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Abstract Central nervous system homeostasis is maintained by cellular barriers that protect the
brain from external environmental changes and protect the CNS from harmful molecules and
pathogens in the blood. Historically, for many years these barriers were thought of as immature,
with limited functions, during brain development. In this review, we will present advances in
the understanding of the barrier systems during development and evidence to show that in fact
the barriers serve many important neurodevelopmental functions and that fetal and newborn
brains are well protected. We will also discuss how ischaemic injury or systemic inflammation
may breach the integrity of the barriers in the developing brain.
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Abstract figure legend Perinatal conditions such as intrauterine and neonatal inflammation and cerebral ischemia
can result in a disturbed blood brain barrier (BBB), which may contribute to brain injury. Negative effects on the
BBB include reduced coverage of astrocytic endfeet and pericytes, reduced expression of laminin, the major basement
membrane glycoprotein in blood vessels, altered expression of tight junction proteins between endothelial cells and
altered adhesion molecules. Some data also point towards altered transport mechanisms in the BBB. These changes of
the BBB can contribute to increased BBB permeability and immune cell infiltration from the blood to the brain.

Central nervous system barriers

Central nervous system (CNS) homeostasis is maintained
by cellular barriers that protect the brain from external
environmental fluctuations and shield the CNS from
harmful molecules and pathogens in the blood. These
barrier structures also serve important functions in
providing transport of nutrients and other essential
molecules to the brain, elimination of brain waste products
and have lately also been recognised to provide signalling
functions, such as immune sensing, between blood and
CNS. A physical interface between the CNS and the peri-
pheral circulation was first described by Paul Ehrlich who
noted that dyes injected into the circulation did not stain
the brain (Ehrlich, 1885). However, it was Goldmann, at
the beginning of the last century, who concluded from
experiments similar to those conducted earlier by Ehrlich
that there must be a barrier between the brain and peri-
pheral organs (Goldmann, 1909, 1913). For a long time,
these barrier systems were considered to be immature and
not functional until later in brain development. However,
similar experiments to those performed by Goldmann
were later performed in embryos from different animal
species to demonstrate the existence of the blood-brain
barrier (BBB) already early in development (Weed, 1917;
Cohen & Davies, 1938; Grazer & Clemente, 1957; Wislocki,
1920). The importance of these findings to fetal human
development was further confirmed in the 1950s when it
was demonstrated that a barrier to Trypan Blue exists in
the human fetus from approximately 12 weeks of gestation
(Grontoft, 1954). Later, carefully conducted studies in
several different species including humans have further
extended our understanding of the barrier systems during
fetal development. Thus, there is convincing evidence
today to show that the CNS barrier systems develop
before birth and are functional in all species examined
so far (Møllgård & Saunders, 1975; Ek et al. 2003, 2006;
Ballabh et al. 2005; Kratzer et al. 2012). However, it is
important to point out that it should not be assumed that
the CNS barrier systems are static during development;
on the contrary, they appear to change significantly with
maturation processes of the brain. There are few studies
that have directly examined barrier permeability over the
lifespan in the same species, but experiments in sheep

demonstrate that influx of an inert amino acid is higher in
the fetus compared to the adult (Stonestreet et al. 1996).
Further increases in the understanding of maturational
changes of the barriers based on similar studies using
different permeability markers will be important.

There are three main barrier systems surrounding the
CNS: the blood-brain barrier (BBB) consisting of cerebral
endothelial cells and the surrounding glial limitans and
pericytes; the epithelial cells of the choroid plexus that is
the barrier between blood and cerebrospinal fluid (CSF),
and the arachnoid epithelium in the leptomeninges, which
is the outer barrier between dura mater and subarachnoid
space and separates the fenestrated dural vessels from
the subarachnoid CSF (Nabeshima et al. 1975; Rascher
& Wolburg, 1997). The unique barrier mechanisms are
achieved by tight junction proteins situated on the luminal
side and adherens junctions on the basolateral side of
these cells, providing tightness of the barrier but also
contributing to regulation of metabolism by specific trans-
port mechanisms. In addition, pericytes and astroglial
end-feet surround the endothelial cells of the BBB, further
contributing to separation of blood components from
neural tissue. Further, an intimate contact between peri-
vascular microglia/macrophages and the BBB, particularly
around penetrating vessels and venules, serve important
immune functions in the CNS.

