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Abstract: Intestinal perforation (IP) associated with necrotizing enterocolitis (NEC) is one of the
leading causes of mortality in premature neonates; with major nutritional and neurodevelopmental
sequelae. Since predicting which neonates will develop perforation is still challenging; clinicians
might benefit considerably with an early diagnosis tool and the identification of critical factors.
The aim of this study was to forecast IP related to NEC and to investigate the predictive quality
of variables; based on a machine learning-based technique. The Back-propagation neural network
was used to train and test the models with a dataset constructed from medical records of the NICU;
with birth and hospitalization maternal and neonatal clinical; feeding and laboratory parameters;
as input variables. The outcome of the models was diagnosis: (1) IP associated with NEC; (2) NEC
or (3) control (neither IP nor NEC). Models accurately estimated IP with good performances; the
regression coefficients between the experimental and predicted data were R2 > 0.97. Critical variables
for IP prediction were identified: neonatal platelets and neutrophils; orotracheal intubation; birth
weight; sex; arterial blood gas parameters (pCO2 and HCO3); gestational age; use of fortifier;
patent ductus arteriosus; maternal age and maternal morbidity. These models may allow quality
improvement in medical practice.

Keywords: prematurity; surgical necrotizing enterocolitis; computer simulation

1. Introduction

Intestinal perforation (IP) associated with necrotizing enterocolitis (NEC), also known as surgical
NEC, is one of the leading causes of death in preterm infants, with up to 30–50% mortality compared
with only 21% in those medically treated for NEC [1–5]. Global prevalence of intestinal perforation
due to NEC is 27–52% [6] with 90% of cases in premature infants [7–11]. Furthermore, surgical
NEC leads to an increase in the length of stay beyond expected for prematurity alone, along
with a considerable increase in costs [12,13]. Survivors are affected by significant complications
and comorbidities, including sepsis, short bowel syndrome, adhesions, cholestasis and impaired
neurodevelopment [14–17]. These evidences highlight the burden of intestinal perforation by NEC
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and the need for a tool which allows the clinician to estimate surgical NEC and to guide the
medical management accordingly. NEC may present with abdominal distention, emesis, bloody
stools, temperature instability, apnea and bradycardic spells, abdominal wall erythema or edema,
pneumatosis, portal venous gas and/or pneumoperitoneum [18], but few of them with prognosis
value [18,19]. As NEC has a broad spectrum of disease severity and clinical presentation, we aimed
to forecast infant intestinal perforation in order to increase awareness and early institutional
management [18].

Despite the existence of prediction tools and early recognition of NEC, it remains challenging
to estimate intestinal perforation, as it results from intricate interrelationship between multiple
factors, being difficult to predict in individual cases. In this regard, machine learning models are
able to predict outcomes from complex non-linear interactions [20], which are difficult to obtain
using conventional linear statistical analyses [21,22]. Specifically, artificial neural networks (ANN)
“learn” from training data and allow a robust and more accurate estimation of complex patterns.
Such tools are currently being used in medical decision support systems [23,24]. Therefore, the
aim of this study was to develop models to estimate intestinal perforation in premature neonates
with NEC, based on ANN, evaluating maternal and patients’ multifaceted variables, at birth and
during hospitalization. Secondly, to identify key maternal and neonatal factors (“risk factors”),
we performed a sensitivity analysis which determines the impact of the variables in predicting
the diagnosis. ANN were trained with a back-propagation algorithm (BPNN) [25] without a priori
assumptions regarding the relationship between variables. The short-elapsed time needed to calculate
the IP diagnosis makes the online application of such models possible. We have previously used BPNN
in a biomedical context, with accurate results for the prediction of neonatal and maternal biochemical
blood parameters [26,27]. Such models will be a key contribution for prevention, early diagnosis,
follow-up and quality improvement in medical practice in a clinical setting.

2. Materials and Methods

2.1. Study Design and Ethical Approvals

This was an observational retrospective study. Data were obtained from patient records
hospitalized in the Neonatal Intensive Care Unit (NICU) of a tertiary care hospital from January
2015 to August 2017. Informed consent was not required (protocol approved by the Institutional
Research and Ethics Boards of the Instituto Nacional de Perinatología Isidro Espinosa de los Reyes,
certificate number: 2017-2-65).

