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HYPOTHERMIA ~3 to 72 hours
rEpo/Stem cells

treatment for days-weeks?

From ~72 hours to ? months
THIRD PHASE

Abstract Therapeutic hypothermia significantly improves survival without disability in
near-term and full-term newborns with moderate to severe hypoxic–ischaemic encephalopathy.
However, hypothermic neuroprotection is incomplete. The challenge now is to find ways to
further improve outcomes. One major limitation to progress is that the specific mechanisms of
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hypothermia are only partly understood. Evidence supports the concept that therapeutic cooling
suppresses multiple extracellular death signals, including intracellular pathways of apoptotic and
necrotic cell death and inappropriate microglial activation. Thus, the optimal depth of induced
hypothermia is that which effectively suppresses the cell death pathways after hypoxia–ischaemia,
but without inhibiting recovery of the cellular environment. Thus mild hypothermia needs to be
continued until the cell environment has recovered until it can actively support cell survival. This
review highlights that key survival cues likely include the inter-related restoration of neuronal
activity and growth factor release. This working model suggests that interventions that target
overlapping mechanisms, such as anticonvulsants, are unlikely to materially augment hypo-
thermic neuroprotection. We suggest that further improvements are most likely to be achieved
with late interventions that maximise restoration of the normal cell environment after therapeutic
hypothermia, such as recombinant human erythropoietin or stem cell therapy.

(Resubmitted 20 December 2017; accepted after revision 28 March 2018; first published online 16 April 2018)
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University of Auckland, Private Bag 92019, New Zealand. Email: aj.gunn@auckland.ac.nz

Abstract figure legend The progressive phases of perinatal brain damage after severe hypoxia–ischaemia, and how
interventions (i.e. hypothermia, recombinant human erythropoietin (rEpo) and stem cells) interact with deleterious
processes induced in these phases. Therapeutic cooling is effective at suppressing damaging mechanisms in the latent and
second phases, including inflammation and withdrawal of trophic factors, which helps stabilise neural mitochondria and
so provides neuroprotection. This hypothermia-induced suppression should be continued until cellular homeostasis and
prosurvival signalling (e.g. growth factor and electroencephalogram (EEG) restoration) have recovered. Future research
should focus on preclinical treatments that further support these survival cues and suppress long-lasting injurious
processes (i.e. persistent inflammation and epigenetic changes) in the third phase. rEpo and stem cells are promising
candidates.

Introduction

Therapeutic hypothermia is now standard care for
infants with moderate to severe hypoxic–ischaemic
encephalopathy (HIE) (Azzopardi et al. 2012), with
compelling evidence from randomised controlled trials
that it improves survival and neurological outcomes into
middle childhood (Jacobs et al. 2013; Natarajan et al. 2016)
and reduces brain damage on modern imaging (Shankaran
et al. 2015). Hypothermic neuroprotection is significant
but incomplete, reducing the combined risk of death and
severe disabilities at 18 months of age by �12%, from
58 to 46% (Edwards et al. 2010). Thus, many infants still
die or survive with major debilitating handicaps, despite
therapeutic hypothermia.

The empirical parameters for optimal neuroprotection
are now well established, as previously reviewed in detail
(Wassink et al. 2014). Therapeutic hypothermia needs
to be induced as soon as possible in the first 6 h
after hypoxia–ischaemia (HI), optimally reducing brain
temperature by no more than 3–5°C, and then continued
for �72 h. Deeper cooling (by �8.5°C), or shorter or
longer periods of cooling than 72 h reduced neuro-
protection both in preclinical studies (Alonso-Alconada
et al. 2015; Davidson et al. 2015c, 2018) and in a
randomised clinical trial (Shankaran et al. 2017). The
precise mechanisms underlying these now well-known
empirical observations are still unclear. Further, given

that current cooling protocols are near-optimal, future
progress depends on finding interventions that can
complement hypothermia. In this review, we propose
a mechanistic working model to help understand these
parameters for hypothermic neuroprotection, and discuss
which post-insult phases and specific mechanisms should
be targeted to further improve outcomes.

Hypoxic–ischaemic brain damage evolves over time

The seminal finding that underpinned the development
and translation of therapeutic hypothermia is that peri-
natal brain damage after HI is a process that evolves over
time rather than a ‘static’ event. Hope and colleagues
first showed with magnetic resonance spectroscopy in
term neonates with moderate to severe HIE that highly
energetic substrates (i.e. phosphocreatine and ATP) often
normalised shortly after birth but then deteriorated again
(Hope et al. 1984; Azzopardi et al. 1989), despite sufficient
cerebral oxygenation and perfusion. Studies in newborn
piglets then demonstrated that cerebral energetic failure
after HI corresponded with progressive neuronal death
(Martin et al. 2000).

