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Endorheic (hydrologically landlocked) basins spatially concur with arid/semiarid climates. 

Given limited precipitation but high potential evaporation, their water storage is vulnerable 

to subtle flux perturbations, which are exacerbated by global warming and human activities. 

Increasing regional evidence suggests a likely recent net decline in endorheic water storage, 

but this remains unquantified at a global scale. By integrating satellite observations and 
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hydrological modeling, we reveal that during 2002–2016, the global endorheic system 

experienced a widespread water loss of about 106.3 Gt yr−1, attributed to comparative losses 

in surface water, soil moisture, and groundwater. This decadal decline, disparate from water 

storage fluctuations in exorheic basins, appears less sensitive to El Niño–Southern 

Oscillation-driven climate variability, implying possible responses to longer-term climate 

conditions and human water management. In the mass-conserved hydrosphere, such an 

endorheic water loss not only exacerbates local water stress, it also imposes excess water on 

exorheic basins, leading to a maximal sea level rise that matches the contribution of nearly 

half of the land glacier retreat (excluding Greenland/Antarctica). Given these dual 

ramifications, we suggest the necessity of long-term monitoring of water storage variation in 

the global endorheic system and inclusion of its net contribution to future sea level 

budgeting.

Global endorheic basins (Fig. 1a), where surface flow is landlocked from the ocean, cover a 

fifth of the Earth’s land surface but nearly half of its water-stressed regions1. Many arid and 

semiarid regions are inherently endorheic, where surface flow is unable to break topographic 

barriers, and retained in landlocked storage that equilibrates through evaporation2. Because 

surface flow is scarce in endorheic regions, water storage, particularly in sizable lakes, 

reservoirs, and aquifers, becomes of vital ecological and social importance. Endorheic water 

storage can be maintained only if the system fluxes, chiefly through precipitation, 

evaporation, and groundwater exchanges, remain in a delicate balance. However, recent 

climate change, notably warming and drying in many arid/semiarid regions3–5, has triggered 

observable perturbations to the endorheic water balance, intensified further by human water 

withdrawals, damming, and diversions5–8. Regional evidence of storage declines has been 

seen for decades in desiccating lakes (e.g., Aral Sea and Great Salt Lake)8,9, retreating 

glaciers (e.g., Tibetan and Amu Darya)10,11, and depleting aquifers (e.g., Arabian and 

Persian)12, suggesting a likely enduring decline of the total terrestrial water storage (TWS) 

within the global endorheic system.

In the mass-conserved hydrosphere, a net endorheic water deficit not only aggravates water 

stress in endorheic regions, it also imposes the same amount of water surplus on the exorheic 

system, where surface flow reaches the ocean. Therefore, a persistent TWS decline in global 

endorheic basins signifies a potential source of sea level rise (SLR). The rate of SLR 

averaged at ~1.9 mm yr−1 during the past half century13, and increased to ~3.4 mm yr−1 in 

the current millennium despite occasional hiatuses due to El Niño-Southern Oscillation 

(ENSO)14–16. About 70–80% of the recent decadal SLR was attributed to ocean thermal 

expansion (~1.2–1.4 mm yr−1) and ice-sheet mass loss in Greenland and Antarctica (~1.0–

1.3 mm yr−1). The other ~20–30% was induced by the net TWS change that integrates 

mountain glacier and ice cap (GIC) loss, groundwater depletion, reservoir impoundment, 

and mass changes in other stores (e.g., lakes, soil, and permafrost)4,15. Some of these TWS 

changes, however, were assessed without a discrete consideration of endorheic and exorheic 

origins, which may overestimate their individual impacts on the sea level budget. For 

example, glacial meltwater originating from endorheic basins produce no direct excess 

discharge to the exorheic system11, and reservoirs in endorheic basins do not detain runoff 

that otherwise drains to the ocean. Owing to observation changes, studies that explicitly 

assessed endorheic contributions are limited to major terminal lakes that are often 
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considered as basin-wide integrators of climatic and hydrological conditions8,17–21. 

Particular emphases were given to the strikingly desiccating Aral Sea, and the world’s 

largest endorheic lake, the Caspian Sea, where water level has shown cyclic fluctuations but 

an overall lowering since the end of the Little Ice Age (~2 cm yr−1)22. Budget changes in 

these two lakes and their affected groundwater, if assuming a complete loss to exorheic 

regions via vapor transfer, contributed a potential SLR of ~0.1–0.2 mm yr−1 at recent 

decadal to centennial timescales17–19,21,23. Aside from regional evidence, the overall 

magnitude and spatial pattern of endorheic TWS decline have not been quantified at a global 

scale, and its net contribution to recent SLR remains unclear.

