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Abstract: Carbohydrate response element-binding protein (ChREBP) has an important role in the
carbohydrate-mediated regulation of hepatic de novo lipogenesis, but the mechanism for how it
regulates plasma triacylglycerol (TAG) levels has not been established. This study aimed to clarify
the role of ChREBP in regulation of plasma TAG levels. We analyzed the metabolic changes in mice
infected with an adenovirus expressing ChREBP ∆196 (Ad-ChREBP). Compared with adenovirus
harboring green fluorescent protein infected mice, Ad-ChREBP-infected mice had higher plasma
free fatty acid levels and paradoxically lower plasma 3-hydroxybutyrate levels through decreased
fatty acid oxidation, rather than ketogenesis. Consistent with their hepatomegaly and increased
lipogenic gene expression, the liver TAG contents were much higher. Regarding lipid composition,
C16:0 was much lower and C18:1n-9 was much higher, compatible with increased stearoyl CoA
desaturase-1 and ELOVL fatty acid elongase 6 expression. Furthermore, Ad-ChREBP-infected mice
had decreased plasma TAG and very low density lipoprotein (VLDL)-TAG levels, consistent with
decreased Angiopoietin-like protein 3 (Angptl3) and increased fibroblast growth factor (Fgf21) mRNA
and protein levels. Finally, Ad-ChREBP infection increased white adipose tissue Ucp1 mRNA levels
with increased plasma Fgf21 levels. Because Fgf21 and Angptl3 are known to activate and suppress
lipolysis in adipose tissues and oxidative tissues, ChREBP appears to regulate plasma TAG levels by
modulating Fgf21 and Angptl3 levels. Thus, ChREBP overexpression led to dissociation of hepatic
steatosis from hyperlipidemia.
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1. Introduction

Excess dietary carbohydrate and fat intakes occasionally cause obesity, glucose intolerance, and
dyslipidemia [1,2]. These metabolic disorders are associated with non-alcoholic fatty liver disease
(NAFLD) [3–5]. NAFLD is characterized by excess triglyceride accumulation in the liver. The size of
the hepatic triacylglycerol (TAG) pool is determined by several pathways [1]: (1) free fatty acid (FFA)
supply from peripheral adipose tissues; (2) intestinal absorption from dietary fatty acids; (3) de novo
lipogenesis; (4) fatty acid oxidation; and (5) very low density lipoprotein (VLDL) secretion.

De novo lipogenesis plays an important role in the regulation of hepatic lipid contents [5].
In a previous study, de novo lipogenesis was two-fold higher in subjects with NAFLD than in
subjects without NAFLD [5]. De novo lipogenesis is a process that converts excess carbohydrate
into fatty acids for storage [6]. Insulin and glucose induce expression of genes related to de novo
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lipogenesis [6]. Insulin stimulates sterol regulatory element-binding protein 1c (SREBP1c) and glucose
stimulates carbohydrate response element-binding protein (ChREBP) [6]. Both of these transcription
factors regulate the expression of common lipogenic genes, fatty acid synthase (Fasn) and acetyl CoA
carboxylase 1 (Acc1), in the liver and consequently, de novo lipogenesis [6]. ChREBP is induced by a
high-carbohydrate diet and activated ChREBP induces lipogenic gene expression [7–10]. Moreover,
regulation of lipid composition plays an important role in glucose and lipid metabolism [11,12].
Elovl6 and Scd1 are also regulated by SREBP1c and ChREBP [13–16]. Thus, ChREBP has important
roles in regulation of de novo lipogenesis and lipid composition.

Hyperlipidemia is controlled by several factors, including hepatic lipid synthesis, plasma lipid
secretion, and plasma lipid clearance [17]. For example, hereditary hypertriglyceridemia is caused by
decreased lipid clearance through defective lipoprotein lipase activity [18]. Although ChREBP has
an important role in the regulation of liver de novo lipogenesis and lipid secretion, the relationship
between ChREBP and plasma lipid clearance has not been established. Several secretory proteins are
known to regulate plasma triglyceride levels. Fibroblast growth factor-21 (Fgf21) regulates plasma
triglyceride levels through decreased VLDL secretion in the liver and increased TAG disposal in
adipose tissues [19]. Angiopoietin-like protein 3 (Angptl3) and Angiopoietin-like protein 8 (Angptl8)
can regulate plasma TAG levels through inhibition of lipoprotein lipase [20,21]. Because Fgf21 is a
target gene for ChREBP [22], we hypothesized that ChREBP may regulate plasma TAG levels by
modulating secretory protein levels.

