Table 3.
Clustering Algorithms' Fit (DBI) and Agreement (Cohen's Kappa).
| Training dataset (n = 320) | Test dataset (n = 106) | |||||
|---|---|---|---|---|---|---|
| Number of clusters | DBI | Kappa | DBI | Kappa | ||
| k-means | SOM | k-means | SOM | |||
| 3 | 1.427 | 1.54 | 0.037 | 1.741 | 1.696 | 0.900 |
| 4 | 1.792 | 1.447 | 0.061 | 1.444 | 1.178 | 0.078 |
| 5 | 0.188** | 1.296 | 0.843 | 1.098 | 1.133 | 0.320** |
| 6 | 1.448 | 1.087 | 0.934 | 1.057 | 1.171 | 0.390 |
| 7 | 1.413 | 1.023 | 0.835 | 1.177 | 0.920 | 0.891 |
| 8 | 0.198 | 1.057 | 0.753 | 1.063 | 1.034 | 0.894 |
| 9 | 1.099 | 0.249* | 0.959 | 1.288 | 0.979 | 0.831 |
| 10 | 1.442 | 0.251 | 0.884 | 1.288 | 0.816 | 0.627 |
Best fitting solution with the training dataset but lower Kappa value with the test dataset, indicating the disagreement between k-means and SOM.
Final chosen solution. Bold values indicate potential final clustering solution and are discussed in the text.