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Abstract
Rationale and objectives Many studies indicated that adenosine via its A2A receptors influences the behavioral effects of cocaine
by modulating dopamine neurotransmission. The hypothesis was tested that A2A receptors in the nucleus accumbens (NAc) or
the prefrontral cortex (PFc) may modulate cocaine reward and/or cocaine seeking behavior in rats.
Methods The effects of local bilateral microinjections of the selective A2A receptor agonist CGS 21680 or the A2A receptor
antagonists KW 6002 and SCH 58261 were investigated on cocaine self-administration on reinstatement of cocaine seeking.
Results The intra-NAc shell, but not intra-infralimbic PFc, administration of CGS 21680 significantly reduced the number of
active lever presses and the number of cocaine (0.25 mg/kg) infusions. However, tonic activation of A2A receptors located in the
NAc or PFc did not play a role in modulating the rewarding actions of cocaine since neither KW 6002 nor SCH 58261
microinjections altered the cocaine (0.5 mg/kg) infusions. The intra-NAc but not intra-PFc microinjections of CGS 21680 dose-
dependently attenuated the reinstatement of active lever presses induced by cocaine (10 mg/kg, i.p.) and the drug-associated
combined conditioned stimuli using the subthreshold dose of cocaine (2.5 mg/kg, i.p.). On the other hand, the intra-NAc
pretreatment with SCH 58261, but not with KW 6002, given alone evoked reinstatement of cocaine seeking behavior.
Conclusion The results strongly support the involvement of accumbal shell A2A receptors as a target, the activation of which
exerts an inhibitory control over cocaine reward and cocaine seeking.

Keywords Adenosine A2A receptor ligands . Cocaine self-administration . Cocaine seeking . Local microinjection . Nucleus
accumbens . Prefrontal cortex . Rats

Introduction

Substance-use disorder (drug addiction) is a chronic relapsing
disorder characterized by compulsive drug intake and drug
seeking, loss of control over drug intake, and a persistent
craving for the drug. The neuronal basis of cocaine addiction
includes activation of the mesocorticolimbic circuitry with
changes in dopamine (DA) and glutamate neurotransmissions
(Arbuthnott et al. 1970; Kalivas 2009; Koob 2009).

Themeso-limbic DA system (Fuxe 1965) was linkedmain-
ly to compulsive drug use. In fact, drugs of abuse increase
release of DA in the shell subregion of the nucleus accumbens
(NAc) (Di Chiara 2002). The glutamate system was linked
mainly to relapse after drug seeking and the circuitry included
a glutamate pathway from the prefrontal cortex (PFc) to the
NAc (McFarland and Kalivas 2001). In fact, administration of
cocaine into the PFc restored seeking behavior (Park et al.
2002).
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A few years ago, it was shown that adenosine may influ-
ence DA and glutamatergic neurotransmission in several brain
structures including the NAc and PFc region (Fuxe et al. 2007;
Fuxe et al. 2008). Adenosine acts through A1, A2A, A2B, and
A3 receptors, among which A2A receptors are highly enriched
in certain brain areas including striatum while less in other
brain regions such as the cerebral cortex (Schiffmann et al.
2007; Sihver et al. 2009). In neurochemical studies it was
showed that local or systemic activation of A2A receptors in
dorsal and ventral striatum enhanced the release of DA and
glutamate (Golembiowska and Zylewska 1997; Popoli et al.
1995; Quarta et al. 2004; Tanganelli et al. 2004) while stimu-
lation of A2A receptors in medial PFc reduced striatal DA
release (Acquas et al. 1999). On the other hand, the DA or
glutamate release under control over A2A receptors is not un-
equivocally established as either reduction (Quarta et al.
2004), increase (Harper et al. 2006), or no effect (Quarta
et al. 2004; Solinas et al. 2002) was described following the
local receptor blockade in the rat ventral and/or dorsal
striatum.

A2A receptors have been also linked to substance use dis-
orders (Filip et al. 2012). Regarding cocaine addiction previ-
ous pharmacological studies with A2A receptor ligands using
systemic drug administration indicated that A2A receptors play
a significant role in the drug-induced reward, motivation, and
seeking (Bachtell and Self 2009; Filip et al. 2006, 2012;
Knapp et al. 2001; Wydra et al. 2015a, b). Moreover,
O'Neill et al. (2012) demonstrated in rats that A2A receptors
in the NAc core bi-directionally alter cocaine seeking with the
agonism-evoked reduction and the antagonism-provoked re-
instatement. The pharmacological findings with A2A receptor
antagonists collaborate with genetic studies using receptor
striatal-specific knockdown where the enhancement of co-
caine locomotion was observed (Shen et al. 2008), while
A2A receptor knockout (Chen et al. 2000, 2003; Soria et al.
2006) or a forebrain–specific knockdown of A2A receptors
(Shen et al. 2008) decreased cocaine reward or locomotion,
respectively. Despite that cocaine self-administration and re-
lapse behaviors are the goal-directed behavior, being con-
trolled by habit (cf. Root et al. 2009), many recent papers with
using pharmacological or genetic tools strongly demonstrated
the contribution of striatal A2A receptors to goal-directed be-
havior and the effort-related behaviors (Chen 2014; Correa
et al. 2016; Li et al. 2016; Mingote et al. 2008; Nunes et al.
2013; Pardo et al. 2012, 2013; Pereira et al. 2011; Randall
et al. 2012; Yu et al. 2009) in different preclinical models.