As illustrated by the Abstract Figure, during severe
HI (the ‘primary’ phase), there is gradual depletion
of high-energy phosphate compounds and anoxic
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depolarisation. As energy-dependent mechanisms that
maintain cellular homeostasis (e.g. Na+/K+-ATPase
pumps) begin to fail, cytotoxic oedema (i.e. cellular
swelling) and extracellular accumulation of excitatory
amino acids occurs, with unregulated calcium influx into
neurons. Neural energy metabolism and cell swelling
typically recover to near-normal values within 30–60 min
after reperfusion and are then sustained during a ‘latent’
phase for the following �6 h (Hope et al. 1984; Azzopardi
et al. 1989; Gunn et al. 1997; Bennet et al. 2007b).

After moderate to severe HI, the latent phase is followed
by delayed deterioration after �6–15 h (the ‘secondary
phase’), with development of stereotypical seizures,
accumulation of excitotoxins and oedema (Fig. 1), and
gradual mitochondrial failure and spreading cell death
(Gunn et al. 1997; Bennet et al. 2007b). This triphasic
pattern has been shown in multiple species, including
rodents, piglets and humans (as reviewed by Wassink
et al. 2014), and correlates with histological brain damage
after HI (Williams et al. 1992; Blumberg et al. 1997;
Vannucci et al. 2004). In newborn humans, the severity
of loss of oxidative cerebral metabolism after HI is highly
associated with death and adverse outcomes (Azzopardi
et al. 1989; Roth et al. 1997). Finally, there is evidence of
a ‘tertiary’ phase after HI, where chronic inflammation
and epigenetics impair neural and glial regeneration,
synaptogenesis and neurite outgrowth (Fleiss & Gressens,
2012).

How does hypoxic–ischaemic brain damage spread?

One of the striking features of HI-mediated brain damage
is that cell dysfunction and death spread over time
from injured regions to areas that were originally intact
(Thornton et al. 1998). The gap junctions that link
adjacent cells to allow transport of small molecules,
ions and second messengers (Davidson et al. 2015a)
are formed through docking of hexamer hemichannels
(connexons). These hemichannels are active under physio-
logical conditions, and signal via regulated ATP release.

There is increasing evidence that severe HI triggers
transient, unregulated opening of these connexin hemi-
channels, resulting in disrupted resting membrane
potential, release of damaging ATP and glutamate (Ye
et al. 2003; Kang et al. 2008), and uptake of water
leading to cell swelling and rupture (Quist et al.
2000; Rodriguez-Sinovas et al. 2007). Supporting this
concept, an intracerebroventricular infusion with a
mimetic peptide that reversibly binds with the second
extracellular binding loop on the connexin-43 protein,
at a dose that blocks hemichannels (O’Carroll et al.
2008), from 90 min until 25 h after profound asphyxia or
cerebral ischaemia in preterm and near-term fetal sheep,
reduced status epilepticus, and improved restoration of

electroencephalographic (EEG) power and neural and
oligodendroglial survival (Davidson et al. 2012, 2014).
These data show that connexin hemichannels have a
critical role during the early latent phase in propagating
damage after HI.

Mechanisms of delayed cellular death – programmed
apoptosis

Multiple factors are involved in the delayed development
of cell death following initial recovery of cerebral oxidative
metabolism after HI. These include activation of cell death
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Figure 1. The physiological effects of cerebral ischaemia for
30 min (from time zero), with or without cerebral cooling
(indicated with the blue bar) induced from 3 until 72 h after
reperfusion in term-equivalent fetal sheep
The panels show, in descending order, temporal changes in
extradural temperature (°C), cortical impedance (i.e. cellular
swelling, as a percentage from baseline), and
electroencephalographic (EEG) power (decibels) in normothermia
(black circles) and hypothermia groups (blue circles), compared to
sham-ischaemic animals (white circles). Treatment with hypothermia
suppressed the delayed rise in cytotoxic oedema (as measured with
cortical impedance), and improved recovery of EEG power after
resolution of the secondary seizures.
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pathways, withdrawal of trophic factors and secondary
inflammation. In particular, the cell death pathways are
activated through unregulated influx of calcium during
anoxic depolarization, exposure to reactive oxidative
species during reperfusion and other factors (Thornton
et al. 2017).

