Skip to main content
. 2018 Nov 30;5(4):045503. doi: 10.1117/1.JMI.5.4.045503

Table 3.

Power computation example. This table illustrates use of Table 2 equations for computing power for detecting a 0.05 difference in AUC for a study design having seven readers and 148 cases, based on the Van Dyke parameter estimates from Fig. 1, with alpha=0.05.

Model M1:
λ^=rd2/2σ^TR2+cc*[σ^ϵ2Cov^1+(r1)max(Cov^2Cov^3,0)]=7(0.05)2/20.00020040+114148[0.000802290.00034661+(71)(0.000344070.00023903)]=8.439
df^2={σ^TR2+cc*[σ^ϵ2Cov^1+(r1)max(Cov^2Cov^3,0)]}2{σ^TR2+cc*[σ^ϵ2Cov^1max(Cov^2Cov^3,0)]}2/[(t1)(r1)]={0.00020040+114148[0.000802290.00034661+(71)(0.000344070.00023903)]}2{0.00020040+114148[0.000802290.00034661(0.000344070.00023903)]}2/(71)=29.140
Power=Pr(Fdf1,df^2;λ^>F1α;df1,df^2)=Pr(F1,29.14;8.439>F0.95;1,29.14=4.18122)=0.802

Model M2:
λ^=rd2/2c*c[σ^ϵ2Cov^1+(r1)max(Cov^2Cov^3,0)]=7(0.05)2/2114148[0.000802290.00034661+(71)(0.000344070.00023903)]=10.461
Power=Pr(χdf1;λ^2>χ1α;df12)=Pr(χ1;10.4612>χ0.95;12=3.8416)=0.899

Model M3:
λ^=rd2/2σ^TR2+c*c[σ^ϵ2Cov^1max(Cov^2Cov^3,0)]=7(0.05)2/20.00020040+114148[0.000802290.00034661(0.000344070.00023903)]=18.598
df^2=(t1)(r1)=71=6
Power=Pr(Fdf1,df^2;λ^>F1α;df1,df^2)=Pr(F1,6;18.598>F0.95;1,6=5.9874)=0.945