To further investigate the role of different brain A2A

receptor population in the current study cocaine self-
administration and cocaine extinction/reinstatement proto-
cols as well as local microinjection procedures were
employed to test the hypothesis that A2A receptors in
NAc and PFc may modulate the behavioral actions of co-
caine. The effects of the selective A2A receptor antagonists

KW 6002 (Ki = 2.2 nM) and SCH 58261 (Ki = 1.3 nM)
(Zocchi et al. 1996) and the selective receptor agonist
CGS 21680 (Ki = 17 nM) were studied. KW 6002 appears
to block with a similar potency A2A protomers belonging
to A2A homoreceptor and A2A heteroreceptor complexes as
far as A2A-D2 and A2A-A2A complexes are concerned
(Orru et al. 2011a). SCH 58261 has not been characterized
in this respect. The A2A antagonists and the A2A agonist
were administered directly into NAc shell or infralimbic
PFc during cocaine self-administration and during cocaine
or cocaine-associated conditional stimulus (cue) seeking
behavior in rats.

Experimental procedures

Animals

Male Wistar rats (derived from the licensed animal breed-
er Charles River, Sulzfeld, Germany), weighing between
260 and 310 g at the beginning of the experiment, were
used. The animals were housed individually in standard
plastic rodent cages (39 cm × 28 cm × 28 cm) at a room
temperature of 21 ± 1 °C and at a 40 ± 5% humidity with a
12-h light–dark cycle (lights on at 6:00 a.m.). Animals
had free access to food (VRF1 pellets, UK) and water
(except for the initial training session (see below). All
experiments were carried out in accordance with EU di-
rective 2010/63/EU and with approval of the Local Ethics
Commission.

Drugs

Cocaine (3β-hydroxy-1αH,5αH-tropane-2β-carboxylic acid
methyl ester benzoate hydrochloride; Sigma-Aldrich; USA),
KW 6002 (8-[(1E)-2-(2(3,4-dimethoxyphenyl)ethenyl]-1,3-
diethyl-3,7-dihydro-7-methyl-1H-purine-2,6-dione; Tocris,
UK), SCH 58261 (2-(2-furanyl)-7-(2-phenylethyl)-7H-
pyrazolo[4,3-e][1,2,4]triazolo[1,5-c]pyrimidin-5-amine;
Tocris, UK), and CGS 21680 (4-[2-[[6-amino-9-(N-ethyl-b-d-
ribofuranuronamidosyl)-9H-purin-2-yl]amino]ethyl]benzene-
propanoic acid hydrochloride; Tocris, UK). Cocaine and CGS
21680 were dissolved in 0.9% NaCl; KW 6002 was dissolved
in a mixture (1:1:8) of dimethyl sulfoxide (DMSO, Sigma-
Aldrich, USA), Tween®80 (Sigma-Aldrich, USA), and 0.9%
NaCl, while SCH 58261 was dissolved in 1% DMSO. CGS
21680, KW 6002, and SCH 58261 were administrated intra-
NAc or intra-PFc immediately before 2-h self-administration
session in a volume of 0.2 μl/min per side. Cocaine was ad-
ministered i.v. in a volume of 0.1 ml per infusion or i.p in a
volume 1 ml/kg. Doses of A2A receptor ligands were
established based on our preliminary data (Filip et al. 2017;
Wydra et al. 2017) and on previous behavioral studies with
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using microinjection procedures that show efficacy of the A2A

receptor agonist in doses 2.5–24 ng that dose-dependently
decreased active lever presses for cocaine seeking (O'Neill
et al. 2012), decreased home cage activity (Sardi et al. 2018)
or disrupted performance of an instrumental task with high
work demands together with increased extracellular GABA
levels in the ventral pallidum (Mingote et al. 2008). The doses
of KW 6002 and SCH 58261 were chosen based on the intra-
accumbal dose range of another A2A receptor antagonist
MSX-3 that displays similar potency to KW 6002 and SCH
58261 for the receptors in context of radioligand binding and
cAMP assays (Yang et al. 2007). In fact, intra-NAc adminis-
tration of MSX-3 increased cocaine seeking (5–20 μg/side;
O'Neill et al. 2012) or enhanced locomotor activity in an open
field after intra-NAc (5 μg; Nagel et al. 2003), or intra-striatal
(9 μg; Hauber et al. 1998) MSX-3 administration. The recent
paper indicated that SCH 58261 in a dose range of 20–40 μg/
side repeatedly injected intracerebroventricularly exerted in-
hibitory effect on astrocytes activation and prevented the spa-
tial memory impairment in rats (Akbari et al. 2018).