Here we determine the mass changes in TWS throughout the world’s endorheic basins and 

the potential impact on SLR during the early twenty-first century. Our monitored TWS is the 

vertical integration of all water forms on and below the continental surface24, where net 

mass changes are inverted from time-variable gravity fields observed by NASA’s Gravity 

Recovery and Climate Experiment (GRACE) satellites25. We use the monthly mass 

anomalies during April 2002 through March 2016, from the Jet Propulsion Laboratory 

mascon solution26. This solution isolated TWS signals by removing the noise from the solid 

earth and improved spatial resolution over conventional spherical-harmonic solutions27. 

Monthly mascon anomalies are rescaled to 173 endorheic units (Fig. 1a), each aggregated 

from refined landlocked watersheds until the size exceeds a mascon. Scaled endorheic mass 

changes are partitioned into the contributions of surface water, soil moisture, and 

groundwater, in order to contrast possible attributions in different regions. We implement an 

ensemble of multiple hydrological models (Table S1) to derive monthly anomalies in soil 

moisture and part of surface water compartments including snowpack and plant canopies. 

Modeled surface water anomalies are further corrected by storage variations in major lakes/

reservoirs estimated from altimetric/optical satellite observations (Fig. S1–S10) and mass 

changes in GIC derived from stereo imagery11 (Fig. S11; Tables S2–S3). By subtracting the 

corrected anomalies in land water content from net TWS changes, we then disaggregate the 

groundwater contribution from those of surface water and soil moisture. Detailed data 

processing and uncertainty analysis are given in Methods.

Net endorheic storage loss and potential impacts on sea level

Our results confirm a widespread TWS decline within the global endorheic system during 

the studied 14 years (Fig. 1). Net water loss prevails in about three quarters of the endorheic 

units in area (23.2 out of 31.8 million km2) or number (129 out of 173), agglomerated 

particularly along the water-stressed Subtropical Ridge in Central Asia, the Middle East, and 

northern Africa (Fig. 1a). In total, the global endorheic system has undergone a net storage 

change of –106.32 (±11.70) Gt yr−1 (uncertainties in 95% confidence intervals (CIs)). This 

is about twice the rate of concurrent TWS changes from the entire exorheic region (−58.44 

(±27.75) Gt yr−1 excluding Greenland/Antarctica), although the endorheic area is only a 

fifth of the global landmass (Fig. 1b–c). While the signature in exorheic TWS anomalies is 

closely linked to ENSO-driven climate variability (Fig. 2, with prominent positive/negative 

TWS anomalies during La Niña/El Niño events), endorheic anomalies appear less sensitive 

to such interannual modulations (see Fig. S12 and Table S4 for other climate oscillations). 

This contrast highlights the possible significance of longer-term climate conditions (e.g., 
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multidecadal variability and anthropogenic warming) and direct human water management 

to TWS in the arid/semiarid hinderlands4,5,7–9.

The net endorheic water loss, if it completely reaches the ocean, results in an average SLR 

of 0.29 (±0.03) mm yr−1, accounting for ~9% of the observed SLR (3.4 mm yr−1)16 and 

~15–20% of the barystatic (mass-induced) contribution (1.6–2.0 mm yr−1)4,15 around the 

same period. Compared with other barystatic sources, the endorheic water loss equals nearly 

half of the global mass decline in GIC (0.6–0.7 mm yr−1 excluding Greenland/

Antarctica)4,15, and matches the entire contribution of groundwater depletion (~0.27 mm yr
−1)30. This endorheic loss also exceeds the previous estimates of the net inland water 

change, e.g., in the Caspian Sea, Aral Sea, Lake Chad, Great Salt Lake, and Tibetan 

lakes8,17–19,21,31, by a factor of ~2–4, which implies substantial but poorly understood 

changes in hydrological components within the global endorheic system. However, we 

recognize that our estimated SLR contribution is only the potential barystatic contribution of 

the net endorheic loss or its sea level equivalent. If assuming that the surplus of water vapor 

transferred from endorheic basins is evenly precipitated into the exorheic system (including 

both land and ocean with a negligible net vapor change30) and an average precipitation-to-

discharge ratio of 2.4 from land32, we approximate that up to ~80% of the net endorheic 

TWS loss might end up in the ocean.

Regional variation and links to climate and human actions

Despite a net global decline, the change of endorheic TWS exhibits intriguing regional 

variation. On one hand, our map of TWS trends for individual endorheic units (Fig. 1a) 

shows exacerbated water scarcity in many of the world’s drought hotspots. They include not 

only drainage basins under intense human influences, such as those of the Caspian Sea, Aral 

Sea, Urmia Lake, Balkhash Lake, and Great Salt Lake, but also remote or sparsely populated 

deserts in Africa (e.g., Sahara), Central Asia (e.g., Taklamakan and Gobi), the Middle East 

(e.g., Arabian), South America (e.g., Atacama), western US (e.g., Great Basin and Mojave), 

and western Australia (e.g., Great Sandy and Gibson). TWS declines in these hotspots 

accentuate the evident impact of recent meteorological drought on arid/semiarid regions, 

which is often intertwined with human-induced evaporative loss through surface water 

diversion, damming, and groundwater abstraction4,5,8,9,33. On the other hand, water losses 

across most of the endorheic landmass contrast markedly with water gains in the Inner 

Tibetan Plateau (ITP), eastern Australia, Sahel, Great Rift Valley, Kalahari Desert (southern 

Africa), and northern Great Basin and Great Plains (North America). However, these water 

gains are more spatially constrained and are dominantly induced by natural variability5 

(Supplementary text).

