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Abstract

Parkinson’s disease (PD) can present with a variety of motor disorders that fluctuate throughout 

the day, making assessment a challenging task. Paper-based measurement tools can be burdensome 

to the patient and clinician and lack the temporal resolution needed to accurately and objectively 

track changes in motor symptom severity throughout the day. Wearable sensor-based systems that 

continuously monitor PD motor disorders may help to solve this problem, although critical 

shortcomings persist in identifying multiple disorders at high temporal resolution during 

unconstrained activity. The purpose of this study was to advance the current state of the art by (1) 

introducing hybrid sensor technology to concurrently acquire surface electromyographic (sEMG) 

and accelerometer data during unconstrained activity and (2) analyzing the data using dynamic 

neural network algorithms to capture the evolving temporal characteristics of the sensor data and 

improve motor disorder recognition of tremor and dyskinesia. Algorithms were trained (n = 11 

patients) and tested (n = 8 patients; n = 4 controls) to recognize tremor and dyskinesia at 1-second 

resolution based on sensor data features and expert annotation of video recording during 4-hour 

monitoring periods of unconstrained daily activity. The algorithms were able to make accurate 

distinctions between tremor, dyskinesia, and normal movement despite the presence of diverse 

voluntary activity. Motor disorder severity classifications averaged 94.9% sensitivity and 97.1% 

specificity based on 1 sensor per symptomatic limb. These initial findings indicate that new sensor 

technology and software algorithms can be effective in enhancing wearable sensor-based system 

performance for monitoring PD motor disorders during unconstrained activities.
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Attempts at developing a wearable device that can automatically track changes in the 

presence and severity of involuntary motor disorders have focused primarily on Parkinson’s 

disease (PD). In addition to being among the most common neurodegenerative diseases 

among adults,1 PD can present with a variety of different motor disorders that fluctuate 

throughout the day. Effective therapeutic management of these disorders depends on the 

ability of the clinician to accurately track their progression over time and in different parts of 

the body. The current means of tracking longitudinal changes in the patient’s motor status 

outside the clinic is dependent on the patient making entries into a motor diary. Diaries are 

prone to subjective errors and poor sensitivity when detecting change4–7 and may be 

burdensome for individuals with PD, who are at risk for cognitive decline and dementia2,3

Wearable, sensor-based devices for monitoring PD motor disorders are designed to record, 

analyze, and automatically interpret mechanical and/or physiological signals resulting from 

the patient’s voluntary and involuntary muscle activity. Recent advances in wearable sensor 

technology8 and improvements in machine learning algorithms9 have brought us closer to 

overcoming the inherent challenges of implementing such devices. Despite this prospect, no 

system is currently available that can remotely monitor PD motor disorders during 

unrestricted daily activities with sufficient temporal or spatial resolution to track the full 

complement of PD motor disorders and their fluctuations throughout the day.

The most common approaches to developing a PD monitor have relied on 

accelerometers10–15 (ACCs), gyroscopes,16–18 inertial sensors,19 and sEMG sensors.20,21 

Many of these devices have been validated to work reasonably well at identifying a single 

motor disorder such as resting tremor18,20 or dyskinesia12–15 during scripted activities. 

These restrictions simplify the task of identifying a disorder because confounding signals 

generated by normal extemporaneous daily activities are minimized. Other recent 

developments have focused on automating the administration of standardized motor 

assessment scales for PD disorders.18,19,22,23 These approaches were designed primarily for 

identifying tremor and/or bradykinesia, and have not included other motor signs of PD or 

dyskinesia. They also shift the burden of timely administration from the clinician to the 

patient, which may be challenging because of the cognitive deficits that are characteristic of 

advanced Parkinson’s disease.3

This report describes sensor and data-processing technologies that achieve high temporal 

and spatial resolution for identifying the severity of tremor and dyskinesia using a minimal 

number of sensors during unconstrained activities.