Self-administration procedures

Intravenous catheter implantation

After 18-h water deprivation, animals were trained for 5 days
to press a lever for 2-h daily in standard operant chambers
(Med-Associates, St. Albans, GA, USA) under a fixed ratio
(FR) schedule 1–5 of water reinforcement. Two days after
lever pressing training and free access to food and water, rats
were anesthetized with intramuscular injection of ketamine
hydrochloride (75 mg/kg, i.m; Biowet, Poland) and xylazine
(5 mg/kg, i.m; Biowet, Poland) and implanted with a silastic
catheter in the external right jugular vein, as described previ-
ously (Filip et al. 2007). Catheters were flushed daily with
0.2 ml of saline solution containing cephazolin (100 mg/ml;
Biochemie GmbH, Austria) and heparin (100 U/ml;
Biochemie GmbH, Austria) to prevent catheter non-patency
as a result of blood clotting.

Guide cannulae implantation and microinjection procedure

Immediately after the catheter implantation, rats were stereo-
taxically implanted with stainless steel bilateral guide cannula
(22-gauge, 10 mm long; Plastic One, USA). A guide cannula
was implanted stereotaxically into the NAc at the following
coordinates from the Bregma: [anteroposterior (AP) =
1.7 mm; mediolateral (ML) = ± 0.75 mm and dorsoventral
(DV) = −6 mm] and the PFc [AP = 2.7 mm; ML= ±0.75 mm
andDV = −3mm] according to the rat brain atlas (Paxinos and
Watson 1998). The coordinated were chosen on the basis that
the NAc shell is engaged in the control of cocaine reward (Di
Chiara et al. 2004;Marie et al. 2012;Müller Ewald et al. 2018)

while medial parts of the NAc (shell and medial core) are
linked with cocaine seeking (Bachtell and Self 2009;
Schmidt et al. 2006). A main efferent projection from the
infralimbic PFc is to the NAC shell and both these brain struc-
tures are recruited by the extinction learning to control cocaine
seeking (Peters et al. 2008). The guide cannula was affixed to
the skull with two miniature stainless steel screws (Agnatho’s,
Sweden) and dental acrylic cement. After the surgery, all an-
imals had a 6–8-day recovery period.

The microinjection unit was organized from a polyethylene
tubing (OD 0.023 mm, ID 0.041 mm, Plastic One, USA)
connected to two 1-ml Hamilton syringes at one end and a
bilateral injection cannula (28-gauge, 12-mm length; Plastic
One, USA) at the other end. On the day of the test, a bilateral
internal cannula was inserted into the guide cannula after ob-
turator removal. The microinjection volume of 0.2 μl was
delivered bilaterally over 1 min by the syringe pump drive
(BAS, USA), operated with a programmable controller (Bee
Hive Controller; BAS, USA). A diffusion time of 1 min was
allowed before the removal of the injection cannula and re-
placement of the obturator. The rat received three-four micro-
injections into the NAc or PFc.

Maintenance of cocaine self-administration

Following recovery, the animals were given access to cocaine
during 2-h daily sessions performed 6 days/week. The house
light was illuminated throughout each session. Each press on
the Bactive^ lever (FR 5 schedule of reinforcement) resulted in
a 5-s infusion of cocaine (0.5 mg/kg per 0.1 ml) and a 5-s
presentation of a stimulus complex (activation of the white
stimulus light directly above the Bactive^ lever and the tone
generator, 2000 Hz; 15 dB above ambient noise levels).
Following each injection, there was a 20-s time-out period
during which responding was recorded, but had no pro-
grammed consequences. Presses on the Binactive^ lever were
recorded, but not reinforced. Acquisition of the conditioned
operant response lasted a minimum of 9 days until subjects
met a stable average of three consecutive days and a standard
deviation within those days of < 10% of the average (Filip
et al. 2007).

After the acquisition criterion (see above) was met, sepa-
rate groups of rats (N = 8 rats/group) were used to complete a
cocaine (0.25–0.5 mg/kg/infusion) dose–response curve.

Later following stabilization of responding, the rats
underwent microinjection procedures (see above). Local mi-
croinjections of CGS 21680 (1–10 ng/side), KW 6002 (1–
5 μg/side), or SCH 58261 (1–2.5 μg/side) were given to sep-
arate groups of animals.

A maximum of three test sessions was performed on each
rat group, separated by at least two to three baseline days of
cocaine self-administration (Fig. 1a, b). The order of injec-
tions was counterbalanced according to a Latin square design.
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Extinction/reinstatement

During extinction sessions, rats had 2-h daily training sessions
with no delivery of cocaine or the presentation of the condi-
tioned stimulus. Once they reached the extinction criteria (a
minimum of 10 extinction days with the responding on the
Bactive^ lever below ~ 10% of the active lever presses ob-
served during at least the three last days of the maintenance
phase), animals were tested for response reinstatement in-
duced by a non-contingent presentation of cocaine (2.5 or
10 mg/kg, i.p.), a conditioned stimulus cue (tone + light pre-
viously paired with cocaine self-administration) alone or with
the subthreshold dose (2.5 mg/kg) of cocaine. Additionally,
based on our previous data with systemic drug injections
showing that A2A receptor antagonists can reinstate cocaine
seeking behavior (Wydra et al. 2015b), we tested KW 6002
and SCH 58261 alone for response reinstatement.