Central nervous system barriers in development

The meninges and the outer brain barrier form during
early fetal life (O’Rahilly & Muller, 1986; Goasdoue et al.
2017). In parallel with the formation of the subarachnoid
space, the arachnoid barrier cells are joined to each other
by numerous tight junctions, which is the structural basis
for the arachnoid blood-CSF barrier (Nabeshima et al.
1975). By the 11th post conception week in humans and
embryonic day 16 (E16) in rats, the subpial end-feet layer is
complete and by E18 the tight junction protein claudin-11
is present in the arachnoid blood-CSF barrier (Balslev et al.
1997; Brochner et al. 2015).

The choroid plexus epithelium develops from the
neural tube early in fetal life in close association
with the development of the surrounding vasculature
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(Dziegielewska et al. 2001). Choroid plexus epithelial cells
are post-mitotic and new choroid plexus cells originate
from progenitor cells in the dorsal hindbrain neuro-
ectoderm. Sonic hedgehog is believed to be crucial for
both choroid plexus vascular growth and signalling to
choroid plexus epithelial progenitors (Huang et al. 2009;
Nielsen & Dymecki, 2010). Secretory, transport and
barrier functions are observed in choroid plexus epithelial
cells shortly after differentiation (Johansson et al. 2005;
Liddelow et al. 2009; Ek et al. 2010) and tight junction,
enzymatic and transporter proteins are already present
in the embryonic choroid plexus in marsupials (Ek et al.
2003), rats (Kratzer et al. 2012) and non-human primates
(Ek et al. 2015b).

The maturation of the BBB is closely related to
recruitment of endothelial cells and pericytes into the
brain (Hellstrom et al. 1999; Daneman et al. 2010; Armulik
et al. 2010). This occurs early in fetal life prior to astrocyte
generation, as shown in, for example, rats, where the first
vessels invade the cerebral cortex starting at E11, whereas
astrogliogenesis begins in the cerebral cortex closer to birth
(Qian et al. 2000). The newly formed vessels immediately
restrict transfer of small molecule tracers into the CNS
in the opposum (Ek et al. 2006), or within a few days in
mice, and permeability of BBB endothelial cells is tightly
restricted by E15 in mice (Ben-Zvi et al. 2014; Sohet et al.
2015). The permeability of brain microvasculature to end-
ogenous albumin in newborn mice is not significantly
different from that in adult animals under physiological
conditions (Vorbrodt & Dobrogowska, 1994). In support
of these observations, the tight junction protein ZO-1
starts to be expressed in E15 cerebral vessels in the
mouse and on E19 the endothelial tight junction appears
completely differentiated (Nico et al. 1999). Thus, the
current understanding is that astrocytes do not contribute
to the early induction of ‘tightness’ of the BBB (Saunders
et al. 2016); however, astrocytes do have important
modulating effects on multidrug transport proteins in the
developing brain (Baello et al. 2016).

Transport systems in barriers during development

A range of transport systems at the blood-CNS inter-
faces help deliver nutrients into the brain but also
keep out potentially toxic compounds, including many
drugs. We still have only limited understanding of how
these transport systems change during development. Not
surprisingly many of the nutrient transport systems are
highly active in the newborn, with amino acid trans-
port into the brain being higher in newborn compared to
adults (Cornford et al. 1983; Cornford & Cornford, 1986).
For efflux mechanisms, the transporters belonging to the
ABC (ATP-binding cassette protein) -B/-C/-G families are
considered the most important at the brain barriers in
relation to xenobiotic access to the brain. These trans-