Patients and Methods

Subjects

Two groups of subjects were tested (Table 1): 1 group (n = 11 with PD) provided a data set 

for algorithm development (training set), and the other group (n = 8 with PD; n = 4 without 
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PD) provided data for testing the algorithms (test set). The acquisition of separate databases 

was implemented to demonstrate that the algorithms are subject-independent and need not 

require pretraining for each application. Patients were screened for mild to moderately 

severe categories of Parkinson’s disease (Hoehn–Yahr stages II–III while “on” and Hoehn–

Yahr stages III–IV while “off”),24 with a mean disease duration of 13 years for both groups. 

All were taking levodopa as well as other antiparkinsonian medications. The patients 

presented with tremor scores ranging from 0 to 4, based on the Unified Parkinson’s Disease 

Rating Scale (UPDRS)23 and dyskinesia scores ranging from 0 to 4 based on the modified 

Abnormal Involuntary Movement Scale (m-AIMS).25 None were diagnosed with dementia, 

and all were ambulatory. Non-PD subjects were selected to be within the age range of the 

patients and were screened for neuromuscular disorders, including PD. All subjects provided 

voluntary written informed consent approved by the Boston University institutional review 

board prior to their participation in the study.

Methods

Data Acquisition—Our goal is to develop a system that requires only 1 sensor per 

symptomatic limb for identifying tremor and dyskinesia in that limb. Accordingly, only 1 

sensor was placed on each of the 4 extremities. Sensors were on the middle of the muscle 

belly (away from tendon and innervation zones) of the extensor carpi ulnaris (ECU) muscle 

in the upper limbs and of the tibialis anterior (TA) muscle in the lower limbs. Each hybrid 

sensor (Fig. 1) is instrumented with a triaxial accelerometer (dynamic range, ±6 g; 

maximum resolution, 0.0008 g/bit; bandwidth range, DC to 50 Hz) and sEMG sensing (gain 

of 1000; bandwidth range, 20–450 Hz; baseline noise, <1.25 μV root mean square [RMS]). 

The selection of the TA and ECU muscles was based on pilot experiments that indicated that 

these muscles are most active when tremor and dyskinesia are present in limb muscles. A 

reference electrode for the sEMG recordings was attached to the skin at the C7 bony 

prominence. Sensors were connected to a hip-worn data acquisition unit, and analysis was 

conducted offline on a PC workstation (sampling rate of 1000 Hz using a 16-bit A/D card).

Experimental sessions were continuously videotaped using fixed and handheld high-

resolution digital cameras. Data were recorded continuously for approximately 4 hours (to 

capture a complete “on-off” medication cycle) in a 100-m2 laboratory arranged to simulate a 

home environment. Video and sensor data were synchronized by generating a pulse tone 

recorded on the cameras audio channel. Sessions were timed to begin approximately 1 hour 

following the patient’s first morning dose of antiparkinsonian medication. The subjects were 

free to move about the simulated home environment without coaching from the researchers 

or use of an activity script. The physical and social environment was designed to favor 

voluntary activities that included a variety of mobility states (sitting, standing, walking, and 

lying down), during which numerous diverse activities occurred, such as preparing snacks, 

eating, reading, writing, and interacting with researchers and family members.

Data Analysis

Video Annotation—Video annotation for scoring tremor and dyskinesia severity was 

carried out by a team of movement disorder specialists consisting of 2 neurologists and a 

nurse coordinator from the Boston University Parkinson’s Disease Center and a physical 
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therapist. This information provided the basis on which the classification algorithms were 

trained and tested. Tremor severity was scored based on item 20 (tremor at rest) and item 21 

(action or postural tremor) of the Motor Examination section of the UPDRS.23 Dyskinesia 

severity was scored based on the m-AIMS scale. Both instruments use a 5-point Likert scale, 

with 0 = the absence of the disorder and 4 = the most extreme disorder. Annotators identified 

the beginning and end of each movement disorder severity occurrence with a resolution of 1 

second. Each of the 4 limbs was scored separately. Annotated scores of tremor and 

dyskinesia severity in the lower limb during walking could not be reliably observed by the 

movement disorder experts because of the speed of lower limb movement during gait. The 

algorithmic identification of these disorders during walking was therefore based on sensor 

data from the upper extremity.