Apoptosis can be triggered through intracellular and
extracellular pathways (Fig. 2; reviewed in detail by
Thornton et al. 2017). The intracellular pathway involves
excessive calcium influx and astrocytic growth factor
withdrawal (Clawson et al. 1999), leading to increased
translocation and interaction of pro-apoptotic proteins
at the neuronal mitochondria. These apoptotic proteins,
such as the Bcl-2-associated X (Bax) and truncated
BH3-interacting-domain death agonist (tBid) proteins
(Raemy & Martinou, 2014), produce pores in the
outer mitochondrial membrane. This releases several
pro-apoptogenic factors, including direct inhibitor of
apoptosis-binding protein with low pI (Diablo), also
known as second mitochondria-derived activator of
caspases, apoptosis-inducing factor (AIF) and cytochrome
c from the mitochondrion (Wassink et al. 2014).

Intramitochondrial calcium overload also facilitates
cytochrome c release through reactive oxygen species
(Hagberg et al. 2014), and activates brain-specific calpains
that degrade intracellular structural and signalling
proteins (Bevers & Neumar, 2008). In addition, HI
activates extracellular death receptors that stimulate
necroptosis or caspases-8 and -3 (Giulian et al. 1993).
These molecular mechanisms are detailed in Fig. 2.
In neonatal rats, caspase, Bax and cytochrome c
inhibitors all provide partial neuroprotection, supporting
a pathological role for these intracellular mechanisms
(Thornton et al. 2017).

Mechanisms of delayed cellular death – programmed
necrosis

In the developing brain, necrosis after HI often
demonstrates a variable morphology. This pattern
typically involves cellular fragmentation, but there is
increasing evidence that delayed necrotic cellular death
is programmed (Northington et al. 2007). Necroptosis,
for example, is mediated via interconnected mechanisms
that involve caspase-8, receptor-interacting protein
kinases (RIPK) 1 and 3 and the mixed lineage kinase
domain-like pseudokinase (MLKL) (Rodriguez et al.
2016). These proteins have multiple and often opposing
roles that participate in both apoptosis and necrosis
(Northington et al. 2007). For example, RIPKs activate
the inflammasome, which might underlie the robust
neuro-inflammation triggered by HI (Man & Kanneganti,
2016), whereas MLKL has multiple functions that include

facilitating pore formation that cause the cell membrane to
rupture (Wang et al. 2014), culminating in cell death with
a necrotic phenotype. Supporting these data, treatment
with necrostatin-1, a non-selective necroptotic inhibitor,
reduced necrotic cellular death and oxidative damage to
proteins in post-HI p10 mice (Northington et al. 2011a).

Summary of the mechanisms of delayed cell death

Taken together, it is clear from these findings that
brain metabolism can recover to normal or near-normal
levels after even severe HI, but multiple, inter-related
mechanisms are triggered that ultimately lead to delayed
cellular death (Thornton et al. 2017).

The mechanisms of hypothermic
neuroprotection

Induced hypothermia produces a graded reduction in
cerebral metabolism of �5% °C−1 (Laptook et al. 1995).
After resuscitation, tissue oxygenation and substrate
delivery are restored (Gunn et al. 1997), and therefore
it is improbable that reduced metabolism per se would
be protective. However, it is important to reflect that
the neuroprotective effects of cooling during HI are sub-
stantially greater than would be expected from a 15–20%
reduction in metabolism. For example, in adult rats,
cooling during cerebral ischaemia was associated with a
dramatic reduction in major hippocampal neuronal loss
compared with normothermia (6 ± 1% vs. 90 ± 17% dead
neurons), for the same duration of neural depolarisation
(Bart et al. 1998). This finding strongly indicates that hypo-
thermia supports cell survival by suppressing active, intra-
cellular cell death mechanisms rather than by reducing
oxidative metabolism. There is considerable evidence that
this interaction is critical for post-resuscitation neuro-
protection, as discussed next.