porters can work on their own to remove molecules but
also act in conjugation with phase II metabolism, which
first tags compounds (by glutationation, sulfonation or
glucuronidation), which then makes them more available
for ABC protein-mediated elimination. Phase II metabolic
enzymes have been shown to be concentrated in CNS
barrier interfaces and activity of glutathione-S-transferase
(GST) family, the enzymes facilitating glutationation,
have been shown to be higher in the fetal choroid
plexus compared to adult (Ghersi-Egea et al. 1994;
Ghersi-Egea et al. 2006). These findings are supported
by a high variety and expression level particularly within
the GST family of enzymes in the fetal baboon choroid
plexus (Ek et al. 2015c). ABCB1 (p-gp) present on the
cerebrovasculature in the adult can play a pivotal role in
keeping drugs out of the brain and a striking example
is Loperamid, an μ-opioid-receptor agonist, that lacks
central action because of ABCB1-mediated brain efflux.
The complement of these ABC-transporters is different at
the BBB and blood-CSF barrier and also changes with
development. Both ABCB1 and ABCC4 (MRP4) have
been shown to increase during development at the BBB,
while ABCG2 (BCRP) is abundant on vasculature early on,
whereas at the blood-CSF barrier ABCG2 decreases during
development (Gazzin et al. 2008; Ek et al. 2010). Other
transporters that are considered important in relation
to xenobiotic transport at the brain barriers are the
SLCO (solute carrier organic anion), SLC15 (solute carrier
family 15), SLC22 and SLC47, which have wide substrate
specificity for many drugs including epileptics, antibiotics,
immunomodulators, hormones among others. In general,
expression studies have shown rather complex changes
(both increases and decreases) with development within
these families, discussed in detail elsewhere (Kratzer et al.
2013; Liddelow et al. 2013). Notably, in the non-human
primate there was a consistent increase within the SLCO
family with development at the brain-CSF barrier (Ek
et al. 2015c); these proteins mainly transport hydrophobic
organic anions such as thyroid hormone, bilirubin and
a diverse range of drugs. However, functional studies
of many of these transport systems at the BBB are
lacking, making translation of expression and localisation
data to function at the blood-brain interfaces mostly
speculative. It is also important to consider that these
transporters may play a role in elimination of waste brain
products. Understanding these systems in development
is clinically important in order to minimise the risk of
adverse drug reactions, since these transport systems are
saturable and care has to be taken when several drugs
are given that overlap in transporter specificity. Overall
these data suggest specialisation of these barrier trans-
port systems to specific stages of development, probably
reflecting changing brain requirements in relation to
brain maturation processes, nutrient and detoxification
needs.
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BBB integrity after perinatal hypoxia-ischaemia

A number of studies in rodents have indicated that
BBB integrity is disrupted following neonatal hypoxia-
ischaemia (HI) with extravasation of large endogenous
plasma borne molecules such as IgG or albumin (Svedin
et al. 2007; Tu et al. 2011; Yang et al. 2013), as well as
an increase in permeability of smaller injected molecules
(Ferrari et al. 2010a; Ek et al. 2015a). In a neonatal
mouse HI model, our recent study demonstrated increased
BBB permeability to a small molecule (sucrose, 342 Da),
peaking at 6 h after the insult followed by complete
normalization by 3 days, although changes were modest
(Ek et al. 2015a). In a rat HI model Ferrari and colleagues
reported a much higher magnitude of BBB permeability,
as well as a longer time for normalization, with the
BBB open for up to 7 days after insult (Ferrari et al.
2010b). The differences in the timing of the increased
permeability in these two latter studies may be due
to injury severity in different models; the latter study
reported BBB changes in the contralateral hemisphere as
well. Our study showed that brain pathology was closely
related to reductions in cerebral blood flow during the
HI as well as the areas with compromised BBB (Ek et al.
2015a).