This work was designed to forecast IP related to NEC and to investigate the predictive quality of
variables. For this purpose, we developed two estimation models for intestinal perforation associated
with NEC: (a) an ANN model at birth and (b) an ANN model at birth and during hospitalization.
Three groups of neonates were compared: (1) control group without NEC nor intestinal perforation but
with similar gestational age (N = 27), (2) NEC group (according to Bell’s staging criteria) (N = 23) and
(3) Intestinal perforation associated with NEC group (Bell’s Stage IIIB) (N = 26). We excluded 15 cases
with incomplete clinical information as well as spontaneous or not associated with NEC intestinal
perforation, as well as digestive tract malformations. Control neonates were not stage I NEC (or any
NEC stage). We carefully collected a balanced dataset with a similar number of samples per group.

Diagnosis of NEC and intestinal perforation associated with NEC was defined according to
modified Bell’s staging criteria [28] modified by Walsh [29]. NEC patients included those presenting
bedside KUB radiographic findings described in stages IIA, IIB, and IIIA as follows: Ileus with dilated
bowel loops and focal pneumatosis, or widespread pneumatosis, or portal venous gas with or without
ascites, without free air. Patients with intestinal perforation related to NEC included those presenting
radiographic findings described in stage IIIB as follows: Pneumoperitoneum.
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2.2. Dataset

Taking into account variables already reported in the literature, as well as others proposed
during meetings with the clinical staff, we chose 113 variables that included maternal and neonatal
data recorded at birth and during hospitalization. Within these, we collected maternal and neonatal
clinical/demographic data (maternal age, maternal morbidity, gestational age, birth weight), diagnosis,
oxygen therapy at birth, enteral feeding, laboratory, and clinical findings. Routine laboratory tests
are performed for all premature neonates <35 weeks and, within the first 24 h for closer monitoring,
and included arterial pH, blood gases and hematologic data. Maternal obesity was defined as a
Body Mass Index (BMI, calculated as weight (kg)/height (m2) greater or equal to 30 (World Health
Organization). Chorioamnionitis was defined as an acute inflammation or infection of any combination
of fetal membranes, amniotic fluid, decidua and chorion of the placenta. Numerical data were
expressed by a number, whereas absence or presence (no or yes) was expressed as 0 or 1, respectively.
Differences in numerical variables between groups were analyzed by ANOVA, and categorical variables
were analyzed by Pearson’s Chi-square test (SPSS version 22, IBM, Armonk, NY, USA). Twenty-three
variables were chosen for the IP associated with NEC model at birth, while 35 parameters were selected
for the IP associated with NEC model at birth and during hospitalization (data were taken 24 h before
intestinal perforation diagnosis). The anthropometric/clinical maternal and neonatal characteristics
are depicted in Tables 1 and 2, respectively.

Table 1. Clinical and demographic characteristics of the maternal population.

Variables Control Group (n = 27) NEC (n = 23) IP (n = 26) P

Age (years) 28.04 ± 1.77 25.74 ± 1.60 31.31 ± 1.41 0.06

Preeclampsia (%) 14.81 30.43 26.92 0.39

Hypertension (%) 7.407 8.63 11.54 0.87

Overweight/Obesity (%) 11.11 0 11.54 0.24

Hypothyroidism (%) 18.52 4.34 3.84 0.11

Chorioamnionitis (%) 11.11 17.39 11.54 0.77

No. Offsprings (range) 1–3 1–2 1–3

Intra Uterine Growth Restriction (%) 11.11 39.13 26.92 0.07

Obesity defined as a Body mass index (BMI) greater or equal to 30 (World Health Organization). Chorioamnionitis
was defined as an acute inflammation or infection of the membranes and chorion of the placenta.

Table 2. Clinical and demographic characteristics of the neonatal population.

Variables Control (n = 27) NEC (n = 23) IP (n = 26) P

Gestational age (weeks) 30.8 ± 0.42 30.3 ± 0.52 30.3 ± 0.46 0.71

Birthweight (g) 1384 ± 95.5 1085 ± 65.8 1141 ± 65.21 0.01 1

Height (cm) 39.76 ± 0.82 36.72 ± 0.77 37.29 ± 0.89 0.02 1

Sex (male, %) 59.26 43.48 57.71 0.48
1 P < 0.05 between Control and NEC groups.

2.3. ANN (Learning, Testing, and Validation)

The architecture of ANN models comprised three layers of neurons (nodes) connected together:
an input layer (parameters predicting the outcome), a hidden layer (activation transfer functions) and
an output layer: the prediction of diagnosis, either (1) no NEC nor IP, (2) NEC or (3) IP associated
with NEC. The database (N = 76 neonates) was randomly divided into training (80%) and testing,
validation (20%). The input variables were normalized in the range of 0.1 to 0.9, as previously
described [26], in order to prevent within-patient differences in variation and amplitude among
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variables, and the output variable was not normalized. The Back-propagation neural network (BPNN)
was used to train and test ANN models using the Levenberg-Marquardt algorithm [30], as previously
explained [26,27]. Briefly, in the hidden layer, one to <5 neurons were applied until the Root Mean
Square Error (RMSE) between the experimental data (Target) and predicted values (network) was
<10−12, as well as validation of the model by the slope and intercept statistical test (see Section 2.3.3) and
avoiding overfitting (performance evaluation of the model through training, testing, and validation).