Hypothermia suppresses programmed cell death after
hypoxia–ischaemia

There is increasing evidence that induced hypothermia
suppresses apoptotic and necrotic processes triggered
after HI (Wassink et al. 2014). For example, in vitro,
intra-hypoxic hypothermia reduced apoptotic and
necrotic morphological death in developing neurons, and
hypoxia-driven protein formation (Bossenmeyer-Pourie
et al. 2000). Further, hypothermia also suppressed
serum-deprivation and H2O2-induced neuronal
apoptosis, with lower activation of caspases-3, -8
and -9 and release of cytochrome c, consistent with
depressed intracellular and receptor-induced apoptosis
(Xu et al. 2002; Li et al. 2012). Consistent with this,
in adult rats, induced hypothermia after transient

C© 2018 The Authors. The Journal of Physiology C© 2018 The Physiological Society
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global ischaemia was associated with up-regulated
anti-apoptotic B-cell lymphoma 2 (Bcl-2) protein, and
down-regulated pro-apoptotic p53 protein (Zhang et al.
2010), with reduced neural necrosis and apoptosis.
In adult rats with focal ischaemia, hypothermia also
attenuated death receptor expression and caspase-8
activation (Liu et al. 2008), supporting its interaction with
extracellular apoptosis, and suppressed genes implicated
in inflammation (Nagel et al. 2012).

In neonatal piglets, hypothermia started after severe
HI reduced apoptotic but not necrotic cell death
(Edwards et al. 1995), whereas hypothermic neuro-
protection reduced caspase-3 and microglial activation in
term-equivalent fetal sheep (Roelfsema et al. 2004). In
neonatal rats, acute hypothermia after HI also reduced

caspase-3 and increased X-linked inhibitor of apoptosis
(XIAP) in the core ischaemic lesion, but not the
penumbra, whereas AIF translocation was suppressed
in both regions (Askalan et al. 2011), indicating that
hypothermia interacts with both caspase-dependent and
-independent mechanisms. Finally, in neonatal rodents
with HI, hypothermia attenuated macroscopic brain
damage, with less necrotic and apoptotic neural death
after 24 h, and suppressed cytochrome c release, caspase-3
and calpain activation in the cortex, hippocampus,
thalamus and striatum (Ohmura et al. 2005). Thus,
taken together, these data suggest that hypothermic
neuroprotection in the developing brain is likely
achieved through both anti-apoptotic and anti-necrotic
mechanisms (Northington et al. 2011b).

Death receptors

TNF TRAIL FAS

Caspase-8

Caspase-3

Bid tBid p53

Na+/K+-ATPase
pumps

Connexin-43
Hemichannels

Necroptosis
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Nucleus

Intracellular space

Extracellular space

DNA fragmentation
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Cyto-c
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BcI-2
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Figure 2. Flow chart to illustrate intracellular mechanisms associated with delayed programmed cell
death after HI
The snowflakes illustrate likely targets for therapeutic hypothermia. AIF, apoptosis inducing factor; APAF, apoptosis
protease activating factor; Bid, BH3-interacting domain death agonist; tBid, truncated BH3-interacting domain
death agonist; Bax, Bcl-2-associated X protein; Bak, Bcl-2 antagonist/killer 1; Bcl-2, B-cell lymphoma 2 protein
family; Bcl-xL, B-cell lymphoma-extra-large; Cyto-c, cytochrome c; Diablo, direct inhibitor of apoptosis-binding
protein with low pI, also known as Smac, second mitochondria-derived activator of caspases; DISC, death-inducing
signalling complex; Fas receptor, first apoptosis signal receptor; MLKL, mixed lineage kinase domain-like pseudo-
kinase; p53, tumour protein p53; ROS, reactive oxygen species; RIPK, receptor-interacting serine/threonine-protein
kinase; TNF receptor, tumour necrosis factor receptor; TRAIL receptor, TNF-related apoptosis-inducing ligand
receptor.
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Hypothermia suppresses inflammation after
hypoxia–ischaemia

Perinatal HI triggers an inflammation-based cascade,
which increases the release of cytokines and interleukins
(Hagberg et al. 2015). These factors potentiate developing
cellular damage, either through neurotoxically induced
apoptosis or endothelial cell-propagated inflammation,
with leukocytes infiltrating the post-ischaemic brain
(Gunn et al. 2017). In experimental paradigms, post-insult
hypothermia inhibits microglial activation, chemotaxis,
and interleukin and pro-inflammatory cytokine release,
which might provide mitochondrial protection (Wassink
et al. 2014). For example, cytokine-induced inducible
nitric oxide synthase (iNOS) expression raises intracellular
NO· levels, which competes with molecular oxygen for
binding on cytochrome oxidase (Brown, 1997) and so
depresses mitochondrial respiration. Tumour necrosis
factor α- and interferon-γ-mediated iNOS production
also caused apoptosis and DNA damage in cultured
oligodendrocytes (Druzhyna et al. 2005). Critically, hypo-
thermia has a differential effect on the glial reaction to
ischaemia, demonstrating potent microglial suppression
but little effect on astroglial proliferation (Si et al. 1997).
This suggests that hypothermic neuroprotection results,
in part, from reducing ‘bad’ inflammation while not
suppressing astroglial recovery.