Signal Processing and Analysis—The sEMG and ACC signals were analyzed to 

extract features in the time and frequency domain using RMS and autocorrelation-based 

parameters (Fig. 1) derived from previous data-mining studies that differentiated voluntary 

from involuntary movements.26–29 These features were used as inputs to time-dependent 

dynamic neural networks (DNNs) that were implemented separately for tremor and 

dyskinesia using a multilayered feed-forward architecture. We implemented DNNs instead 

of the more traditional static neural networks14 because they are capable of learning time-

dependent relationships between the inputs. Training was implemented using a temporal 

back-propagation algorithm.30 The input features to the DNNs were calculated over a 2-

second window, and the output produced a single value ranging between −1 (no disorder 

detected) and +1 (disorder detected) at the rate of 1 per second. The hidden nodes and the 

output node used the weights of a 5-point FIR filter applied to time-delayed and time-

advanced versions of their respective input data.

When the tremor and dyskinesia motor disorders were identified, a simple Bayesian 

maximum a posteriori probability (MAP) classifier was applied to determine severity level, 

based on calculations of accelerometer energy.31,32 The severity detector classified each 

second in which the disorder was present using 3 categories: “mild,” “moderate,” or 

“severe,” corresponding to a UPDRS and/or m-AIMS score of 1, 2, or 3–4, respectively. 

Scores of 3 and 4 were combined because of the relatively few scores of 4 (<10% of the 

disorder duration).

Evaluating the Classification Algorithms—Discrepancies between the classification 

algorithm and expert annotation were evaluated on the basis of sensitivity and specificity 

measurements. Sensitivity describes the ability of the algorithm to correctly identify a 

movement disorder when it is present, and specificity describes the ability of the algorithm 

to correctly identify all instances when the movement disorder is absent.26–29

Based on these calculations, we computed the global error rate (GER) from a normalized set 

of testing data in which the number of seconds during which the disorder was present is 

equal to the number of seconds when the disorder was absent. The formula used for 

calculating the global error rate is: 1 − ([sensitivity + specificity]/2).
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The GER was normalized to adjust for the possible influence of mobility state (ie, duration 

of sitting, standing, and walking) by calculating a separate GER for each of the 3 mobility 

states and calculating an average value. Without this normalization, algorithm performance 

could be exaggerated (eg, if the data being analyzed were primarily from quiet sitting). To 

measure the ability of the algorithm to avoid localized errors, we also determined a local 

error rate,27,29 defined as the proportion of 30-second intervals in which more than half the 

classifications were incorrect.

Results

Voluntary Versus Involuntary Activity

The activity summary in Table 1 specifies that the monitoring periods contained a relatively 

high presence of both voluntary and involuntary motor activity, with a minimum of “at rest” 

states, thereby providing numerous instances in which involuntary movement disorders were 

differentiated from purposeful movements by the algorithms.

Signal Characteristics

Figure 2 highlights the differences in the signal characteristics for sEMG and accelerometer 

recordings of tremor and dyskinesia. Tremor produces periodic sEMG and accelerometer 

signal “bursts” that are relatively constant in duration and amplitude (Fig. 2A). In contrast, 

dyskinesia produces large irregular fluctuations in both the sEMG and accelerometer signals 

(Fig. 2C). These defining signal characteristics are not always so easily differentiated from 

normal voluntary movements, as exemplified in Figure 2D.

Algorithm Training

Algorithms were initially trained using 44 hours of patient data (n = 11 PD patients). 

Dyskinesia and tremor training and testing sets were segregated by limb. We were able to 

reduce the size of the training database set to 20 hours by iteratively removing redundancies 

in the type of physical activities recorded for a particular subject and retaining regions that 

provided a sufficient range of movement disorder severities occurring during the different 

unscripted activities. Training of the algorithms using the reduced data set achieved 100% 

sensitivity and 99% specificity for tremor and 98% sensitivity and 99% specificity for 

dyskinesia.