2.3.1. IP ANN Model at Birth

Twenty-three input variables were chosen from the entire database with the following maternal
parameters: maternal age (MA), maternal morbidity (MM, see list in Appendix A), chorioamnionitis (C,
y/n), prenatal antibiotic (PA, y/n), number of offsprings, Premature rupture of membranes (PRM, y/n),
and neonatal variables at birth: gestational age (GA), oxygen therapy at birth (y/n): indirect oxygen
(IO, y/n) T-piece (T-P, y/n), Continuous positive airway pressure (CPAP, y/n), positive pressure
ventilation cycles (PPV, y/n), orotracheal intubation (OTI, y/n), birth weight (BW), sex (S), arterial pH
(pH), blood gas: CO2 (pCO2), HCO3, base deficit (BD), diastolic arterial blood pressure (DBP), number
of total leukocytes (L), neutrophils (N), platelets (P), and catheter location (CL). Input variables range
is shown in Table 3.

Table 3. Input range conditions in the IP ANN model at birth.

Input Variable Range

Gestational age (weeks) 25–34.4
Maternal age (years) 14–44
Maternal morbidity 0–15 (see Appendix A)

Chorioaminionitis (y/n) 0–1
Prenatal antibiotic (y/n) 0–1

Number of offsprings 0–3
Premature rupture of membranes (y/n) 0–1

Indirect oxygen (y/n) 0–1
T-piece (y/n) 0–1
CPAP (y/n) 0–1
PPV (y/n) 0–1
OTI (y/n) 0–1

Birth weight (g) 560–3125
Sex (female/male, 1/2) 1–2

Arterial pH value 6.96–7.41
Arterial CO2 (mm Hg) 19.4–72.1

Arterial HCO3 (mmol/L) 9.6–34.5
Arterial Base Deficit (mEq/L) −16.9–7.9

Diastolic arterial blood pressure 20–56
Leukocytes (cells/mm3) 2800–39,940
Neutrophils (cells/mm3) 1008–24,000

Platelets (cells/mm3) 12,200–439,000
Catheter location (absence, 0; high or low placed umbilical arterial, 1 or 2) 0–2

2.3.2. IP ANN Model at Birth and during Hospitalization

The 35 input variables were maternal and neonatal parameters at birth as well as during
hospitalization: maternal age (MA), maternal morbidity (MM, see list in Appendix A), chorioamnionitis
(C, y/n), prenatal antibiotic (PA, y/n), Premature rupture of membranes (PRM, y/n), maternal infection
(MI, y/n); neonatal variables at birth: Intrauterine Growth Restriction (IUGR, y/n), gestational age
(GA), oxygen therapy at birth (y/n): indirect oxygen (IO), T-piece (TP), Continuous positive airway
pressure (CPAP), orotracheal intubation (OTI), birth weight (BW), sex (S), laboratory findings at birth:
arterial pH (pH), blood gas: (pCO2), (HCO3), base difference (BD), number of total leukocytes (L),
neutrophils (N), platelets (P); first day of oral feeding (OF), use of human milk 24 h before diagnosis of
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IP (HM, y/n); use of formula 24 h before diagnosis of IP (F, y/n); use of fortifier 24 h before diagnosis
of IP (FF, y/n); presence of apnea (A, y/n); presence of gastric residuals 24 h before diagnosis of IP
(GR, y/n); number of antibiotic schemes (Ant, y/n); presence of patent ductus arteriosus (PDA, y/n);
number of blood transfusions (T, y/n); presence of hypotension (H, y/n); early sepsis (ES, y/n); late
sepsis (LS, y/n) and catheter location (CL). Table 4 shows input variables.

Table 4. Input range conditions in the IP ANN model at birth and during hospitalization.

