Skip to main content
. 2018 Nov 23;9:2231. doi: 10.3389/fpsyg.2018.02231

Table 3.

Clustering Algorithms' Fit (DBI) and Agreement (Cohen's Kappa).

Training dataset (n = 320) Test dataset (n = 106)
Number of clusters DBI Kappa DBI Kappa
k-means SOM k-means SOM
3 1.427 1.54 0.037 1.741 1.696 0.900
4 1.792 1.447 0.061 1.444 1.178 0.078
5 0.188** 1.296 0.843 1.098 1.133 0.320**
6 1.448 1.087 0.934 1.057 1.171 0.390
7 1.413 1.023 0.835 1.177 0.920 0.891
8 0.198 1.057 0.753 1.063 1.034 0.894
9 1.099 0.249* 0.959 1.288 0.979 0.831
10 1.442 0.251 0.884 1.288 0.816 0.627
**

Best fitting solution with the training dataset but lower Kappa value with the test dataset, indicating the disagreement between k-means and SOM.

*

Final chosen solution. Bold values indicate potential final clustering solution and are discussed in the text.