Algorithm Testing

The algorithms were tested on an independent data set consisting of 29 hours of data from a 

different group of 8 PD patients and 15 hours of data from 4 non-PD subjects (Table 1).

Tremor Results—The results are summarized in Table 2 for different severity levels, 

mobility states, and extremities. The algorithms were able to detect the occurrence of tremor 

with an overall mean sensitivity and specificity of 90.2% and 92.9%, respectively. The 

relatively low percentage of localized errors for the entire data set (mean, 1.9%) indicated 

that tremor detection was accomplished with relatively few localized clusters of errors. 

Tremor was best differentiated by the sEMG energy feature and by the ACC autocorrelation 
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feature for quantifying the frequency content of the signal. The identification of mild, 

moderate, and severe subcategories was achieved with error rates less than 5% (Table 2).

False-positive identification of tremor was produced in 3 of the patients tested during brief 

episodes of repetitive MU discharges at frequencies consistent with tremor, but without 

visible signs of tremor movement (Fig. 2B). These instances only occurred just prior to overt 

clinical signs of tremor.

The training and test databases for tremor were reanalyzed without the sEMG features to 

assess whether hybrid sensor data improves tremor recognition. The inclusion of sEMG 

features with ACC features resulted in a 10% improvement in overall sensitivity, a 33% 

improvement in the GER, and a 77% improvement in the LER compared with an ACC-only 

database. Specificity was unchanged, at approximately 94% for both conditions.

Dyskinesia Results—Dyskinesia recognition by the algorithms (Table 2) resulted in 

overall sensitivity and specificity of approximately 91.7% and 89.5%, respectively, which is 

comparable to the results we derived for tremor recognition. The algorithms were 

particularly effective in providing minimal local error rates in the arms (mean, 0.20%) 

compared with the legs (mean, 3.6%). The relatively low percentage of localized errors for 

the entire data set (mean, 1.9%) indicated that the errors were not concentrated in specific 

intervals but were generally more evenly distributed.

Rapid normal movements were distinguished from dyskinetic movements primarily from 

ACC amplitude and frequency parameters. The identification of mild, moderate, and severe 

subcategories of dyskinesia was achieved with errors that were similar to those reported for 

tremor.

Dose-Related Results—Figure 3 provides an example of the ability of the algorithms to 

accurately capture continuous dose–response movement disorder information from the upper 

extremity of a PD patient. The figure shows the rapid fluctuations in movement disorder 

severity and gradual transition from dyskinesia to tremor approximately 150 minutes 

following the patient’s first dose of anti-PD medication. Sensitivity ranged from 93.3% to 

97.4% for the different severities of dyskinesia and from 94.5% to 97.2% for the different 

severities of tremor from these data. The lowest specificity was 97% for both disorders.

Discussion

This study introduces a new approach of combining hybrid sEMG and accelerometer sensor 

data with DNN analysis to provide accurate automatic detection of tremor and dyskinesia 

severity at a high temporal resolution in PD patients during unconstrained daily activities. 

This capability was achieved based on single-sensor data from symptomatic upper or lower 

extremities. Although other reports in the literature have achieved sensitivity and specificity 

results for tremor and dyskinesia recognition of approximately 90% or better, as in our 

study, they did so under constraints that we did not impose, such as scripted-activity 

monitoring conditions,14–16,18,19,22 low temporal resolution,14,15,18 or the need for multiple 

sensors to identify a motor disorder in a symptomatic limb.14,15,22 Our performance metrics 
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were also achieved on the basis of the analysis of sensor data that were independent of the 

training data, thereby facilitating clinical ease of use in future applications. Movement 

disorder recognition algorithms designed to produce data points with a resolution measured 

in minutes or hours would have failed to capture the characteristically unpredictable, rapid, 

and transient nature of the motor disorder fluctuations in this PD population.