In the present study, we examined the effect of ChREBP on lipid metabolism with special reference
to plasma triglyceride metabolism. Clarification of the role of ChREBP in lipid metabolism will
be useful for therapeutic strategies in the treatment of non-alcoholic fatty liver disease (NAFLD)
and hyperlipidemia.

2. Materials and Methods

2.1. Establishment of Mice Infected with an Adenovirus Harboring with ChREBP ∆196

Animal experiments were carried out in accordance with the National Institutes of Health Guide
for the Care and Use of Laboratory Animals (NIH Publication No. 8023, revised 1978). All animal care
was approved by the Animal Care Committee of the University of Gifu (No. 25-16, approval date:
2 May 2013; No. 22-26, approval date: 8 November 2010). Mice were housed at 23 ◦C on a 12-h/12-h
light/dark cycle. At 8–9 weeks of age, male C57BL/6J mice (n = 6 per group) were intravenously
infected with an adenovirus harboring ChREBP lacking the N-terminal 196 amino acids (ChREBP
∆196) or enhanced green fluorescent protein (GFP) as a control [23,24]. ChREBP ∆196 lacks two nuclear
export signals and mimics ChREBP-β [25,26]. Mice had free access to water and an autoclaved CE-2
diet (25.5% protein, 4.6% fat, 48.9% carbohydrate; CLEA Japan, Tokyo, Japan). Mice were euthanized
after 5 days by cervical dislocation. All tissue samples were immediately frozen in liquid nitrogen
and stored at −80 ◦C until further analysis for hepatic TAG and cholesterol contents or quantitative
polymerase chain reaction (PCR).

2.2. Liver Metabolites and Plasma Profile Measurements

Liver glucose-6-phosphate (G6P) and glycogen contents were measured as described [16,23].
Liver lipids were extracted by the Bligh and Dyer method [27] and measured using triglyceride
and cholesterol E-tests (Wako Pure Chemicals, Osaka, Japan). Blood plasma was collected from
the retro-orbital venous plexus after an 18-h fast (for glucose, insulin, FFA, and 3-hydroxybutyrate
(OHBA)) or 6-h fast (for TAG and cholesterol). Blood glucose and OHBA levels were measured using
a Free Style Freedom monitoring system (Nipro, Osaka, Japan). Plasma insulin, FFA, Fgf21, Angptl3,
Angptl8, triglyceride, and total cholesterol levels were determined using commercial assay kits: mouse
insulin enzyme-linked immunosorbent assay (ELISA) (H type) (Shibayagi, Gunma, Japan), NEFA
C-test (Wako Pure Chemicals), mouse/rat FGF21 ELISA (R&D Systems, Minneapolis, MN, USA),
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Angptl3 ELISA kit (Thermo Fisher Scientific, Middletown, VA, USA), Angptl8 ELISA kit (Cloud-Clone
Corp., Wuhan, China), triglyceride E-test, and cholesterol E-test, respectively. The TAG contents
and cholesterol levels in lipoprotein fractions and the VLDL particle numbers were analyzed by
Skylight Biotech Inc. (Akita, Japan) using gel-permeation high-performance liquid chromatography
as described [28]. For serum lipoprotein analysis, serum samples obtained from six mice after a
6-h fast were pooled and measured. Lipid composition assays using gas chromatography analysis
methods after methanolysis were performed by Toray Research Center (Tokyo, Japan). For hepatic lipid
composition analysis, liver samples obtained from six mice after a 6-h fast were pooled and measured.

2.3. RNA Isolation and Quantitative Real-Time PCR

Total RNA isolation, cDNA synthesis, and real-time PCR analysis were performed as
described [22,23,29–31]. Equal amounts of RNA from six mice were pooled and cDNA was synthesized.
Real-time PCR amplifications were performed in triplicate. The relative amounts of mRNA were
calculated by the comparative Ct method. Pol2 expression was evaluated as an internal control.