Hypothermia, excitotoxins and neuronal activity

In contrast to their role during the primary and
reperfusion phases, the importance of excitotoxins after
reperfusion is questionable given that extracellular levels
rapidly return to baseline values (Tan et al. 1996;
Thoresen et al. 1997). Early studies of anti-excitotoxic
agents found apparent protection but did not control
for cerebral temperature (McDonald et al. 1987; Hattori
et al. 1989). Critically, subsequent studies showed that
glutamate blockade was associated with drug-induced
hypothermia and controlling for temperature abolished
neuroprotection (Ikonomidou et al. 1989; Engidawork
et al. 2001). In the adult rodent, Nurse and
Corbett showed that the apparent neuroprotective
effect of 2,3-dihydroxy-6-nitro-7-sulfamoyl-benzo[f]
quinoxaline-2,3-dione (NBQX), a glutamate antagonist
administered from 1 h after mild cerebral ischaemia, was
directly associated with mild endogenous hypothermia
for several days that developed an hour after drug
administration (Nurse & Corbett, 1996), and that similar
neuroprotection could be induced with application of the
same hypothermia profile over 28 h. Conversely, NBQX
‘neuroprotection’ was effectively abolished by maintaining
normothermia. Furthermore, anti-excitotoxin therapy
limited to the secondary phase did not reduce neuro-
nal damage in the severely injured parasagittal cortex of

fetal sheep, and had only limited neuroprotective effects
in more mildly affected areas of the brain (Tan et al. 1992;
Gressens et al. 2011).

Nevertheless, even with normal levels of extracellular
glutamate, excitotoxicity may still play an indirect
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Figure 3. The physiological effects of cerebral ischaemia for
30 min (from time zero), with or without cerebral cooling
(indicated with blue symbols) induced from 3 h until either 48
or 72 h after reperfusion in term-equivalent fetal sheep
The panels show, in descending order, temporal changes in
extradural temperature (°C), electroencephalographic (EEG) power
(decibels) and spectral edge frequency (hertz) in
ischaemia–normothermia (black circles), ischaemia–hypothermia
48 h (light blue circles) and ischaemia–hypothermia 72 h groups
(dark blue circles). EEG activity was suppressed in all groups during
and immediately after ischaemia followed by a transient increase
during seizures from 8 to 48 h. EEG activity in the
ischaemia–normothermia group remained low for the remainder of
the experiment, whereas both hypothermia groups showed a
significant recovery in power and spectral frequency from 24 to 72 h
(P = 0.05). Rewarming at 48 h was associated with loss of EEG
power in the ischaemia–48 h hypothermia group, which did not
occur with rewarming at 72 h (P = 0.05). Data are
means ± SEM.
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injurious role. Pathological hyperexcitability of glutamate
receptors has been reported in P10 rats for many
hours after HI, with improved neuronal outcome after
receptor blockade (Jensen et al. 1998). Supporting this
hypothesis, despite suppression of overall EEG activity
for many hours after asphyxia, transient epileptiform
activity was seen in the early recovery phase in preterm
sheep fetuses that developed severe injury (George et al.
2004), which was correlated with the severity of neuro-
nal loss in the striatum and hippocampus (Dean et al.
2006b; Bennet et al. 2007c). Suppression of these EEG
transients with a glutamate receptor antagonist partially
reduced cellular loss (Dean et al. 2006a). Furthermore,
neuroprotection with post-asphyxial moderate cerebral
hypothermia in the preterm fetal sheep was associated
with a marked reduction in the numbers of epileptiform
transients in the first 6 h after asphyxia, and reduced
amplitude of delayed seizures (Bennet et al. 2007a). The
combination of glutamate receptor antagonist infusion
and mild hypothermia after severe asphyxia in pre-
term fetal sheep, however, showed non-additive neuro-
protection, consistent with the suggestion that cooling
is partly protective by attenuating this receptor hyper-
activity (George et al. 2012). Further studies are needed to
determine whether this is also the case after HI damage in
the term-equivalent brain.