During the reinstatement tests (2-h sessions), active lever
presses on the FR 5 schedule resulted in intravenous injection
of saline only. Drug combination was given in a randomized
order in maximum of three-four reinstatement tests. Each rat
underwent only one type of the reinstatement procedure
(above) (Fig. 1c). The order of injections was counterbalanced
according to a Latin square design, and the test sessions were
separated by at least two to three baseline days of the extinc-
tion sessions.

Locomotor activity procedures

Surgery

Rats were stereotaxically implanted with stainless steel bilat-
eral guide cannulae as described above.

Measurement of locomotor activity

Following recovery period (6–8 days) the locomotor activ-
ity of non-habituated rats was recorded for each animal.
Locomotor activity was measured in Opto-Varimex cages
framed by a 15 × 15 array of photocell beams located 3 cm
above the floor surface (Columbus Instruments,
Columbus, USA). Photobeam breaks resulted in a measure
of horizontal activity defined as a distance traveled
(expressed in cm). The animals were placed individually
in locomotor activity cages for 2-h, their locomotion was
recorded and analyzed using Auto-track software
(Columbus Instruments, USA). Before the locomotor ac-
tivity was recorded, rats (N = 8 rats per/group) were
microinjected (intra-NAc or intra-PFc) with KW 6002 (1,
2.5, 5 μg/side), SCH 58261 (1, 2.5, 5 μg/side), or with
CGS 21680 (1, 2.5, 10 ng/side) and transferred to the
experimental cages.

Fig. 1 Experimental design of the study. Schematic diagrams show cocaine (0.5 mg/kg/infusion) self-administration (a), cocaine (0.25 mg/kg/infusion)
self-administration (b), and extinction training/reinstatement (c) procedures with intracranial microinjections of A2A receptor ligands
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Histology

Immediately after the completion of the experiments, rats
were overdosed with sodium pentobarbital (morbital;
133.3 mg/ml; i.p.; Biowet, Poland) and the brains were re-
moved and stored in a 4% formalin (POCH, Poland) solution
for at least 3 days before the sectioning Brains were cut into
12-μm sections on a cryostat, mounted on gel-coated glass
slides. The brain sections were defatted, stained with cresyl
violet, cleared with xylene and placed under coverslips. The
placement of microinjection probes were verified using a light
microscope. There was no necrosis distal to the track upon
histological examination of sections. Only data from rats with
correctly placed probes within the NAc and the PFc according
to previously established guidelines were included for statis-
tical analyses (Fig. 2).

Statistical analysis

The obtained results are presented as the means ± SEM. The
number of responses on the active and inactive lever and a
number of cocaine infusions were analyzed using a factorial
analysis of variance (ANOVA), followed by post hoc
Dunnett’s or Newman-Keuls test.

Locomotor activity data are expressed as the mean total
horizontal distance traveled in cm for a 2-h test session.
Comparisons between groups were carried out by one-way
ANOVA, followed by the Dunnett’s test.

Results

Cocaine reward

The rats showed stable responding to levers during the last 3
cocaine (0.5 mg/kg/infusion) self-administration maintenance
sessions with an acquisition criterion requiring that the rate of
active lever presses varied by less than 10%. The animals used
for the intra-NAc and intra-PFc microinjection studies had
26–30 or 22–30 self-administrated infusions of cocaine with
the daily mean cocaine intake amounting to 12–15 mg/kg or
11–15 mg/kg, respectively. The animals responded signifi-
cantly more frequently to the active lever vs the inactive lever
(p < 0.05).

When the dose of cocaine was reduced to 0.25 mg/kg/in-
fusion the animals had 39–50 or 33–53 self-administrated in-
fusions of cocaine with the daily mean cocaine intake
amounting to 9.75–12.5 mg/kg or 8.25–13.25 mg/kg for the
intra-NAc or the intra-PFc microinjection studies, respective-
ly. The animals responded significantly more frequently to the
active lever vs the inactive lever (p < 0.05).

Intra-NAc effects of A2A receptor ligands on cocaine
(0.25 mg/kg/infusion) self-administration

Two-way ANOVA indicated that KW 6002 (1–2.5 μg/side;
F(2,30) = 0.48, P = 0.63) did not change the number of active
and inactive lever presses. However, SCH 58261 at a dose
1 μg/side decreased the number of active lever presses
(F(2,30) = 5.33, P < 0.01) (Fig. 3, upper panels). One-way
ANOVA showed that KW 6002 (F(2,15) = 0.21, P = 0.81)
and SCH 58261 (F(2,15) = 4.04, P = 0.04) did not alter co-
caine reinforcements (Fig. 3, lower panels).

Two-way ANOVA indicated a significant effect of CGS
21680 (1–2.5 ng/side) on pretreatment × lever interaction
(F(2,30) = 25.2, P < 0.0001). The post hoc Newman-Keuls
test revealed that CGS 21680 in doses of 1 and 2.5 ng/side
reduced the number of active lever presses by 58%
(p < 0.0001) and 79% (p < 0.0001), respectively, without any
changes in the number of inactive lever presses (Fig. 3, upper
panel).