A goal of our study was to produce accurate motor disorder classifications using a software 

algorithm requiring a minimal number of miniaturized sensors. An important design 

consideration was to select sensor locations that were amenable to self-application and use 

under clothing. This goal was achieved by developing an adaptable 4-sensor approach to 

derive data from distal limb segments for ease of use. In its maximal configuration of 1 

sensor per limb, a comprehensive assessment of the body can be achieved, as for instance 

when doing a baseline screening. For those patients who may have difficulty managing 

multiple sensors in their home, the number of sensors can be restricted to the most 

symptomatic or functionally important limb(s). Current wearable sensor solutions can 

require as many as 615or 822 sensors and are neither adaptable nor limb specific.

The use of a hybrid sensor in the current study originated from our previous work, in which 

we demonstrated that this combination provided advantages in training an artificial neural 

network to identify a variety of different activities of daily living when compared with an 

accelerometer-only approach.33 The current study also compared recognition performance 

of the algorithms for inputs with and without combined sEMG and ACC data, documenting 

the value-added benefit of having both sets of data for tremor recognition. Further studies 

are needed to determine whether the identification of “subclinical” tremor using both sEMG 

and ACC signals can be considered a clinical advantage, for example, for early detection of 

PD in patients who are otherwise asymptomatic.

The analytic approach of processing sensor signals by DNNs to classify PD motor disorders 

is unique, although DNNs have been used effectively in neural prosthetics34 and motor 

control studies.35 Another unique aspect of our approach was to configure the DNNs so that 

each limb was separately assigned a classifier that operated independently from the other 

classifiers. The benefits of this approach were most apparent in our ability to track 

movement disorders during unconstrained daily functional activities. Despite the overall 

success of achieving this goal, the results must be considered an initial finding until further 

development and testing on a larger patient population are undertaken. We are actively 

investigating a new procedure that will integrate the DNNs within a larger artificial 

intelligence framework of our design, referred to as integrated processing and understanding 

of signals (IPUS),36 to provide a rule-based structure that adaptively selects appropriate 

classifiers to further resolve recognition challenges.29,37 Preliminary results for 

identification of freezing29 and other gait abnormalities in PD27 using this procedure have 

been encouraging.

Conclusions

This initial study demonstrated that a combined approach of hybrid sensor data with 

dynamic neural network processing achieved high temporal resolution for identifying limb-

specific changes in the severity of tremor and dyskinesia during normal daily activities in 
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patients with PD. The value-added benefits of including both sEMG and accelerometer data 

for identifying tremor were described. The incorporation of DNN analysis for capturing 

time-dependent changes enabled us to achieve disorder recognition accuracy during 

unconstrained daily activities comparable to that achieved by others for less challenging 

standardized activities.
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FIG. 1. 
Block diagram of the procedures used to detect and analyze surface electromyographic 

(sEMG) and accelerometer (ACC) signals from hybrid sensors. The sensor is configured 

with parallel sEMG detection bars on the bottom of the sensor and a triaxial accelerometer 

to provide X, Y, Z outputs to the data acquisition system. sEMG and ACC features are 

extracted from these data to serve as inputs to a dynamic neural network (DNN) for tremor 

(7 input nodes for each feature, 4 hidden nodes, and 1 output node). Features extracted from 

the ACC signal serve as inputs to the DNN for dyskinesia (4 input nodes for each feature, 2 

hidden nodes, and 1 output node). Severity of each disorder is identified through the use of a 

maximum a posteriori probability (MAP) classifier.

Roy et al. Page 10

Mov Disord. Author manuscript; available in PMC 2018 November 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



FIG. 2. 
Raw surface electromyographic (sEMG) and accelerometer signal patterns characteristic of 

tremor (A), subclinical tremor (B), dyskinesia (C), and normal voluntary movement (D) are 

shown for data acquired from the wrist extensor location of a patient with PD. Tremor is 

characterized by repetitive sEMG signal bursts at a fixed frequency related to cyclic 

movements of the limb. The periodic sEMG activity is preserved during subclinical tremor 

but produces no observable limb movement. In contrast, dyskinesia is characterized by 

irregular sEMG activity and rapid chaotic movements. Normal voluntary activities such as 

feeding oneself (D) may produce rapid accelerations and bursts of muscle activation that can 

mimic dyskinesia (C), making accurate recognition challenging for the algorithms.
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FIG. 3. 
Plot of dyskinesia and tremor severity as a function of time following administration of the 

first dose of anti-Parkinson’s medication (L-dopa). Transitions between different movement 

disorders and different severities are plotted using a 1-second scale. For every second of 

data, there is only 1 movement disorder severity score. Black-diamond data points represent 

results from the algorithm, and gray-diamond data points represent results from the video 

annotations. The results were analyzed from a sensor on the right forearm of a 62-year-old 

subject with a 16-year history of PD complicated by motor fluctuations.
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TABLE 1.