2.4. Statistical Analysis

All values are presented as mean ± standard deviation. Data were analyzed by Student’s t-test.
Values of p < 0.05 were considered statistically significant.

3. Results

3.1. Adenoviral Overexpression of ChREBP Causes Hepatomegaly without Obesity

We examined the metabolic effects of ChREBP overexpression in mice fed a normal chow diet.
Initially, total Chrebp mRNA levels in Ad-ChREBP-infected mice were increased by about four times
compared with those in Ad-GFP-infected mice (Figure 1A). Endogenous mouse Chrebp-β mRNA was
similarly increased. In contrast, modest decreases were observed for endogenous mouse Chrebp-α
(Figure 1A). ChREBP target genes (Pklr, G6pc, Pgd, Tkt, Acc1, and Fasn) were increased by ChREBP
overexpression. Mttp expression was only modestly increased. Thus, Ad-ChREBP successfully infected
the liver of C57BL/6J mice (Figure 1A).

Table 1. Phenotypic comparisons between Ad-GFP-infected and Ad-ChREBP-infected mice.

Ad-GFP Ad-ChREBP

BW (g) 24.35 ± 1.47 22.46 ± 0.66
Liver (%BW) 6.01 ± 0.31 9.80 ± 1.69
WAT (%BW) 1.38 ± 0.16 1.09 ± 0.45
BAT (%BW) 0.56 ± 0.36 0.48 ± 0.10

Food intake (g) 4.03 ± 0.58 3.46 ± 0.56
Plasma glucose (mg/dl) 110.7 ± 25.5 46.7 ± 13.5 *

Plasma OHBA (mM) 1.28 ± 0.15 0.61 ± 0.36 *
Plasma FFA (mM) 0.56 ± 0.22 1.35 ± 0.65 *

Plasma Insulin (ng/mL) 0.32 ± 0.16 0.43 ± 0.25
Plasma total cholesterol (mg/dl) 76.21 ± 9.23 59.36 ± 13.01 *

Plasma triglyceride (mg/dl) 92.94 ± 28.54 65.91 ± 25.54 *
Liver glycogen (mg/g liver) 112.6 ± 38.1 20.3 ± 3.3 *

Liver glucose-6-phosphate (µmoles/g liver) 0.41 ± 0.06 0.19 ± 0.05 *
Liver total cholesterol (mg/g liver) 1.21 ± 0.25 1.61 ± 0.45

Liver triglyceride (mg/g liver) 10.5 ± 3.5 73.8 ± 37.9 *

Abbreviations: BW, body weight; WAT, white adipose tissue; BAT, brown adipose tissue; OHBA, 3-hydroxybutyrate;
FFA, free fatty acid. Data represent means ± SD (n = 6 per group). * p < 0.05.
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Regarding phenotypes, Ad-ChREBP-infected mice showed severe hepatomegaly without body
weight gain, adiposity, and increased food intake (Table 1). Plasma glucose levels were lower and
plasma FFA levels were higher compared with those in Ad-GFP-infected mice. Plasma OHBA levels
were much lower despite the decreased plasma glucose levels (Table 1). Plasma ketone levels are
regulated by acetyl CoA supply from fatty acid oxidation, ketogenesis, and use of ketones in peripheral
tissues [32]. Regarding ketogenic gene expression, Hmgcs2 levels were similar, while genes related to
fatty acid oxidation were altered to promote decreased fatty acid oxidation that supplies acetyl CoA as
a source of ketone bodies (Figure 1B).