One-way ANOVA showed that CGS 21680 (1–2.5 ng/
side) altered cocaine reinforcements (F(2,15) = 15.61,
P < 0.001). The post hoc Dunnett’s test revealed that
CGS 21680 in doses 1 and 2.5 ng/side reduced cocaine
reward by 45% (p < 0.01) and 80% (p < 0.001), respec-
tively (Fig. 3, lower panel).

Intra-NAc effects of A2A receptor ligands on cocaine
(0.5 mg/kg/infusion) self-administration

Two-way ANOVA revealed that KW 6002 (1–2.5 μg/side;
F(2,42) = 0.57, P = 0.57), SCH 58261 (1–2.5 μg/side;
F(2,36) = 1.10, P = 0.34) and CGS 21680 (1–2.5 ng/side;
F(2,42) = 0.78, P = 0.46) did not change the number of active
and inactive lever presses (Fig. 4, upper panels).

Similarly, one-way ANOVA showed that KW 6002
(F(2,21) = 1.11, P = 0.35), SCH 58261 (F(2,18) = 0.01, P =
0.99), and CGS 21680 (F(2,21) = 0.86, P = 0.44) did not alter
cocaine reinforcements (Fig. 4, lower panel).

Intra-PFc effects of A2A receptor ligands on cocaine
(0.25 mg/kg/infusion) self-administration

Two-way ANOVA revealed that KW 6002 (1–2.5 μg/side;
F(2,28) = 0.65, P = 0.53), SCH 58261 (1–2.5 μg/side;
F(2,24) = 0.21, P = 0.81), and CGS 21680 (1–2.5 ng/side;
F(2,42) = 0.22, P = 0.80) did not alter the number of active
and inactive levers presses. Similarly, one-way ANOVA
showed that KW 6002 (F(2,14) = 0.54, P = 0.59), SCH
58261 (F(2,12) = 0.67, P = 0.53), and CGS 21680
(F(2,21) = 0.30, P = 0.74) did not modulate the number of
cocaine reinforcements (Table 1).
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Fig. 2 Histological verification of
microinjection representative
probe placements in the NAc (left
panels) and the PFc (right panels)
of rats that underwent cocaine
self-administration (a),
extinction/ reinstatement tests (b),
and locomotor activity (c). Plates
are taken from rat brain atlas
Paxinos and Watson (1998) and
the black line represent right
placement of probes. Due to the
large number of animals utilized
for studies, bilateral placements
are shown for only a subset of the
experimental pool
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Intra-PFc effects of A2A receptor ligands on cocaine
(0.5 mg/kg/infusion) self-administration

Two-way ANOVA revealed that KW 6002 (1–2.5 μg/side;
F(2,30) = 0.27, P = 0.76), SCH 58261 (1–2.5 μg/side;
F(2,30) = 0.24, P = 0.79), and CGS 21680 (5–10 ng/side;
F(2,42) = 0.11, P = 0.89) did not change the number of active
and inactive lever presses. Similarly, one-way ANOVA
showed that KW 6002 (F(3,20) = 0.89, P = 0.46), SCH
58261 (F(2,15) = 0.73, P = 0.50), and CGS 21680
(F(2,21) = 0.09, P = 0.91) did not alter cocaine reinforcements
(Table 1).

Cocaine seeking and relapse

After about 12 experimental sessions, rats met the criterion of
a stable cocaine (0.5 mg/kg/infusion) self-administration.
During maintenance phase, the mean numbers of responses

emitted at active lever ranged from 187 ± 16, while the num-
ber of inactive lever presses did not exceed 15. After about
12 days of extinction trials during which active lever presses
resulted in an i.v. delivery of saline without presentation of a
conditioned stimulus (cue), the rats were tested for the re-
sponse reinstatement induced by cocaine (2.5–10 mg/kg,
i.p.), or by presentation of the conditioned stimulus alone
and in the presence of a subthreshold dose of cocaine
(2.5 mg/kg, i.p.).

Cocaine (2.5–10mg/kg) significantly altered the number of
active lever presses (F(2,36) = 3.25, P < 0.05) without a
change in the inactive lever presses. A significant effect was
observed following cocaine at 10mg/kg (p < 0.001), but not at
2.5 mg/kg (Figs. 5, 6, and 7).