Input Variable Range

Gestational age (weeks) 25–34.4
Maternal Age (years) 14–44
Maternal morbidity 0–15 (see Appendix A)

Chorioaminionitis (y/n) 0–1
Prenatal antibiotic (y/n) 0–1

Premature rupture of membranes (y/n) 0–1
Maternal infection (y/n) 0–1

IUGR (y/n) 0–1
Indirect oxygen (y/n) 0–1

T-piece (y/n) 0–1
CPAP (y/n) 0–1
PVV (y/n) 0–1
OTI (y/n) 0–1

Birth weight (g) 560–3125
Sex (female/male, 1/2) 1–2

Arterial pH value 6.96–7.41
Arterial CO2 (mm Hg) 19.4–72.1

Arterial HCO3 (mmol/L) 9.6–34.5
Arterial Base Deficit (mEq/L) −16.9–7.9

Use of formula (y/n) 0–1
Use of human milk (y/n) 0–1

First day of oral feeding (day) 1–3
Apnea (y/n) 0–1

Gastric residuals (y/n) 0–1
Diastolic arterial blood pressure 20–56

Leukocytes (cells/mm3) 2800–39,940
Neutrophils (cells/mm3) 1008–24,000

Platelets (cells/mm3) 12,200–439,000
Catheter location (absence, low, high, hepatic) 0–3

Antibiotic schemes 1–2
PDA (y/n) 0–1

Blood transfusions (y/n) 0–1
Hypotension (y/n) 0–1
Early sepsis (y/n) 0–1
Late sepsis (y/n) 0–1

Catheter location (absence, 0; high or low placed umbilical arterial, 1 or 2) 0–2

A representative ANN architecture for intestinal perforation associated with NEC model is
depicted in Figure 1, with 23 input variables at birth and 1 output variable: diagnosis (No NEC, NEC
or IP associated with NEC).
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Figure 1. A representative network architecture of Intestinal perforation (IP) model. The learning
procedure used by ANN for the estimation of IP associated with NEC from 23 maternal and
neonatal variables at birth (maternal age, maternal morbidity, chorioamnionitis, prenatal antibiotic,
number of offsprings, premature rupture of membranes, gestational age, oxygen therapy (indirect
oxygen, T-piece, continuous positive airway pressure, positive pressure ventilation cycles, orotracheal
intubation), birth weight, sex, arterial pH, blood gas (CO2, HCO3, base deficit), diastolic arterial blood
pressure, number of total leukocytes, neutrophils, platelets and catheter location), trained by the
Levenberg-Marquardt optimization algorithm. The same architecture was used for IP estimation with
birth and hospitalization variables.

2.3.3. Statistical Test for ANN Model Validation

We applied a statistical test (slope and intercept test [31]) in which the upper and lower intervals
of the slope and intercept from linear regression models of the experimental database versus the
simulated ones (learning and validation database) must approach 1.0 and 0, respectively; with a 99.8%
confidence level according to the Student T-test.

The regression coefficient (R2) was then obtained from linear regression models for each
ANN model:

Simulation = a + b exp

2.4. Sensitivity Analysis

In order to identify key factors that play an important role in predicting intestinal perforation
associated with NEC, we performed a sensitivity analysis to the trained and validated neural network,
as previously described ([26,27] and Garson algorithm in Appendix B), allowing to determine which
input variables (maternal and neonatal parameters) are more important (or sensible) to attain precise
output values (diagnosis).



Int. J. Environ. Res. Public Health 2018, 15, 2509 7 of 18

3. Results

The aim of this study was to obtain ANN models estimating intestinal perforation associated
with NEC (IP) in order to differentiate from NEC or no NEC (Control) diagnosis and to investigate key
factors for the prediction. For this purpose, extracted data from maternal and neonatal records were
used to train two BPNN models: (1) an IP model with birth variables or (2) an IP ANN model with
birth and hospitalization parameters. Such design will allow to explore the importance of risk factors
at birth compared to hospitalization parameters, obtained from a sensitivity analysis of both models.

All neonates with IP associated with NEC diagnosis in NICU (N = 27) were chosen while NEC
(N = 23) or control groups (N = 27) were carefully selected in order to have similar gestational ages
in all groups. Neonatal birth weight was significantly higher in the control group (1384 ± 95.5 g)
compared to NEC or IP groups (1085 ± 65.8 g and 1141 ± 65.21 g, respectively; see Table 2, p < 0.05).

For both models, distinct parameters (number of neurons) and transfer functions were tested,
finding the best performance to be the hyperbolic tangential function (TANSIG) in the hidden layer
and the Log-sigmoid function (LOGSIG) in the output layer. For both models, 30,000 runs (with
1000 epochs) were applied in the hidden layer (from one neuron to two or three neurons). For the ANN
model predicting IP at birth, the final architecture was 23 input variables, 3 neurons in the hidden layer,
and 1 neuron in the output layer (IP associated with NEC, NEC or no NEC diagnosis): 23-3-1; while the
final topology for the ANN IP model at birth and during hospitalization was 35-2-1. The representative
neural architecture for the estimation of IP diagnosis is depicted in Figure 2, while the equations,
weights, and biases of both models are reported in Appendices B and C (Equations (A1)–(A6) and
Tables A1 and A2).
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Figure 2. Intestinal perforation associated with NEC ANN model. Representative estimation model for
the diagnosis of intestinal perforation associated with NEC (IP) with the 23 input variables described
in Figure 1, 3 neurons in the hidden layer (b1) and 1 neuron in the output layer (b2).