Liver G6P and glycogen contents in Ad-ChREBP-infected mice were much lower than those in
Ad-GFP-infected mice (Table 1). Compatible with these changes, G6pc mRNA levels were higher in
Ad-ChREBP-infected mice (Figure 1A). Plasma triglyceride levels and cholesterol levels were both
significantly lower, while liver lipid contents differed. Liver cholesterol levels were similar in the
two groups, while liver triglyceride contents were much higher because of increased Fasn and Acc
expression (Table 1). Thus, Ad-ChREBP-infected mice showed altered lipid metabolism compared
with Ad-GFP-infected mice.
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mice, while C18 acyl CoA levels were much higher (Figure 2B). Consistent with these findings, 
mRNA levels of ELOVL fatty acid elongase 6 (Elovl6), a fatty acid-elongating enzyme, were increased 

Figure 1. Hepatic mRNA analysis in Ad-GFP-infected and Ad-ChREBP-infected mice. The phenotypes
of Ad-ChREBP-infected mice were evaluated. Male C57BL/6J mice at 8 weeks of age were infected
with an adenovirus expressing ChREBP ∆196 or GFP. The mice were examined and analyzed after
5 days. (A) ChREBP (total Chrebp, Chrebp-α, Chrebp-β) and ChREBP target genes (Pklr, G6pc, Pgd, Tkt,
Acc1, Fasn, Mttp). (B) Genes related to fatty acid oxidation and ketogenesis (Acox, Cpt1, Ppara, Hmgcs2,
Acc2). Equal amounts of RNA from 6 mice were pooled, and cDNA was synthesized. RT-PCR analyses
were performed in triplicate. Pol2 expression was evaluated as an internal control. Data represent
means ± SD (n = 3 per group). * p < 0.05.

3.2. Adenoviral ChREBP Overexpression Causes Higher Triglyceride Contents with Altered Lipid Composition

Histological analyses were not performed. However, the gross anatomical views revealed
hepatomegaly with fatty liver (Figure 2A). Liver triglyceride contents in Ad-ChREBP-infected
mice were about seven times higher, as shown in Table 1. Regarding fatty acid composition in
Ad-ChREBP-infected mice, saturated fatty acids (C16:0 and C18:0) and a monounsaturated fatty acid
(C16:1) were decreased, while C18:1n-9 (oleic acid) and C20:1 were increased (Figure 2B). C20:3n-6,
C20:4n-6, and C22:6n-3 were decreased. C16 acyl CoA levels were lower in Ad-ChREBP-infected
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mice, while C18 acyl CoA levels were much higher (Figure 2B). Consistent with these findings,
mRNA levels of ELOVL fatty acid elongase 6 (Elovl6), a fatty acid-elongating enzyme, were increased
in Ad-ChREBP-infected mice (Figure 2C,D). Furthermore, consistent with the increased C18:1n-9
levels, mRNA levels of stearoyl CoA desaturase 1 (Scd1) were increased in Ad-ChREBP-infected mice
(Figure 2C,D).
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Figure 2. Effects of ChREBP on the liver lipid composition. (A) Gross anatomical views of representative
mice. Hepatomegaly with fatty liver was observed in Ad-ChREBP-infected mice. (B) Liver lipid
composition. Data are representative of six pooled samples. (C) Scd1 and Elovl6 are involved in
the fatty acid elongation and lipid unsaturation pathway, respectively. (D) Hepatic mRNA levels of
stearoyl CoA desaturase-1 (Scd1) and ELOVL fatty acid elongase 6 (Elovl6). Data represent means ± SD
(n = 3 per group). * p < 0.05 vs. Ad-GFP.