The animals showed no response to the conditioned stim-
ulus (F(1,20) = 0.28, P = 0.59) for active and inactive lever
presses (Fig. 6, right panel). But, when the conditioned stim-
ulus was combined with a subthreshold dose of cocaine

Table 1 Intra-PFc effects of KW
6002, SCH 58261, and CGS
21680 on cocaine self-
administration. The number of
lever presses and the mean of
cocaine infusions are shown as
the mean (± SEM) from 5 to 8
rats/group

Treatment and
dose

Cocaine (mg/kg/infusion)
self-administration

Number of active
lever presses

Number of inactive
lever presses

Number of
cocaine infusions

KW 6002
0 μg/side

0.25 306 ± 16 3 ± 0.69 53 ± 2.4

KW 6002
1 μg/side

0.25 312 ± 13 9 ± 1.59 54 ± 4.3

KW 6002
2.5 μg/side

0.25 287 ± 12 5 ± 1.33 47 ± 7.1

KW 6002
0 μg/side

0.5 232 ± 34 0 ± 0 28 ± 4.2

KW 6002
1 μg/side

0.5 225 ± 25 10 ± 7.5 33 ± 2.8

KW 6002
2.5 μg/side

0.5 237 ± 8.2 10 ± 5.3 31 ± 1.2

SCH 58261
0 μg/side

0.25 328 ± 59 10 ± 5.0 53 ± 9.9

SCH 58261
1 μg/side

0.25 306 ± 92 9 ± 2.7 35 ± 10

SCH 58261
2.5 μg/side

0.25 257 ± 68 11 ± 4.9 41 ± 11

SCH 58261
0 μg/side

0.5 154 ± 24 6 ± 1.8 24 ± 2.6

SCH 58261
1 μg/side

0.5 147 ± 12 2 ± 0.8 25 ± 1.9

SCH 58261
2.5 μg/side

0.5 134 ± 12 1 ± 0.5 22 ± 1.6

CGS 21680
0 ng/side

0.25 198 ± 12 9 ± 3.8 33 ± 1.5

CGS 21680
5 ng/side

0.25 196 ± 6.9 6 ± 2.4 31 ± 1.9

CGS 21680
10 ng/side

0.25 191 ± 2.4 8 ± 3.4 31 ± 1.5

CGS 21680
0 ng/side

0.5 165 ± 14 8 ± 2.9 26 ± 0.9

CGS 21680
1 ng/side

0.5 163 ± 14 6 ± 3.1 27 ± 2.5

CGS 21680
2.5 ng/side

0.5 156 ± 8.2 6 ± 1.7 26 ± 1.9
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(2.5 mg/kg, i.p.), the significant increase in the number of
active lever presses (F(1,21) = 5.73, P < 0.03) without a
change in the inactive lever presses was observed (Fig. 6,
right panel).

Intra-NAc effects of the A2A receptor ligands
on cocaine seeking behavior

Based on our previous findings that systemic administration
of A2A receptor antagonists induce reinstatement of cocaine
seeking (Wydra et al. 2015b), we investigated the effects of
local microinjections of the A2A receptor antagonists given
alone on the cocaine seeking. Two-way ANOVA for treatment
× lever interaction did not indicate a significant effect of KW
6002 (2.5–5 μg/side) on cocaine seeking behavior (F(2,30) =
1.34, P = 0.28) (Fig. 5, left upper panel).

Two-way ANOVA for treatment × lever interaction indi-
cated a significant effect of SCH 58261 (2.5–5 μg/side) on
cocaine seeking behavior (F(2,30) = 3.11, P < 0.05). The post
hoc Newman-Keuls test revealed that SCH 58261 at a dose of
5 μg/side significantly (p < 0.01) increased the number of ac-
tive lever presses without any change in the number of inac-
tive lever presses (Fig. 5, left bottom panel).

Neither KW 6002 (2.5 and 5 μg/side; F(1,40) = 1.69, P =
0.20) nor SCH 58261 (2.5 μg/side; F(1,40) = 3.18, P = 0.08)
altered significantly the effects of the subthreshold cocaine
(2.5 mg/kg; i.p.) dose as shown by three-way ANOVA for
pretreatment × treatment × level interaction (Fig. 5, right
upper and bottom panels).

Two-way ANOVA for treatment × lever interaction
showed a significant effect of CGS 21680 (1–2.5 ng/side) on
cocaine (10 mg/kg)-induced reinstatement (F(2,36) = 1.16,
P = 0.32). The post hoc Newman-Keuls test revealed that
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CGS 21680 dose-dependently and significantly (p < 0.05) re-
duced the number of active lever presses without any changes
in the number of inactive lever presses (Fig. 6, left panel).

Similarly, two-way ANOVA for treatment × lever interac-
tion demonstrated a significant effect of CGS 21680 (1–
2.5 ng/side) on the combination of the cue with the subthresh-
old cocaine (2.5 mg/kg, i.p.) dose (F(2.36) = 3.44, P = 0.04).
The post hoc Newman-Keuls test revealed that CGS 21680
significantly (p < 0.001) attenuated the number of active lever
presses without any changes in the number of inactive lever
presses (Fig. 6, right panel).

Intra-PFc effects of the A2A receptor agonist
on cocaine seeking behavior

Two-way ANOVA for treatment × lever interaction did not
indicate (F(2,36) = 1.45, P = 0.25) a significant effect of CGS
21680 at a dose of 2.5 ng/side on cocaine (10 mg/kg, i.p.)
(F(2,36) = 1.45, P = 0.25) or on the cue with the subthreshold
cocaine (2.5 mg/kg, i.p.) dose (F(1,24) = 0.63, P = 0.44) ef-
fects (Fig. 7).