Characteristics of the subject populations used for training and testing the dynamic neural network (DNN) 

algorithms

Training set Test set

PD patients

 Number n = 11 n = 8

 Age (y) 61.1 ± 5.5 62.9 ± 5.3

 Men/women 9/2 7/1

 Disease duration (y) 13.5 ± 6.0 13.2 ± 9.2

 Levodopa dose (mg/day) 1072.2 ± 788 930 ± 839

 UPDRS (Motor Score) 37.6 (11.2) 39.5 (10.6)

 Tremor prevalence (%)
a 17.7 ± 19.3 16.7 ± 20.7

  Mild/moderate/severe (%)
c — 54/34/12

 Tremor duration (s)
b 39.4 ± 43.0 42.3 ± 34.4

 Dyskinesia prevalence (%)
a 49.7 ± 45.1 48.5 ± 25.7

  Mild/moderate/severe (%)
c — 47/41/12

 Dyskinesia duration (s)
b 52.3 ± 51.7 62.6 ± 45.6

  Prevalence at rest (%)
d 4.8 ± 2.2 4.6 ± 3.1

Subjects without PD

 Number n = 0 n = 4

 Age (y) — 54 ± 16.6

 Men/women — 4/0

a
Percentage of recording period, regardless of severity or body location.

b
Based on how long a disorder persisted at a particular severity level.

c
Percentage of total movement disorder duration in the severity categories.

d
Percentage of total recording period in which the subject displayed no voluntary activity.
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TABLE 2.

Summary of algorithm performance

Sensitivity Specificity Global error Local error

Severity
a

 Tremor

  Mild 97.2% 97.6% 2.7% 1.4%

  Moderate 95.2% 97.1% 3.9% 1.8%

  Severe 96.3% 99.3% 2.2% 1.7%

 Dyskinesia

  Mild 93.9% 95.5% 5.3% 7.1%

  Moderate 91.9% 94.6% 6.8% 4.9%

  Severe 95.0% 98.6% 3.2% 4.1%

Overall mean (SD) 94.9% 97.1% 4.0% 3.5%

(1.9%) (1.8%) (1.7%) (2.3%)

Mobility

 Tremor (UE)

  Sitting 95.1% 94.9% 4.9% 0.23%

  Standing 88.5% 93.5% 8.9% 0.19%

  Walking 96.5% 93.7% 4.9% 0.18%

 Tremor (LE)b

  Sitting 95.4% 89.6% 7.5% 3.20%

  Standing 75.4% 95.8% 14.4% 4.95%

Overall mean (SD) 90.2% 93.5% 8.1% 1.75%

(8.8%) (2.4%) (4.0%) (2.2%)

  Dyskinesia (UE)

  Sitting 89.5% 97.7% 6.4% 1.6%

  Standing 92.0% 94.6% 6.7% 3.9%

  Walking 99.3% 75.7% 12.5% 10.9%

  Dyskinesia (LE)b

  Sitting 85.3% 96.0% 9.3% 2.0%

  Standing 92.3% 83.5% 12.1% 2.4%

Overall mean (SD) 91.7% 89.5% 9.4% 4.2%

(5.1%) (9.5%) (2.9%) (3.9%)

Results are from a single sensor located on the symptomatic limb.

a
Severity results are for upper and lower extremities across all mobility states. Local error was calculated based on local error rate > 50%, for 

consecutive 30-second intervals.

b
Tremor and dyskinesia in the lower extremity during walking was not observable. UE, upper extremity; LE, lower extremity.
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