Both intestinal perforation associated with NEC models had a good accuracy, with regression
coefficients of R2 = 0.9764 and R2 = 0.98029 for the IP model with birth variables (Figure 3A) and the
IP model with birth and hospitalization parameters (Figure 3B), respectively, evaluated by the linear
regression between the experimental and simulated data, as well as the statistical tests from these plots,
with a 99.8% confidence level for all determinations (Tables A3 and A4 in Appendix C).
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on scatter points. Open circles and closed diamonds show experimental and learning data, respectively.

In order to identify which maternal and neonatal factors were critical for the prediction of intestinal
perforation associated with NEC in both models, we performed a sensitivity analysis which depicts the
importance of individual factors (inputs variables) in the modeling of the IP diagnosis (Figures 4 and 5).
At birth, neonatal platelets number was the most significant parameter for IP prediction followed by
the use of orotracheal intubation (OTI) as oxygen therapy, birthweight, sex, maternal age, neonatal
diastolic blood pressure (DBP), pCO2 and gestational age (Figure 4).
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In the IP ANN model with birth and hospitalization parameters, the number of neonatal
neutrophils, PDA, sex, pCO2, use of fortifier, maternal age, OTI, HCO3, indirect oxygen, and gastric
residuals were the key factors with the highest relative contribution to the estimation of intestinal
perforation. These variables were followed by birthweight, PPV, maternal age, first day of oral
feeding, hypotension and early sepsis (Figure 5). Overall, maternal factors accounted for 18.1% of the
importance in estimating IP while neonatal birth variables were responsible for 44.4% (oxygen therapy
14%, arterial blood gas and laboratory findings 30.4%) and hospitalization factors for 37.5%.
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4. Discussion

An emphasis in forecasting intestinal perforation associated with NEC from NEC alone was the
objective of this work, which was attained with good performances by both models (at birth or at
birth and during hospitalization), the regression coefficients between the experimental and predicted
data were R2 > 0.97. Learning to estimate perforation depends on all variables from individual cases
working together in a multidimensional process in order to obtain a pattern of forecasting, and allowing
for the non-linear relations between variables to be determined during the learning process, make
these ANN models highly valuable for clinicians since prediction approaches personalized medicine.

Identification of critical factors and the assessment of how output changes by varying input
variable values one by one, added knowledge in the field and will permit additional understanding
of risk factors for the prediction of a future intestinal perforation associated with NEC. Previously
unreported key variables for the prediction of IP in both models were: orotracheal intubation, arterial
blood gas parameters (pCO2 and HCO3), use of milk fortifier and maternal age. Therefore, attention
should be paid to these parameters.
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The relative contribution of each predictor variable also allowed to verify that the models are
doing what they are intended to do (estimation of intestinal perforation diagnosis), by finding variables
involving literature-known factors, that may allow an early diagnosis and follow-up of premature
neonates. With respect to previously described risk factors for intestinal perforation associated with
NEC, lower birth weight [32–34], decreased gestational age [32,33], apnea episode [32], presence of
sepsis [32], lower platelet count [6,32,35] were also obtained by our models. Risk factors contained
in the final GutCheck model included gestational age, packed red blood cells transfusion, unit NEC
rate, late-onset sepsis, multiple infections, hypotension treated with inotropic medications, Black
or Hispanic race, birth in a different NICU and metabolic acidosis [13]. As well, risk parameters
in a disease progression statistical regression model comprise gender, gestational age, and birth
weight [13,36].

In the matched prospective multicenter cohort study by Berkhout et al., multivariable logistic
regression modeling demonstrated only 2 independent variables to be associated with an increased risk
of NEC: administration of predominantly formula feeding and the cumulative number of parenteral
feeding days. Remarkably, administration of any antibiotics initiated within 24 h after birth was
associated with a reduced risk of NEC [37].

We found that male gender was a highly predictive parameter for intestinal perforation associated
with NEC compared to only NEC. There are only a few studies where male gender has been
significantly associated to increased risk of NEC [36,38] or not [39]. Duci et al. reported that gender was
not statistically significant when comparing patients with NEC treated medically vs. NEC requiring
surgery [39,40]. However, more work is needed to conclude that males are more likely to progress
to intestinal perforation. To include a greater number of patients from multicenter studies could
clarify this.