Locomotor activity

Neither intra-NAc (F(3,24) = 0.92, P = 0.44) nor intra-PFc
(F(3,24) = 0.78, P = 0.52) injections of KW 6002 (1–2.5 μg/
side) influenced locomotor activity of rats (Fig. 8).

Similarly, intra-NAc (F(3,24) = 0.37, P = 0.77) or intra-PFc
(F(3,24) = 0.437, P = 0.73) injections of SCH 58261 (1–
2.5 μg/side) did not alter locomotor behavior of rats (Fig. 8).

However, intra-NAc (F(3,27) = 6.56, P < 0.001), but not
intra-PFc (F(3,27) = 0.479, P = 0.69), injections of CGS
21680 changed locomotor activity in rats. Post hoc Dunnet’s
test revealed that CGS 21680 (10 ng/side) reduced rats’ loco-
motor activity (Fig. 8).

Discussion

It was demonstrated that A2A receptors located in the NAc
shell, but not in the infralimbic PFc, seem to be engaged in
the cocaine rewarding and seeking behaviors in rats. Local
administration of the A2A receptor agonist CGS 21680 into
the NAc was found to weaken cocaine self-administration.
However, A2A receptor antagonists KW 6002 and SCH
58261 given locally into the NAs did not affect cocaine re-
ward. These results supported a role for the agonist induced
rapid activation of the A2A receptor in the NAc shell to reduce
cocaine reinforcement.

The results of this study strongly support our previous
study and the results of other authors that systemic admin-
istration of an A2A receptor agonist inhibits both the re-
warding and motivational effects of cocaine under fixed
and progressive ratio schedules of reinforcement (Knapp
et al. 2001; Ruiz-Medina et al. 2011; Soria et al. 2006;
Wydra et al. 2015a). Despite the fact that CGS 21680 giv-
en peripherally or locally to the NAc or to the dorsal stri-
atum does impair the motor activity in rodents (Barraco
et al. 1993; Filip et al. 2006; Hauber and Munkle 1997;
Poleszak and Malec 2002), the inhibitory effects of this
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A2A receptor agonist on cocaine self-administration could
not be explained by sedation and a reduction in locomo-
tion. Thus, intra-NAc CGS 21680 (1–2.5 ng/side) had nei-
ther effects on the higher dose used for cocaine (0.5 mg/kg/

infusion) self-administration nor did it alter the number of
inactive lever presses or horizontal locomotor activity. In
this paper, local administration of A2A receptor antagonists
did not influence cocaine self-administration which
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supported previous results obtained with systemic admin-
istration of these drugs (Wydra et al. 2015a).

Furthermore, we show that A2A receptors located in the
NAc affected cocaine seeking behavior. Thus, the A2A recep-
tor antagonist SCH 58261, but not KW 6002, given alone into
NAc induced reinstatement of cocaine seeking behavior. The
mechanism for the above discrepancy between the two A2A

receptor antagonists toward cocaine seeking—also seen after
their systemic administration (Wydra et al. 2015b)—is un-
known. It may be that SCH 58261 vs KW 6002 blocks the
A2A receptor protomers of multiple A2A heteroreceptor com-
plexes and A2A homoreceptor complexes in the reward (D1

receptor rich) and antireward (D2 receptor rich) neurons with
different potencies. The A2A-D2, A2A-D3, A1-A2A, and A2A-
mGlu5 heteroreceptor complexes may have a special role in
modulating the reward and antireward circuitries. They may
have different affinities for the A2A receptor antagonists
employed which can explain the differential effects observed
on cocaine reward and seeking with A2A receptor antagonists
(Ciruela et al. 2006; Fuxe et al. 2008; Orru et al. 2011b;
O’Neill et al. 2015).

In line with our previous study with systemic administra-
tion of A2A receptor antagonists (Wydra et al. 2015b), combi-
nation of intra-NAc shell injections of KW6002 (2.5 and 5μg/
side) or SCH 58261 (5 μg/side) with subthreshold dose of
cocaine (2.5 mg/kg, i.p.) induced some additional effect on
the number of active lever presses during reinstatement tests.
Likewise, O'Neill et al. (2012) showed cocaine-mimicking and
additive effects of the intra-NAc core administration of the
A2A selective receptor antagonist MSX-3 in combination with
cocaine. It should be pointed that other authors show some
addictive potential of A2A receptor antagonists since the drug
substitutes for cocaine in baboons (Weerts and Griffiths 2003)
or produces conditioned place preference in rats.