3.3. ChREBP Overexpression Lowers Plasma Triglyceride Levels by Modulating Angptl3 and Fgf21 Levels

The lipid profiles, plasma triglyceride, and plasma cholesterol levels were significantly lower in
Ad-ChREBP-infected mice (Table 1). Regarding the plasma lipoprotein profiles, plasma VLDL-TAG,
LDL-TAG, and HDL-TAG levels were much lower in Ad-ChREBP-infected mice (Figure 3A). Plasma
VLDL-Chol and LDL-Chol levels were relatively higher and HDL-Chol levels were relatively lower in
Ad-ChREBP-infected mice (Figure 3B). Angptl3 and Angptl8 are known to regulate lipoprotein lipase
activity. Angptl3 mRNA levels were decreased, while Angptl8 mRNA levels were increased (Figure 3C).
Regarding protein levels, plasma Angptl3 levels were significantly decreased, and plasma Angptl8
levels were slightly increased (Figure 3D). Fgf21 is known to regulate plasma lipid levels. Fgf21 mRNA
and protein levels in Ad-ChREBP infected mice were much higher than those in Ad-GFP infected mice
(Figure 3E). Compatible with the increased plasma Fgf21 levels, mRNA levels of uncoupling protein 1
(Ucp1), specific to brown adipose tissue, and peroxisome proliferator-activating protein gamma (Pparg)
were increased (Figure 3F). ChREBP mRNA levels in adipose tissues were not affected by Ad-ChREBP
infection (Figure 3F).
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plasma ketone levels through decreased fatty acid oxidation gene expressions, and (2) ChREBP 
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reciprocally regulate liver and plasma triglyceride levels (Figure 4). High carbohydrate diets such as 
high fructose and sucrose diets are known to promote hepatic ChREBP transcription activity [7–10]. 
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Figure 3. Effects of ChREBP on plasma lipid profiles and secretory proteins. (A) Plasma very low-density
lipoprotein (VLDL)-triacylglycerol (TAG), low-density lipoprotein (LDL)-TAG, and high-density
lipoprotein (HDL)-TAG levels. (B) Plasma VLDL-cholesterol (VLDL-Chol), LDL-cholesterol (LDL-Chol),
and HDL-cholesterol (HDL-Chol) levels. Data are representative of pooled samples from six mice.
(C) Hepatic mRNA levels of angiopoietin-like protein (Angptl) 3, Angptl8, and fibroblast growth factor-21
(Fgf21). Data represent means ± SD (n = three per group). * p < 0.05 vs. Ad-GFP. (D) Plasma Angptl3
and Angptl8 levels. Data represent means ± SD (n = six per group). * p < 0.05 vs. Ad-GFP. (E) Plasma
Fgf21 levels. Data represent means ± SD (n = six per group). * p < 0.05 vs. Ad-GFP. (F) mRNA
levels of uncoupling protein 1 (Ucp1) and peroxisome proliferator-activating protein gamma (Pparg).
Data represent means ± SD (n = three per group). * p < 0.05 vs. Ad-GFP.

4. Discussion

In this study, we have clarified the role of hepatic ChREBP in glucose and lipid metabolism.
Consistent with a previous paper [33], we confirmed that ChREBP overexpression increased hepatic
triglyceride contents, altered hepatic lipid composition, and lowered plasma glucose levels. Moreover,
we observed the following effects: (1) ChREBP overexpression significantly lowered plasma ketone
levels through decreased fatty acid oxidation gene expressions, and (2) ChREBP overexpression
significantly lowered plasma TAG levels through altered plasma Angptl3 and Fgf21 levels, associated
with increased WAT Ucp1 mRNA levels. These findings suggest that ChREBP may reciprocally regulate
liver and plasma triglyceride levels (Figure 4). High carbohydrate diets such as high fructose and
sucrose diets are known to promote hepatic ChREBP transcription activity [7–10]. Thus, ChREBP
overexpression leads to dissociation of hepatic steatosis from hyperlipidemia.
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Figure 4. Schematic representation of the phenotypic changes in Ad-ChREBP-infected mice and
possible mechanism of how ChREBP overexpression impacts liver and plasma lipid metabolism.
A high-sucrose diet or high-fructose diet feeding is known to activate liver ChREBP transcription
activity [7–10]. ChREBP promotes the following effects: (1) lowering of plasma 3-hydroxybutyrate
(OHBA) through decreased fatty acid oxidation; (2) increase in liver triglyceride contents through
increased de novo lipogenesis, fatty acid elongation and unsaturation, and decreased fatty acid
oxidation; (3) lowering of plasma triglyceride; (4) lowering of plasma HDL cholesterol (HDLc). Fgf21 is
known to lower plasma TAG levels by increasing TAG disposal. Angptl3 is known to inhibit lipoprotein
lipase (LPL) and endothelial lipase and thereby inhibition of Angptl3 lowers plasma TAG and HDLc
levels. * represented as ChREBP-target gene.