4.1. Maternal Burden

In regard to maternal factors, older age (>38 years) followed by preeclampsia or hypertension
determined perforation by NEC in the ANN models. In contrast, Lee et al. reported a lack of association
between preeclampsia and NEC, demonstrating that neutrophil-to-lymphocyte ratio (NLR) at the time
of admission and multiparity was associated with the occurrence of NEC [41]. Zhang et al. did not
find a difference in perinatal factors including hypertensive disorders, diabetes mellitus, intrahepatic
cholestasis, heart disease, hypothyroidism, premature rupture of membranes, placental abruption,
antenatal steroid use or mode of delivery between NEC and control groups [41,42]. The literature,
however, evaluating the association between maternal preeclampsia and neonatal NEC is conflicting.
Bashiri et al. reported that maternal hypertensive disorders may be independent predictors of NEC in
children smaller than 1500 g at birth [43]. Other studies have demonstrated that the risk of NEC is
increased by intrauterine growth restriction and maternal smoking [44].

Recent studies performed in twins have suggested that a genetic variation in an intergenic region
of chromosome 8, labeled as the “NECRISK” region may be associated with increased risk for surgical
NEC. Although no specific genes have been identified, pathway analyses have indicated possible
pathways related to growth factor, calcium, and G-protein signaling, and others associated with
inflammation that may contribute to NEC complications [45].

4.2. First Day of Life

From laboratory findings, a higher neutrophil count and lower platelet numbers predicted
perforation by the models. In this regard, thrombocytopenia has been associated with NEC and
perforation in several studies [6].

In our study, arterial blood gases (pCO2 and HCO3) were the most important variables to
predict IP associated with NEC. It is known that a high base deficit from umbilical cord arterial
samples at birth can contribute to NEC in growth-restricted infants [6,46]. In our models, metabolic
acidosis combined with higher total numbers of leukocytes, neutrophils, and platelets forecasted
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intestinal perforation with NEC. In agreement with our data, a study by Duci and colleagues reported
a statistically significant difference in pH between patients with medically treated NEC vs. NEC
requiring surgery (7.35 vs. 7.2, p < 0.0001) and identified a lower risk for surgery in patients with a
later onset of NEC and higher pH values [40]. Altogether, these findings support the need for a critical
care and follow-up in the first hours of life as a predictive event for developing intestinal perforation
associated with NEC.

4.3. During Hospitalization

Regarding variables taken from hospitalization data, the presence of PDA, the use of fortifier,
early-onset sepsis, hypotension, and gastric residuals were the most important factors for estimating
intestinal perforation. Except for the use of fortifier, all other variables have been associated with NEC
but not specifically to intestinal perforation [34]. The use of fortifier is a new variable for IP prediction
and will be part of the hypothesis to be tested in a future study examining patients. Tepas proposed
seven criteria that may be considered as predictive of surgical intervention: bandemia, positive blood
culture, acidosis, hypotension, thrombocytopenia, hyponatremia, or neutropenia [47], and some of
these parameters were also shown as relevant in the models performed in this study.

It is also important to describe the less/non-predictive factors such as catheter location, formula
feeding, and CPAP. At birth, catheter location seemed a valuable parameter, however when taking
into account birth and hospitalization data together, its contribution diminished compared to other
key factors. With respect to formula feeding, the NICU has implemented the use of donor milk when
the patient’s mother is not available, perhaps explaining why the use of bovine formula was not an
important variable in this study.

4.4. Limitations and Strengths of the Study

We have to acknowledge the limitation of this work to be the relatively small dataset size (n = 76)
however, the use of anthropometric, clinical and laboratory findings as well as a balanced dataset gave
accurate results. Another important limitation is the fact that it is a single center study nonetheless,
our institution is a tertiary care hospital that concentrates complicated pregnancies from all over the
country. We also have to recall that both ANN models predict the diagnosis of intestinal perforation
associated with NEC within the limits of the variables range (Tables 3 and 4). Also, adding more
variables to the model (birth and hospitalization data) did not improve the power of prediction.

The strengths of this work include a complete maternal and patient information from variables
at birth and associated with the course of the disease taking into account lifestyle, morbidity,
anthropometric, clinical, enteral feeding, mechanical ventilation, blood gas, medications and laboratory
findings of the study population from three balanced groups. We report both key factors as well as
less-important factors for the prediction of IP. Learning by ANN to estimate a pattern of intestinal
perforation associated with NEC from individual cases relied on several variable parameters, making
such tools highly valuable for clinical setting since they allow a more precise prediction of the outcome.