Duration of cooling and recovery of EEG activity

Recent studies in near-term fetal sheep have shown that
when head cooling was started 3 h after ischaemia,
cooling until 72 h was markedly more protective than
cooling until 48 h (Fig. 3). Strikingly, rewarming at
48 h after cerebral ischaemia was associated with marked
deterioration of EEG power over the next 24 h, and
with greater numbers of microglia on histology at day
7 and substantially less improvement in overall neuro-
nal survival compared to continued cooling until 72 h
(Davidson et al. 2018). This suggests that deleterious
inflammation is still continuing between 48 and 72 h
after HI, and is reactivated or exacerbated by premature
rewarming. It is of particular interest that in this animal
study the spectral edge frequency of the EEG was still
partially suppressed at 48 h, and did not reach control
values until around 72 h. Conversely, we have shown
that extending cooling from 72 to 120 h did not further
improve EEG recovery, and indeed was associated with
apparently impaired neuronal survival in some brain
regions (Davidson et al. 2015c). This suggests for the first
time that normalization of EEG activity is an important
biomarker for how long therapeutic hypothermia needs to
be continued. Local neural interconnections, with shorter
connections between neurons, lead to higher frequency
activity. Thus increasing cortical EEG frequency strongly
infers improved cortical function. More speculatively,

it also seems to support the hypothesis that EEG
activity, i.e. cross-talk between neurons, represents an
important aspect of gradual normalization of the cellular
environment after HI.

Restoration of the neuronal environment: EEG
activity and growth factors

The factors underlying recovery of brain activity after
injury are incompletely understood. In part it is related
to reversal of functional depression of injured cells,
and restoration of signalling between interconnected
structures (Glassman & Malamut, 1976). Neuronal
activity itself is critical for cell viability and closely interacts
with trophic growth factor release.

Electrical activity is a vital part of maintaining neuronal
homeostasis in target neurons (Koike et al. 1989). Indeed
there is some evidence that even abnormal activity can be
beneficial in some settings. In rats, two electroconvulsive
seizures within the first 24 h after contusion accelerated
recovery of beam-walking, with less cerebral necrosis
(Feeney et al. 1987). Further, in cats, brief stimulation with
d-amphetamine after bilateral frontal cortex ablation was
associated with persistent improvement in beam-walking
(Sutton et al. 1989). Conversely, the suppression of
EEG activity with γ-aminobutyric acid agonists such as
diazepam and muscimol greatly impairs the recovery from
cortical or striatal lesions (Schallert et al. 1990), which
might relate to impaired synaptogenesis. Synaptogenesis
is in part dependent on brain activity (Saneyoshi et al.
2008), whereas the inhibition of neuronal activity impairs
synaptogenesis (van Huizen et al. 1985).

Endogenous growth factors play a complementary
role with neural activity in supporting neural homeo-
stasis. As well as the direct homeostatic effects of neuro-
nal activity (Koike et al. 1989), neural stimulation also
indirectly supports neuronal survival by promoting release
of fibroblast growth factor (Mattson & Rychlik, 1990).
Independently, during profound electrical suppression in
vivo, endogenous growth factors help support neuronal
survival (Anderson et al. 1988). After HI brain damage in
neonatal rats, neurotrophic activity is initially suppressed
(Clawson et al. 1999), but growth factor treatment
markedly reduces post-HI brain damage in rodents and
fetal sheep (Guan et al. 2003). Endogenous growth
factor activity increases from around 3–5 days, reaching
maximum expression at 8–15 days (Nieto-Sampedro
et al. 1982; Guan et al. 2003). This induction of growth
factors might help promote stabilization of the cellular
environment and long-term neurorepair.

Consistent with an important role for recovery of
astrocytes in determining outcome of cerebral HI,
there is some evidence in adult rodents that hypo-
thermia after ischaemia and cardiac arrest is associated
with increased expression of growth factors, including

C© 2018 The Authors. The Journal of Physiology C© 2018 The Physiological Society
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glial cell line-derived neurotrophic factor (GDNF), and
brain-derived neurotropic factor (BDNF) and its tyrosine
receptor kinase-B, in a time- and region-specific manner
(Boris-Moller et al. 1998; D’Cruz et al. 2002; Schmidt et al.
2003). Thus, at the least these data confirm that mild hypo-
thermia does not suppress astroglial production of integral
neurotrophins. Further research is needed to understand
whether astroglial growth factor production is essential for
long-term neurodevelopmental recovery after therapeutic
hypothermia.

A working model for hypothermic neuroprotection

Taken together, these experimental studies indicate that
hypothermia actively prevents delayed cell death after
profound HI by suppressing apoptotic and necrotic
cellular death pathways and extracellular inflammation
and thus stabilizing mitochondrial function. To achieve
long-term neuroprotection, this hypothermia-induced
suppression needs to be continued until the extracellular
environment provides a sufficient level of pro-survival
cues.