In a fetal sheep model of HI injury, a careful examination
of BBB blood-to-brain transfer of 125I-radiolabelled IL-1β
showed increased penetration after ischaemia, suggesting
loss of BBB integrity (Sadowska et al. 2015). Also,
chronic fetal hypoxia induced by single umbilical artery
ligation resulted in BBB pathology, including reduction
in cellular components of the neurovascular unit, such
as reduced pericyte coverage, and astrocytic end-feet
were observed in association with increased albumin
extravasation (Castillo-Melendez et al. 2015). Moreover,
quantitative studies in sheep have shown an increase in the
unidirectional transfer rate constant of aminoisobutyric
acid (an inert amino acid) after transient bilateral carotid
artery occlusion up until at least 48 h following occlusion,
with a peak increase at 4 h following occlusion (Chen et al.
2012). This correlates quite well with peak BBB changes
in the neonatal HI mice studies outlined above (Ek et al.
2015a), suggesting that BBB function starts recovering
reasonably fast after hypoxia-ischaemia.

Clinical studies show that albumin CSF/blood ratios
are elevated in human babies following an episode of HI,
indicating compromised barrier integrity, and the severity
of asphyxia is positively correlated to higher ratios (Kumar
et al. 2008; Aly et al. 2009). Clinical samples within the
CNS are most often restricted to CSF and care should
be taken in interpreting these changes exclusively as loss
of BBB integrity, as changes in CSF turnover rates could
also produce changes in CSF/blood ratios. It is notable
that these two studies report vastly different albumin
ratios in controls, as well as changes in ratios for babies

diagnosed with hypoxic-ischaemic encephalopathy, which
could affect results.

As indicated above, there are a great number of experi-
ments that point to BBB integrity changes following
HI in both rodents and larger animal species, but the
mechanisms underlying BBB opening are often uncertain.
We found that the opening of the BBB following neonatal
HI in mice was associated with lower levels of the proteins
ZO-1 and occludin, whereas gene expression of BBB
proteins was increased, with the latter maybe being a part
of the response to restore BBB integrity (Ek et al. 2015a).
Sheep experiments have shown decreases in occludin,
claudin-5 and ZO-1/2 at 4 h after cerebral ischaemia,
with occludin and claudin-5 already returning to normal
levels at 24 h (Chen et al. 2012). However, at this point it
still remains unclear whether these BBB protein changes
contribute to functional changes. Recent studies indicated
that vascular damage occurs early after HI and is initiated
by nitric oxide (NO) stress, with inhibition of neuro-
nal NO synthase leading to reduced vascular and neuro-
nal damage, although whether this treatment preserved
BBB integrity was not investigated (Hsu & Kanoski,
2014). Importantly, this study underscores the vasculature
as a promising therapeutic target for HI-related brain
injury.

BBB integrity after perinatal focal arterial stroke

Following a 3-h transient middle cerebral artery occlusion
(tMCAO) in adult and postnatal (P7) rats, comparison
of BBB leakage of Evans Blue or fluorescent intravascular
tracers 70 kDa dextran or TRITC-albumin at 24 h after
reperfusion showed significantly lower extravasation of
these molecules and a strikingly better preserved BBB
integrity in injured neonatal brains (Fernandez-Lopez
et al. 2012). Gd-DTPA-enhanced T1W imaging performed
24 h after reperfusion in P7 rats consistently showed only
negligible contrast enhancement in injured regions, within
10% (Fernandez-Lopez et al. 2012). Alexa-647-albumin
extravasation was also low in P9 mice subjected to 3-h
tMCAO in animals with unperturbed microglial cells
(Fernandez-Lopez et al. 2016). Low neutrophil infiltration
and the presence of microglial cells protected from
BBB leakage in injured regions, as was evident from
increased albumin leakage under conditions of increased
neutrophil infiltration (Fernandez-Lopez et al. 2012) or
after pharmacological deletion of microglial cells following
tMCAO in neonatal rodents (Fernandez-Lopez et al.
2016). In contrast to tMCAO, permanent MCAO in
P7 rats resulted in rapid BBB disruption and leukocyte
extravasation (Benjelloun et al. 1999), suggesting that
persistent lack of cerebral microcirculation contributes
to the BBB collapse. Two studies that utilized the
tMCAO model in P10 rats demonstrated increased BBB
permeability during a sub-chronic injury phase, 72 h
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following tMCAO (Wang et al. 2007; Dzietko et al. 2011).
The affected region was larger in spontaneously hyper-
tensive pups (Wang et al. 2007) than in normotensive
pups of the same age (Dzietko et al. 2011).