Plasma OHBA levels in Ad-ChREBP-infected mice were much lower than those in Ad-GFP-
infected mice, while plasma FFA levels were much higher. Plasma ketone levels are regulated by acetyl
CoA supply from fatty acid oxidation, ketogenesis, and use of ketones in peripheral tissues [32].
Regarding ketogenesis, the levels of Hmgcs2, encoding a rate-limiting enzyme in the ketogenic
pathway [32], were similar. In contrast, for fatty acid oxidation, Acox and Cpt1 mRNA levels in the
fatty acid oxidation pathway were decreased, compatible with a previous paper [33]. Moreover, levels
of Acc2 mRNA, which suppress CPT1 activity through mitochondrial malonyl CoA production [34],
were increased. Acetyl CoA is used for glycogenosis (or gluconeogenesis) and de novo lipogenesis.
Although we did not measure the hepatic acetyl CoA contents, much of the acetyl CoA pool may be
used to meet the increased demand for de novo lipogenesis upon ChREBP overexpression. Therefore,
the lower plasma OHBA levels in Ad-ChREBP-infected mice may arise through decreased fatty acid
oxidation, rather than ketogenesis. Interestingly, ChREBP−/− mice also showed lower plasma OHBA
levels through decreased fatty acid oxidation, decreased supply of acetyl CoA because of lower plasma
FFA levels, and lower cytosolic NAD-to-NADH ratios [31,35,36]. Although it appears contradictory
that ChREBP overexpression and deletion lead to decreases in ketogenesis by decreasing β-oxidation,
these findings are consistent with in vivo evidence that both Chrebp gene deletion and Chrebp gene
activation fail to prevent the development of high-fat diet-induced fatty liver [31,33]. Therefore,
ChREBP activity plays some roles in the regulation of ketogenesis.

In Ad-ChREBP-infected mice, both hepatic G6P and glycogen contents were decreased. G6P is
one of the candidate mediators for glucose signals that activate ChREBP transcriptional activity [37].
Hepatic G6P levels are correlated with hepatic glycogen contents [38]. ChREBP knockout mice had
higher hepatic G6P and glycogen contents than wild-type mice [11,36]. In the present study, hepatic G6P
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and glycogen contents were reduced through increased G6pc mRNA levels in Ad-ChREBP-infected mice.
G6pc is a target gene for ChREBP [36,39]. Thus, ChREBP negatively regulates liver glycogen contents.

In Ad-ChREBP-infected mice, hepatomegaly caused by fatty liver was seen. These effects arise
through increased gene expression related to lipogenesis. Moreover, pentose phosphate shunt
pathway genes (Pgd, Tkt), which produce cytosolic NADPH for lipogenesis, were increased in
Ad-ChREBP-infected mice. These findings were compatible with previous papers describing findings
in ChREBP−/− mice [33,36].

Fatty acid elongation and unsaturation are important processes for TAG synthesis [11,12].
Regarding fatty acid composition, the amounts of C18:1n-9 (oleic acid) were much higher in
Ad-ChREBP-infected mice compared with Ad-GFP-infected mice. In contrast, the amounts of palmitic
acid (C16:0) were much lower in Ad ChREBP-infected mice. These findings were compatible with those
in a previous paper [33]. Elovl6 is known to elongate the carboxyl chain of fatty acyl CoA [12,15] and is
regulated by not only SREBP, but also ChREBP [13]. Elovl6 mRNA was increased in Ad-ChREBP-infected
mice and thus the amounts of C18 were higher than the amounts of C16. Moreover, ChREBP regulates
Scd1 mRNA expression [16]. Scd1 catalyzes the rate-limiting step in the formation of monounsaturated
fatty acids, specifically oleate and palmitoleate, from stearoyl-CoA and palmitoyl-CoA [11]. Consistent
with a previous paper [33], Scd1 mRNA was increased in Ad-ChREBP-infected mice. Unlike other
unsaturated fatty acids, oleic acid cannot suppress ChREBP transcriptional activities [40]. This may also
contribute to increased liver TAG storage. Consequently, the amounts of oleic acid in Ad-ChREBP-infected
mice were much higher due to increased Elovl6 and Scd1 expression.