Key survival cues are EEG activity and growth factors.
Hypothermia in part achieves this by differentially
depressing microglia more than astrocytes (Si et al. 1997)
and so allows neurotrophin activity to recover after
HI. Further, although induced hypothermia somewhat
suppresses stereographic seizures, it does not significantly
inhibit recovery of EEG activity (Davidson et al. 2018).
Critically, as discussed above, there is now compelling
evidence that optimally hypothermia should be continued
until high frequency EEG activity has been restored
(Davidson et al. 2018). It is intriguing to note that the
timing of recovery of this EEG frequency to baseline values
during cooling in this study at �72 h after ischaemia
also corresponds broadly with the known time delay
before endogenous growth factors begin to be induced
after HI in adult and developing rodents (Guan et al.
2003).

This model is consistent with the empirical observation
that optimally the brain should be cooled by 3–5°C, with
loss of protection with deeper cooling (Alonso-Alconada
et al. 2015). This is likely, at least in part, related to the
finding that mild cooling selectively suppresses micro-
glial activation, whereas deeper cooling also suppresses
astrocyte function and proliferation, and so might impair
endogenous restoration of growth factors (Si et al. 1997).
Potentially, it might also reflect greater suppression of
neural function during deep hypothermia (Westover
et al. 2015). This need to allow recovery of the cell
environment before warming is consistent with the strong
observation that cooling needs to be continued until
normalization of EEG frequency (Davidson et al. 2015c,
2018).

The potential implications for combination therapies
with hypothermia

This working model suggests that future combined
therapies should focus on promoting cellular homeo-
stasis after hypothermia through long-term stimulation
of survival cues like neurotrophins, differential
suppression/stimulation of bad/good inflammation,
plus functional integration of new neurons and
oligodendroglial cells (i.e. with recombinant human
erythropoietin (rEpo) or stem cell therapies). First, if
EEG activity is indeed critical for restoration of the
normal cell environment, then high dose anticonvulsant
treatment, which suppresses background activity, is likely
to overlap with the mechanisms of therapeutic hypo-
thermia, and so not provide additional neuroprotection,
but also has the potential to impair long-term neural
recovery.

Consistent with these concerns, there is good evidence
that in adult rats diazepam therapy after cerebral ischaemia
does not augment hypothermic neuroprotection (Davies
et al. 2004) and, as discussed above, that prolonged
suppression can impair functional recovery (Schallert et al.
1990). Supporting this, the anticonvulsant topiramate (Lee
et al. 2000) also did not improve death or neurological
disability in a small phase-II trial in hypothermia-treated
neonates with HIE, compared with hypothermia-treated
babies alone (Filippi et al. 2018). Thus, there is an urgent
need for highly targeted preclinical and clinical research
that can resolve the real world impact.

Similarly, an increasing number of animal studies have
shown non-additive neuroprotection during immediate
co-treatment with hypothermia. For example, in fetal
sheep after cerebral ischaemia, connexin hemichannel
blockade reduced neuronal damage and restored EEG
power (Davidson et al. 2012), but was non-additive
to mild hypothermia (Davidson et al. 2015b). Intra-
cerebral infusion with insulin-like growth factor-1 (IGF-1)
increased post-ischaemic astroglial and oligodendrocyte
survival in near-term fetal sheep (Guan et al. 2001), but
treatment with delayed IGF-1 from 4.5 h after ischemia
plus hypothermia from 5.5 to 72 h did not provide greater
protection or caspase-3 depression than cerebral cooling
alone (George et al. 2011). The noble gas xenon, which has
anti-apoptotic effects through the N-methyl-D-aspartate
(NMDA) receptor (Zhuang et al. 2012), improved hypo-
thermic protection in neonatal piglets after HI but not
in a phase-II clinical trial (Chakkarapani et al. 2010;
Azzopardi et al. 2015). This study is not conclusive since
xenon was not started until a median of 10 h after birth
(range, 4.0–12.6). Nevertheless, these data are suggestive
that non-additive neuroprotection partially resulted from
overlapping mechanisms of action.