5. Conclusions

Both BPNN models were able to accurately estimate intestinal perforation associated with NEC.
Furthermore, key maternal and neonatal variables were found by the models involving well-known
factors reported in the literature, as well as new parameters that may allow the early diagnosis and
follow-up of premature neonates at risk of surgical NEC. Our results highlight the value of integrating
maternal and neonatal variables at birth and during hospitalization variables in BPNN models to
better estimate surgical NEC. A suggestion for new modeling will be to incorporate data from birth,
day 3 and day 7, as well as from multi-center studies. We hope our models may be useful to preselect
at-risk patients for perforation associated with NEC before randomization for a strict follow-up that
could result in different surgical interventions.
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Appendix A

List of Maternal morbidities classification for the ANN models:

1: Preeclampsia
2: Hypertension
3: Gestational Diabetes Mellitus
4: Overweight
5: Adolescence
6: Hypothyroidism
7: Gestational Diabetes Mellitus and Hypothyroidism
8: Type II Diabetes and preeclampsia and overweight and hypertension
9: Polycystic ovary
10: Cervicovaginitis
11: Gestational Diabetes Mellitus and Preeclampsia
12: Preeclampsia and overweight
13: Hypothyroidism and overweight
14: Diabetes and candidiasis
15: Preeclampsia and carbohydrate intolerance

Appendix B

In the hidden and output layers, each neuron (n) has coefficients assigned to them, termed weights
(Wi and Wo) and biases (b1 and b2) such as:

n1 = Wi × In1 + Wi × In2 +, . . . , + Wi × Ink + b1 (A1)

where In is the input variable. The value of each neuron is the argument of the transfer functions
(f and g):

IP, NEC or no NEC (output) = g(Wo × f (Wi × In + b1) + b2) (A2)

f is a hyperbolic tangent transfer function (TANSIG) and g is a linear transfer function (PURELIN) or
Log-Sigmoid function (LOGSIG).

We applied different transfer functions in both ANN models and the best performance was found
with TANSIG-LOGSIG therefore, Equation (A2) is now Equation (A3):

Where noutput is:

output = 1
(1+exp(−noutput_layer))

noutput_layer = ∑
s

{
Wo(l,s).

[
2

1+e
−2.(∑k Wi(s,k) .Ink+b1(s,1))

− 1
]}

+ b2(l,1)
(A3)
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ANN learning

In this work, to change the weights and biases, we applied the Levenberg-Marquardt algorithm,
following our previously reported methods [26,27]. This uses the adaptation as follows:

∆w =
(

JT J + µI
)−1

JTe (A4)

where:

J is the Jacobian matrix (first derivative)
e is a vector of network errors
µ is the combination coefficient with a value of 0.001
I is the identity matrix.

The Root Mean Square Error (RMSE) was applied as the error function which describes the
performance of the network according to the following equation Equation (A5):

RMSE =

√√√√(
∑Q

q=1
(
yq,exp − yq,ANNsim

)2
)

Q
(A5)

where:

Q is the number of data points (n = 76),
yq,exp is the experimental data,
yq,ANNsim is the network prediction.

Results for intestinal perforation ANN models
The obtained ANN models for diagnosis of Intestinal Perforation (IP) associated with NEC

followed equation Equation (A6) with TANSIG-LOGSIG:
noutput is:

IP_or_NEC_or_no_NEC = 1
(1+exp(−noutput_layer))

noutput_layer = ∑
s

{
Wo(l,s).

[
2

1+e
−2.(∑k Wi(s,k) .Ink+b1(s,1))

− 1
]}

+ b2(l,1)
(A6)

Equation (A6) estimates intestinal perforation associated with NEC, with weights and biases
from Table A1 (IP ANN model at birth, 23-3-1) and Table A2 (IP ANN model at birth and during
hospitalization, 35-2-1) in Appendix C.

Sensitivity analysis
To obtain the relative importance of variables in predicting intestinal perforation associated with

NEC, we performed a sensitivity analysis based on the partitioning of connection weights proposed
by Garson in Equation (A7):

Ij =

∑Nh
m=1

(( ∣∣∣W ih
jm

∣∣∣
∑Ni

k=1|W ih
km |

)
×
∣∣∣W ho

mn

∣∣∣)

∑Ni
k=1

{
∑Nh

m=1

(
|W ih

km|
∑Ni

k=1|W ih
km|

)
×
∣∣W ho

mn
∣∣} (A7)

where:

Ij is the relative importance of the jth input variable on the output variable,

Ni is the number of input neurons,
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Nh is the number of hidden neurons,
W is the connection weight,
And the superscripts i, h and o refer to input, hidden and output layer.

Appendix C

Table A1. Weights and biases for the IP ANN model at birth (3 neurons in the hidden layer, k = 3 and
l = 1).