While the phenomenon of a better-preserved BBB
integrity in neonatal arterial stroke has been established,
the underlying mechanisms are poorly understood.
Comparative endothelial transcriptome data obtained
in adult and neonatal rats subjected to tMCAO have
provided some mechanistic insight into age differences
in BBB susceptibility to stroke. It appeared that, strikingly,
the patterns of up- and down-regulated endothelial
genes in injured regions are largely non-overlapping
between the two age groups (Fernandez-Lopez et al.
2012). Transcript levels of several adhesion molecules
and extracellular matrix (ECM) components, including
E-selectin and P-selectin, were differentially affected by
injury in immature and adult brain. Gene expression of
Mmp-9 was significantly up-regulated in injured adults
and, while high transcript levels of collagen type IV α1
(Col4a1) and Col4a2 remained unaltered in neonates,
a significant increase of these two genes was evident in
injured adult rats. Interestingly, transcripts of angiogenic
regulators Vegfr-2 and Angpt2 were increased after stroke
in adults but not in neonates (Fernandez-Lopez et al.
2012). Furthermore, comparisons of protein expression of
occludin, caludin-5 and ZO-1 between adult and neonatal
rats after tMCAO showed better preserved expression in
neonates than in adults (Fernandez-Lopez et al. 2012).
Endothelial-ECM interaction viaβ1 integrins regulates the
expression of claudin-5 and BBB tightness whereas other
ECM proteins, like galectin-3, mediate integrin-induced
stabilization of focal adhesions and activate cytokine
receptors to enhance actions of growth factors (Goetz
et al. 2008). Laminin degradation occurs after focal stroke
in adults and causes detachment of astrocytic end-feet,
disrupts BBB and induces intracranial haemorrhage
(Fukuda et al. 2004), while in neonates expression of this
ECM protein is not reduced acutely (Fernandez-Lopez
et al. 2012). The role of other ECM proteins in injured
neonates is less studied, but opposite effects of galectin-3
in adult stroke and hypoxia-ischaemia (HI) have been
demonstrated (Doverhag et al. 2010; Lalancette-Hebert
et al. 2012). Together, these data suggest that intrinsic
developmental differences in basement membrane and
ECM formation may contribute to a better-preserved BBB
integrity after acute neonatal arterial stroke.

It is not known at the moment whether the distinct
responses of the neonatal BBB to tMCAO are due to
the model (i.e. the lack/presence of hypoxia), severity
of the ischaemic episode, the extent of reperfusion, and
animal species and strain. Direct comparisons of BBB
dysfunction in HI and focal stroke models in neonatal
rodents are lacking. Further, since both male and female
rodents were used in experiments, the role of sex in the

observed effects is unclear. It is notable in this respect
that hypoxia in piglets has shown resistance to BBB
opening, indicating species-specific damage responses
(Stonestreet et al. 1992). The effects of ischaemic injury
on the many transport systems present on the BBB and
BCB still remain largely unknown. Further, data on the
extent and the timing of angiogenesis after neonatal
stroke and HI are limited. A few available studies that
looked at endothelial proliferation 72 h to 2 weeks
after tMCAO have demonstrated increased numbers of
BrdU-positive endothelial cells starting in only the second
week post stroke (Shimotake et al. 2010; Dzietko et al.
2013; Fernandez-Lopez et al. 2013). In contrast to neonatal
rodents, ovine fetuses exposed to bilateral carotid artery
occlusion show neovascularisation starting between 48
and 72 h after artery obstruction, as well as an increase
in the proliferation marker Ki67 in endothelial cells
around this time (Virgintino et al. 2014). Whether these
dissimilarities are due to different models and animal
species, developmental stages or severity of injury remains
unclear.

