and long-term use of statins, an
effect that is not observed with fibrates or other lipid-
lowering drugs (acipimox, cholestyramine, niceritrol,
nicofuranose, nicomol, and probucol[203]. Conclusively
determining whether statins are effective for delaying or
treating dementia will require further attention to the
timing, dosage and duration of statin use. Fibrates,
another class of lipid-lowering agents in clinical use,
also fails to show any benefit to prevent cognitive
decline in older populations[204] and those at risk for
CVD[205]. Whether dementia risk or progression may be
affected by cardiovascular therapies that alter circulat-
ing lipoprotein levels and functions, including fibrates,
niacin, CETP inhibitors and the recently released
PCSK9 inhibitors[206], has yet to be systematically
tested. Despite the controversial benefit of statins
supplemented with niacin on CAD[207], the effect of
combination treatments on cognition is still relatively
unknown and may prove to be a more potent option to
limit dementia risk.
Considerable investment has been made in testing

pharmacological agents that affect Liver-X-Receptor
(LXR), Retinoid-X-Receptor (RXR) and peroxisome
proliferator-activated receptor gamma pathways, as
these are master regulators of both lipid metabolism
and inflammation[208] and influence key pathogenic
pathways in neurodegenerative disease. ABCA1, a
downstream gene target of these nuclear receptor
pathways, has been consistently and independently
shown to protect against AD phenotypes in animals[209–
212] and an epidemiological study in Denmark identified
a loss of function ABCA1 gene as a risk factor for both
AD and cerebrovascular disease[213]. In pre-clinical
studies pharmacological activation of LXR/RXR effec-
tively ameliorates AD phenotypes, although with
varying changes in cerebral Aβ pathology[214–221].
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There is mounting evidence in both AD and experi-
mental stroke models that LXR/RXR agonists mediate
improvements in cerebrovascular health via preserva-
tion of BBB integrity, which is one potential mechanism
by which this drug class may exert neurological and
cognitive benefits[222–227]. Efficacy of LXR/RXR ago-
nists in ameliorating AD pathology and memory loss in
mice is dependent on ABCA1[228], and although not a
direct gene target of the LXRs, CSF levels of apoA-I are
increased with an oral regimen of an LXR agonist[229].
Further studies are needed to delineate the contribution
of peripheral lipoproteins as mediators of the protective
action of LXR agonists against neurodegeneration.
Bexarotene, a USA Food and Drug Administration

approved anti-cancer drug and RXR agonist, was
reported to rapidly decrease Aβ pathology and sig-
nificantly ameliorate cognitive decline in AD mice[230].
This study spearheaded several investigations into the
potential therapeutic benefit of bexarotene, which is
currently being examined in AD clinical trials despite
mixed data on its effectiveness in AD animal mod-
els[218,231–236]. The 2016 phase 2a clinical trial in which
bexarotene was administered over four weeks to early
AD patients failed to reduce brain amyloid levels as
measured by positron emission tomography[237].
Although post-hoc analysis suggests potential effects
in non-APOE4 carriers[237], larger numbers will be
needed to decisively determine the efficacy of bexar-
otene in subjects of each APOE genotype. A case report
of improved cognition in an AD patient with no
concurrent changes in Aβ neuropathology leaves room
for cautious optimism[238]. A major drawback to further
development of LXR/RXR agonists is their undesirable
side effects, namely hyperlipidemia caused by increased
fatty acid synthesis in the liver[208]. New evidence that
statins may interfere with ABCA1 expression[70,239]

may also necessitate the consideration of alternative
cholesterol management plans to traditional statin use.

Gaps and opportunities

Taken together, much remains to be discovered about
HDL's role in health and disease. In particular, despite
its association with dementia, the mechanisms by which
HDL may promote healthy aging and protect from
neurodegeneration remain far from clear. Studies
investigating the role of HDL in ameliorating cerebral
vessel disease could be expanded to include cognitive
aspects. Other unanswered questions include what
compositional changes of HDL occur throughout
neurodegeneration and dementia and how these com-
pare to other chronic inflammatory states such as in
metabolic syndrome, T2DM, chronic kidney disease, or

CVD. Whether dementia-specific compositional
changes of HDL may impair CNS function and
potentially lead to new therapeutic targets remains to
be determined. Filling these knowledge gaps will
improve our understanding of the dynamic nature of
HDL for vascular physiology and neurodegeneration.
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