Wi{s,k}

Wi{s,1} 1.3267125 3.1584473 −1.0502622
Wi{s,2} −1.7146594 −1.8984633 2.2922617
Wi{s,3} 4.8419826 0.346469 0.172989
Wi{s,4} 0.7706828 −1.8081623 −0.1177451
Wi{s,5} −0.6644504 −1.4773511 0.641453
Wi{s,6} 1.7169406 1.6965454 −0.980111
Wi{s,7} 1.4663105 0.5359049 1.1481214
Wi{s,8} 0.5342111 3.4738356 0.2333177
Wi{s,9} 2.5968973 1.9983119 −0.1671108
Wi{s,10} 0.0638118 0.9084672 −2.1722897
Wi{s,11} −0.4195773 2.0502619 −1.7919031
Wi{s,12} 1.5347326 −1.6982282 4.0750083
Wi{s,13} 3.4133979 −3.0526489 −1.3469327
Wi{s,14} 1.7925231 1.4563156 −2.5644274
Wi{s,15} 0.5678812 −0.7150829 −0.5980426
Wi{s,16} 2.661324 2.4458136 −0.7857453
Wi{s,17} 0.0671341 0.8060811 −1.9744531
Wi{s,18} −3.7567751 0.823349 −0.531168
Wi{s,19} −4.0508192 1.2459655 −0.7937825
Wi{s,20} −0.8384736 0.3953479 0.1355509
Wi{s,21} −1.5220229 0.0202477 −0.1580771
Wi{s,22} −4.7012854 −5.0669983 −2.2215755
Wi{s,23} −2.8142496 −0.4138948 1.3408794

Wo{1,1} Wo{1,2} Wo{1,3}
Wo{l,s} −5.5289631 4.3969459 5.5399183
b1{23,1} b1{s,1}

1.6391183
−2.673269
5.3597672

b2{l,s}
b2{1,1} −0.2889819

Table A2. Weights and biases for the IP ANN model at birth and during hospitalization (2 neurons in
the hidden layer, k = 2 and l = 1).

Wi{s,k}

Wi{s,1} −0.3751959 −7.3554209
Wi{s,2} 8.7757177 0.8013817
Wi{s,3} 3.8650996 1.8292029
Wi{s,4} −3.5645456 −1.5785954
Wi{s,5} 1.6843183 3.4310907
Wi{s,6} −1.0314863 −2.8521103
Wi{s,7} 1.7744987 −0.1751799
Wi{s,8} −6.0887131 −0.1231969
Wi{s,9} 2.9294796 −5.9005369
Wi{s,10} −1.6834391 1.6662543
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Table A2. Cont.

Wi{s,k}

Wi{s,11} −0.2871787 −1.0537841
Wi{s,12} −1.7927934 −5.9023226
Wi{s,13} 8.3022116 −0.2731127
Wi{s,14} −2.7479431 5.0231616
Wi{s,15} −5.5854112 5.6349576
Wi{s,16} 1.2288445 0.4765211
Wi{s,17} −4.9111278 −5.5446961
Wi{s,18} −6.0798957 2.5347047
Wi{s,19} −2.9004902 −1.8560627
Wi{s,20} −0.3563622 0.3671644
Wi{s,21} 0.4792034 −1.6491173
Wi{s,22} −0.7248806 7.1122093
Wi{s,23} −0.7406803 10.360829
Wi{s,24} 0.1160807 4.8359502
Wi{s,25} 0.4699811 −8.6634359
Wi{s,26} 2.1030666 −4.5441764
Wi{s,27} 3.309815 8.8156683
Wi{s,28} 0.6025175 1.3123462
Wi{s,29} 2.1301649 −0.5153287
Wi{s,30} 4.0466436 −7.5138313
Wi{s,31} −1.4889536 0.2544955
Wi{s,32} 2.287042 −5.3644162
Wi{s,33} 4.4242002 −2.8862814
Wi{s,34} 1.6291247 −3.5560135
Wi{s,35} 0.0894362 −0.0343897

Wo{1,1} Wo{1,2}

Wo{l,s} 7.952817 −9.1921023

b1{35,1} b1{s,1}

2.3093149
1.7504724

b2{l,s}

b2{1,1} −14.149185

Table A3. Slope and intercept values for the statistical test of the IP ANN model at birth.

Birth Variables

alower aupper
−0.0395 0.0607
blower bupper
0.9074 1.0703

Table A4. Slope and intercept values for the statistical test of the IP ANN model at birth and
during hospitalization.

Birth and Hospitalization Variables

alower aupper
−0.0394 0.0524
blower bupper
0.9191 1.0683
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