Integrity of the brain barriers and perinatal
inflammation

The brain is under constant immune surveillance by
both blood-borne immune cells in leptomeningeal and
perivascular spaces and by resident microglia (Prinz &
Priller, 2017). Further, the epithelial barrier in the choroid
plexus has been suggested to function as an ‘educational
gate’ for leukocytes under normal conditions (Shechter
et al. 2013). However, under physiological steady-state
conditions, the neural parenchyma is protected from
peripheral immune cells by the barrier systems (Prinz
& Priller, 2017). Systemic infections can change this
situation dramatically, making the vasculature inflamed
and breaching BBB integrity, and leading to excessive
inflammation in the brain due to trafficking of peripheral
immune cells into the parenchymal tissue, induction of
pro-inflammatory mediators in the vasculature, and/or
activation of microglia (Obermeier et al. 2013). Further,
systemic inflammation changes barrier transport systems
(Coisne & Engelhardt, 2011). For example, administration
of the TLR-3 ligand, polyinosinic:polycytidylic acid
(PolyI:C) to pregnant mice (E15.5) followed by a P-gp sub-
strate ([3H]digoxin), resulted in increased accumulation
of the substrate in the fetal brain (Bloise et al. 2017).

Bacterial infections in the newborn that give rise to
meningitis clearly involve an opening of the BBB, at least
partly due to the microbial-induced systemic inflamma-
tion (Kim, 2008; Barichello et al. 2013). However, it is
unclear to what extent systemic inflammation by itself
affects the integrity of the BBB. Importantly, infection
can produce long-lasting effects on the barrier function.
Newborn rats given five intraperitoneal injections of
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the endotoxin (lipopolysaccharide, LPS) at postnatal
days 0, 2, 4, 6, and 8 demonstrated variable effects in
BBB opening. When brain/plasma sucrose concentration
ratios were measured as an index of BBB permeability,
there was no significant change in BBB permeability
at either P9 or P20 (Stolp et al. 2011), but when
permeability was assessed at adult age, significantly higher
brain/plasma sucrose concentration ratios were observed
following early postnatal LPS treatment (Stolp et al.
2005). Similarly, while the combination of LPS and HI
induced significant changes in BBB integrity in P12 rats,
there was little acute evidence of neutrophil infiltration
into the brain or increased albumin leakage after a single
injection of LPS (Brochu et al. 2011). In the fetal sheep,
extravasation of plasma albumin has been demonstrated
in the cerebellum after placental inflammation induced
by LPS administration into the uterine artery of pregnant
sheep at 134–136 days gestation (Hutton et al. 2007).
Following low dose LPS (0.1 μg kg−1) to late gestation
fetal sheep, intraparenchymal albumin was also found
around cerebral blood vessels, indicating increased BBB
permeability (Yan et al. 2004). Whether these differences
in BBB response to systemic inflammation are dependent
on stages of development, or are specific to species or sub-
ject to variable sensitivity to the different inflammatory
substances is unknown. Interestingly, it was recently
shown that hypoxia promotes bacterial entry to the brain,
suggesting synergy between different insults that should
be considered in future studies (Zarate et al. 2017).

The role of the choroid plexus has recently evolved as a
research topic in health and disease (Marques et al. 2017).
We investigated the expression of efflux and detoxification
proteins in the choroid plexus (MRP1/Abcc1 and
glutathione-S-transferase) after administration of LPS,
HI or the combination of LPS and HI in neonatal
mice (D’Angelo et al. 2013). Despite both HI and
LPS-HI causing significant parenchymal injury, there
was no evidence of cell damage in the choroid plexus
and only LPS-HI resulted in a small increase in MRP1
mRNA expression. However, there was a significant
down-regulation of the endogenous Nrf2 anti-oxidant
system. Further, LPS prevented the endogenous anti-
oxidant response following HI, suggesting the possibility
that peripheral inflammation may contribute to increased
vulnerability of the brain via oxidative mechanisms
at the blood-CSF barrier interface. We found that
administration of a synthetic mimic of gram-positive
infection (toll-like receptor 2 agonist Pam3CSK4, PAM)
increased infiltration of leukocytes, mainly neutrophils
and monocytes, to the CSF and brain (Mottahedin et al.
2017a). Although PAM and LPS induced a similar degree
of peripheral inflammatory responses, PAM provoked
a distinct brain chemokine response and increased
permeability, in particular, of the blood-CSF barrier.
These results do not support the hypothesis that innate