In contrast to the above antagonists, the intra-NAc shell
administrated A2A receptor agonist CGS 21680 (5 ng/side)
brought down cocaine-induced seeking behavior evoked by a
priming dose of cocaine (10 mg/kg, i.p.) and was also a very
effective blocker to the cocaine seeking reinstatement evoked
by combination of conditional stimulus + subthreshold dose of
cocaine (2.5 mg/kg, i.p.). In fact, in rats with intracranially
implanted guide cannulae, it is difficult, if ever, to reinstate
cocaine seeking evoked by the conditional stimulus under FR
5 schedule of reinforcement (Acosta et al. 2008, this paper).
Supporting the present findings, our (Wydra et al. 2015a) and
other authors (Bachtell and Self 2009) studies with systemic
CGS 21680 administration demonstrated that this agonist dose
dependently reduced cocaine- or cue-induced reinstatement to
cocaine seeking. More recently, O'Neill et al. (2012) found that
pretreatment with the same A2A agonist administered into the
NAc core (with the injection volume 0.5–1 μl/side) dose de-
pendently blunted the cocaine- and cue (under FR1 schedule)-
induced reinstatement of cocaine seeking behavior, what

together with our present finding (much smaller injection vol-
ume of 0.2 μl/side) illustrate that stimulation of A2A receptors
localized to both parts of the NAc may control over cocaine
seeking. Interestingly, the previous studies with systemic and
intra-NAc drug injections indicate that A2A receptors alter D2

receptor signaling as CGS 21680 reduced quinpirole-induced
reinstatement (Bachtell and Self 2009; O'Neill et al. 2012;
Wydra et al. 2015a, b), possibly through antagonistic allosteric
A2A-D2 receptor interactions. The above functional interaction
has been raised on tasks involving effort-related processes
(Mingote et al. 2008; Pardo et al. 2012), in motivational dis-
ruptions of mother-infant interactions (Pereira et al. 2011) or in
excessive ethanol drinking (Nam et al. 2013). The latter hy-
pothesis needs, however, to be verify with the local injection of
pharmacological tools or with the recently available A2A trans-
membrane peptide that disrupts the A2A-D2 heteroreceptor
complexes (Borroto-Escuela et al. 2018).

As previously shown, A2A receptor stimulation after high
doses and systemic or intra-NAc agonist administration re-
duced lever pressing for food or sucrose (Font et al. 2008;
Wydra et al. 2015a, b), while such reduction was not reported
for the minimally effective dose of intra-NAc core CGS 21680
(2.5 ng/side) (O'Neill et al. 2012). On the other hand, intra-
NAc MSX-3 reduced food intake and delayed intake onset in
food-deprived rats (Nagel et al. 2003) and other studies also
strongly indicate brain A2A receptors as the target to control
the exertion of effort in motivational behaviors (Correa et al.
2016; Mingote et al. 2008; Pardo et al. 2012). Furthermore,
with using optogenetic activation of A2A receptors and satiety-
based instrumental training, Li et al. (2016) defined the
dorsomedial striatum A2A receptor signaling in relation to
the time of the reward and in control of instrumental learning.
Whether the observed in this paper modulatory effects of A2A

receptor ligands were specific to cocaine reward and seeking
behaviors, it remains to be defined in further studies.

A2A receptors are found mostly in striatal regions; howev-
er, different populations of A2A receptors in different brain
regions bi-directionally control cocaine actions (Shen et al.
2008, 2013). In fact, A2A knockout mice having deficits in
A2A receptors in the forebrain (i.e., cerebral cortex, hippocam-
pus, and striatum) or only in the striatum after cocaine treat-
ment provided evidence that widespread forebrain knockout
of A2A receptor reduced cocaine-induced locomotion while
striatal-specific knockout of A2A enhanced the effects of co-
caine (Shen et al. 2008, 2013). To complete our pharmacolog-
ical analysis, the future studies should include genetic research
with using neuron salience strategy, i.e., neuron selective
in vivo knockdown to eliminated functional accumbal A2A

receptors by rapid siRNA (Nakajima et al. 2012) or CRISPR
interference Cas 9 technique for transcriptional repression
(Larson et al. 2013). Additionally, the overexpression of A2A

receptors by Tet-on/off strategy—if available—will help com-
plete the research on A2A receptors and cocaine addiction.
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In the current paper, we studied if local stimulation or
blockade of A2A receptor in the infralimbic PFc might affect
cocaine self-administration and seeking behavior of rats. The
finding that A2A receptor ligands in the infralimbic PFc did
not change cocaine self-administration and seeking (as well as
rats’ locomotion) means they are not involved in controlling
cocaine reward and seeking, but this fact does not eliminate
the significance of A2A receptors in different brain regions
such as the prelimbic PFc or hippocampus in cocaine behav-
iors as was found with using genetic tools (Shen et al. 2008,
2013). Interestingly, another genetic report indicates different
contribution of A2A receptors to fine-tune information pro-
cessing in neuronal networks. In fact, the deletion of neuronal
A2A receptors is precognitive, while the deletion of astrocytic
A2A receptors enhances behavioral impairments (Matos et al.
2015). The astrocytic A2A receptor function is linked with the
density of NR2B subunits of the glutamatergic NMDA recep-
tors (Matos et al. 2015), and the latter receptors are upregulat-
ed during cocaine withdrawal with extinction training in rats
(Pomierny-Chamiolo et al. 2015), what further requires deter-
mining the specificity of A2A receptors not only in brain areas
but also in cell type and cell compartment.

The current findings reveal the effects of selective A2A

receptors stimulation or blockade in the NAc shell and
infralimbic PFc on behavioral effects of cocaine. The inhibi-
tory effects of the A2A receptor agonist CGS 21680 on cocaine
reward are associated through the activation of A2A receptors
in the NAc shell.
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