By contrast, melatonin started 15 min after HI followed
by hypothermia from 2 h improved histological outcomes
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and recovery of high energy phosphates on magnetic
resonance spectroscopy compared with hypothermia
alone (Robertson et al. 2013). This result likely reflects
melatonin’s potent anti-free radical effects, which will
have been maximal during reperfusion from HI (Miller
et al. 2005), but it is unclear whether it would have been
equally effective if it had been started at the same time as
hypothermia. Nevertheless, a pilot trial in human babies
with HIE reported that the combination of melatonin
plus hypothermia was associated with improved survival
at 6 months of age without neurological abnormalities
compared to hypothermia alone (Aly et al. 2015). These
preliminary findings are encouraging but need validation
in larger trials.

Neuroprotection and neurorepair – rEpo and stem cell
therapies

Residual or ‘persistent’ inflammation has been reported
during or after hypothermia (Davidson et al. 2018).
Thus, it is plausible that therapies with anti-inflammatory
and/or pro-regenerative effects might augment hypo-
thermic neuroprotection either during or after therapeutic
hypothermia. In this respect, there is compelling pre-
clinical evidence for benefit with rEpo and stem
cells (Bennet et al. 2012; Juul & Pet, 2015). rEpo
has anti-apoptotic, anti-oxidant, anti-excitotoxic and
anti-inflammation effects in preclinical paradigms
of neonatal brain damage (Rangarajan & Juul,
2014), promotes proliferation and maturation of
oligodendrocytes and neurons (Sugawa et al. 2002; Iwai
et al. 2007), and stimulates growth factors (BDNF and
GDNF) and angiogenesis (Li et al. 2007; Juul & Pet,
2015), which is needed for neurorepair and normal neuro-
development.

Multiple experimental studies have reported
rEpo-mediated neuroprotection with improved
long-term outcomes after HI (as reviewed by Wu &
Gonzalez, 2015). For example, in preterm fetal sheep,
rEpo infusion from 30 min until 72 h after asphyxia
improved neuronal and oligodendroglial loss, and
electrophysiological restoration (Wassink et al. 2017).
In preterm infants, a recent meta-analysis found that
early, prophylactic rEpo improved neurodevelopmental
outcomes at 18–24 months (Fischer et al. 2017). Moreover,
small randomised clinical trials in term neonates with
HIE have demonstrated improved outcomes on modern
imaging and neurological measures after treating with
rEpo (Zhu et al. 2009; Elmahdy et al. 2010; Malla
et al. 2017). These and initial clinical phase II trials on
co-treatment with hypothermia are encouraging (Wu
et al. 2016), but large definitive trials are awaited.

In addition, there is increasing evidence from in
vitro and in vivo preclinical studies that stem/progenitor

cells might have beneficial effects on outcomes after HI
(as reviewed by Bennet et al. 2012). For example, in
newborn rabbit kits that received intrauterine ischaemia
at 0.7 gestation (Drobyshevsky et al. 2015), treatment
with human umbilical cord blood cells at birth resulted
in a dose-dependent improvement in neurobehavioural
outcomes. These stem cells improved functional outcomes
without significant engraftment, suggesting that their
effects were mediated by trophic or immunomodulation
mechanisms. Similarly, in preterm fetal sheep, intranasal
infusion with human amnion epithelial cells at 1, 3 and
10 days after HI reduced neuronal and white matter
loss, and suppressed gliosis and caspase-3, with improved
maturation of the cortical EEG (van den Heuij et al.
2018). In postnatal day 7 rats, combined administration of
mesenchymal stem cells with hypothermia, from 6 h after
HI, was associated with greater improvement on imaging
and behavioural tests than either intervention alone (Park
et al. 2015).

Finally, one small double-blind randomised
placebo-controlled trial in 96 children with cerebral
palsy reported that treatment with umbilical cord
blood plus rEpo attenuated neurocognitive and motor
dysfunction at 6 months more than rehabilitation with or
without rEpo (Min et al. 2013). Thus, stem cell therapies
have potential as a treatment to improve recovery from
HIE, whether in isolation or combined with hypothermia.

Conclusions and perspectives

The working model of the mechanisms of hypo-
thermic neuroprotection presented here suggests that
immediate co-treatment of hypothermia with agents
whose mechanisms overlap with those of hypothermia
is unlikely to offer substantial benefit. Indeed, inter-
ventions such as high dose anticonvulsant therapy
that suppress background neural activity may have
the potential to impair long-term neural recovery. We
propose that research should focus on interventions
that promote cellular homeostasis through long-term
stimulation of survival cues like neurotrophins, selective
suppression/stimulation of bad/good inflammation, plus
integration of new functional cells. Current evidence
suggests that strategies that promote these outcomes, such
as stem cells and erythropoietin, are the most likely to
further improve the outcome of therapeutic hypothermia.
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