Regarding the physiological roles of oleic acid, oleic acid is more suitable for lipid storage
than palmitic acid because of its lower melting point [41]. Moreover, palmitic acid is incorporated
into DAG and consequently activates the proinflammatory PKCu–NF-κB pathway, while oleic acid is
incorporated into TAG [42]. Therefore, palmitic acid is known to cause insulin resistance by attenuating
insulin signaling, while oleic acid has a protective effect against insulin resistance and type 2 diabetes
mellitus [42]. Compatible with these observations, our findings and previous results [33] showed that
Ad-ChREBP-infected mice had lower plasma glucose levels or improved insulin resistance. Therefore,
ChREBP promotes TAG storage in the liver without ameliorating plasma glucose by converting a
palmitic acid into oleic acid.

In Ad-ChREBP-infected mice, plasma TAG, VLDL-TAG, LDL-TAG, and HDL-TAG levels were
decreased compared with Ad-GFP-infected mice. Plasma TAG levels are regulated by de novo
lipogenesis, plasma lipid secretion, and peripheral lipolysis [17]. As de novo lipogenesis and
hepatic lipid secretion were rather increased due to increased gene expression (Fasn, Acc1, Mttp),
we hypothesized that peripheral lipolysis may be increased by secretory factors that promote lipolysis.
Angptl3 is known to increase lipolysis by inhibiting lipoprotein lipase [20] and Fgf21 is known to
promote TAG disposal in adipose tissues [19]. In Ad-ChREBP-infected mice, hepatic Angptl3 mRNA
and plasma Angptl3 protein levels were decreased, while hepatic Fgf21 mRNA and plasma Fgf21
protein levels were significantly increased. In support of these findings, Fgf21 is known to induce
adipose tissue Ucp1 and Pparg mRNA expression [43,44]. Interestingly, Ucp1 and Pparg mRNA
expression were induced in white adipose tissue. Taken together with the finding that Ad-ChREBP
was not present in white adipose tissue, these observations suggest that increased plasma Fgf21 levels
could modulate adipose tissue function in Ad-ChREBP-infected mice. The findings suggest that
decreased Angptl3 and increased Fgf21 may promote peripheral TAG disposal. Angptl8 is known
to increase plasma TAG levels by suppressing lipoprotein lipase [21] and Angptl8 is a target gene for
ChREBP [45]. Although Angptl8 mRNA levels were increased, plasma Angptl8 protein levels were not
significantly increased. In Ad-ChREBP-infected mice, only Angptl8 mRNA levels were significantly
increased. Moreover, in Angptl3−/− mice, Angptl8 administration did not increase plasma triglyceride
levels [21,46]. These observations suggest that Angptl3, rather than Angptl8, may contribute to the
lower plasma TAG levels in Ad-ChREBP-infected mice.
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The mechanism for how ChREBP regulates Angptl3 expression has not been established and
further investigations are needed. Meanwhile, plasma cholesterol levels in Ad-ChREBP infected
mice were lower. VLDL-Chol and LDL-Chol levels were higher and HDL-Chol levels were lower.
Regarding plasma HDL-Chol levels, lower Angptl3 mRNA levels lead to lower plasma HDL-Chol
levels [47]. In particular, Angptl3 inhibits the phospholipase activity of endothelial lipase, and lowering
Angptl3 may thereby decrease plasma HDL-Chol levels [48]. These observations are compatible with
the findings in our Ad-ChREBP-infected mice. Thus, ChREBP may regulate plasma lipid levels partly
through FGF21 and Angptl3.

5. Conclusions

We clarified that (1) ChREBP negatively regulates plasma ketone levels, and (2) ChREBP
differently regulates hepatic and plasma triglyceride levels. Under normal conditions, excess intake
of carbohydrates such as fructose or sucrose is converted into triglyceride through glucose-activated
ChREBP. ChREBP promotes hepatic de novo lipogenesis by induction of lipogenic gene expression.
ChREBP lowers plasma ketone levels by inhibiting fatty acid oxidation. Furthermore, ChREBP lowers
plasma TAG levels through TAG disposal in adipose tissue and oxidative tissues by decreasing plasma
Angptl3 levels and increasing plasma Fgf21 levels. Therefore, the discrepancies between plasma and
liver TAG levels in Ad-ChREBP mice revealed that ChREBP reciprocally regulates hepatic and plasma
TAG levels in different manners. With the intake of a high-fructose or high-sucrose diet, Fgf21 and
Angptl3, rather than Angptl8, may be better targets for the improvement of hypertriglyceridemia.
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