immune activation, in general, induces immune cell
infiltration via the choroid plexus. Instead, our results
indicate a specific TLR2-mediated mechanism of CNS
inflammation and leukocyte invasion into the neonatal
brain. This specific interaction between peripheral and
central immune responses appears to occur to a large
extent via the blood-CSF barrier. This may be important
for neurological outcomes, as we have also found that
systemic activation of TLR2 suppresses mitochondrial
respiration and exacerbates hypoxic-ischaemic injury
in the developing brain (Mottahedin et al. 2017b).
Importantly, hypothermia was effective in reducing brain
injury in the model of combined PAM-HI in neonatal
rats (Falck et al. 2017). Further, previous studies have
shown that blocking lymphocyte trafficking with FTY720
(fingolimod) prevents inflammation-sensitized HI brain
injury in newborn rats, mitigates the influx of leukocytes
through the choroid plexus and subsequently leads to
attenuated BBB damage and better preservation of growth
and white matter functions (Yang et al. 2014).

Collectively, the studies described suggest that endo-
toxin-induced intrauterine inflammation can breach the
BBB but increased permeability is less often seen in
neonatal rodent studies. On the contrary, experimental
induction of gram-positive systemic infections has
profound effects on leukocyte infiltration into the brain
via the choroid plexus. Thus, it will be of great importance
to understand the underlying mechanisms of different
bacterial infections on different barrier systems.

Conclusion

It is now clear that the blood-brain and blood-CSF
barriers are present and functional in early embryonic
development. Tightness of the barriers is evident soon after
the appearance of tight junctions and adherence proteins
between endothelial or epithelial cells, which occur in
parallel with recruitment of endothelial cells and pericytes
into the brain. However, it is important to point out that
CNS barrier systems are not static during development;
on the contrary, they change significantly with maturation
processes of the brain. In particular, transport systems are
dynamically regulated, which probably reflect the different
demands of the developing brain. Astrocytes are believed
to play very important modulating roles in these processes
during development.

Understanding of barrier functions in the developing
brain has significantly moved forward in the last couple
of decades, but there are experimental considerations
that could affect interpretation. Studies on changes in
BBB permeability have to a large extent been performed
in rodents, which have an agyric brain that develops
primarily after birth. Consequently, rodent experiments
on barrier maturation may have less relevance to
larger vertebrate species, including humans. Further,
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there are limitations with regard to methods used
to study permeability changes. Data based solely on
extravasation of blood-borne proteins, such as albumin,
are somewhat precarious and should be cautiously inter-
preted, in particular when assessing extent and temporal
changes. Applying exogenous compounds, especially in
conjunction with live brain imaging, offer the possibility of
more accurately assessing BBB permeability and temporal
changes, which is advantageous both for the validity
and biological relevance of data. However, care should
also be exercised when interpreting experiments based
on concentration ratios of exogenous markers between
blood and brain, particularly when long circulation
times of markers are employed, as parameters other
than BBB permeability could influence results. It is also
important to increase knowledge on transport systems
to better understand how these develop with maturation
and may affect neuropathological outcomes in disease
models. Although bacterial systemic infections have been
shown to breach the barriers, underlying mechanisms
still remain to a large extent unclear and systemic
inflammation by itself does not necessary increase BBB
permeability. Further, new evidence suggests that some
bacteria-induced inflammation strongly modulates the
blood-CSF barrier across the choroid plexus, allowing
leukocyte trafficking into the CSF and the brain
parenchyma. These findings raise the question of whether
diverse bacteria impair/modulate distinct barrier systems
during development. Introducing pharmacological agents
into the brain is considered one of the major hurdles in
successful brain therapeutics. Our increasing knowledge
of the role of barrier systems in brain development
and disease suggests that the next generation of
pharmacological treatments for perinatal brain injury
should target these structures.
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