To further contrast regional variation, we group global endorheic basins by continent and 

climatic similarities into six primary zones (Fig. 3a), where TWS anomalies and changing 

trends are compared in Fig. 3b–h and Table 1. Approximately two-thirds of the global 

endorheic water loss (–73.64 (±7.74) Gt yr−1) stems from Central Eurasia, the largest zone 

covering one-third of the endorheic landmass. Water loss within Central Eurasia generally 

weakens along an eastward gradient, as illustrated in four secondary zones. Over half of the 

total zonal loss is concentrated on the Caspian Sea Basin alone, 10% on the Aral Sea Basin 
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(including nearby watersheds receiving transbasin diversions) but largely balanced out by 

the water gain in ITP, and the other ~40% from across the remaining basins. Monthly TWS 

anomalies in Central Eurasia exhibit a strong monotonic decline since 2005, despite an 

earlier increase linked to the rise of the Caspian Sea level21, and a water gain in ITP that 

persisted for multiple decades31 but has decelerated since ~201334. The TWS in the vast 

desert zone of Sahara/Arabia underwent a continuous decrease throughout 2002–2016, 

resulting in the other one-third of the net global loss (–33.10 (±3.57) Gt yr−1). A marked 

storage decline also prevailed in Dry Andes/Patagonia (–9.61 (±1.96) Gt yr−1), but has 

slowed down and partially reversed since 2012. Net water losses in Australia and Western 

North America are less dramatic (–4.05 (±4.86) and −2.53 (±2.00) Gt yr−1, respectively) due 

to spatial dipole and short-term fluctuations. For instance, Australia’s Millennium Drought35 

was temporarily alleviated by La Niña-induced precipitation anomalies in the eastern region 

(e.g., the Great Artesian Basin) during 2010–201236. Water declines in the latter three zones 

sum up to another 15% of the net global endorheic loss, which is, however, counteracted by 

the water gain in Great Rift Valley/Southern Africa (GRVSA, 16.60 (±2.28) Gt yr−1).

Contributions of different water storage components

The net TWS changes aggregate the contributions of different hydrological components 

(Fig. 4 and Table 1). During the past 14 years, the net global endorheic loss is attributed to 

comparable declines in surface water (36.08% (±9.89)), soil moisture (26.36% (±7.46)), and 

groundwater (37.56% (±16.57)), but such contributions result from highly unequal partitions 

within zonal TWS changes. In Central Eurasia, surface water loss outweighs that of soil 

moisture and is more than double that of groundwater (Fig. 4c). The prominent surface water 

loss can be observed by the recent shrinkage of many large lakes across Central Asia and the 

Middle East (e.g., Aydar, Aral Sea, Bosten, Caspian Sea, Khyargas, Tengiz, and Urmia; Fig. 

S2). In particular, over 70% of the global endorheic surface water loss was induced by the 

level drop in the Caspian Sea (–6.8 cm yr−1). Another ~11% was caused by the desiccation 

of the Aral Sea (–1041.7 km2 yr−1) despite the compensation of excess discharge from 

warming-induced glacier melting (Fig. S5–S8 and Table S5). Surface water losses in these 

two basins coincided with drying climate (deficient precipitation and rising temperature, Fig. 

S13o–r), along with intensive water diversion (e.g., from the Volga River, Amu Darya, and 

Syr Darya) for irrigation, which supplemented moisture supplies for 

evapotranspiration17,20,37. Diversion-based irrigation may have also increased regional 

return flow38, resulting in possible groundwater recharge despite overall soil moisture loss 

(Fig. 4d–e). In contrast, increasing precipitation and, to a lesser extent, warming-induced 

glacier loss led to evident lake expansion in ITP9,39 (Fig. S13s–t; Table S5), where surface 

water surplus explains over 80% of the net TWS gain (Fig. 4f). As water relocation from 

glaciers to lakes does not alter the endorheic system storage, increasing net precipitation 

(i.e., precipitation minus evapotranspiration) is the primary contributor to the net TWS gain, 

which is in line with recent literature31,34,39. Surface freshwater is critically limited in the 

remaining endorheic zone of Central Eurasia (Fig. 4g), where groundwater withdrawal 

easily exceeds natural recharge12. Similar to river diversion, groundwater depletion might 

enhance evaporation by cumulatively transferring water from aquifers to the surface, which 

explains 68% of the zonal TWS loss.
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Greater dominance of groundwater depletion to net TWS loss is seen in Australia (Fig. 4h) 

and Sahara/Arabia (Fig. 4j), where endorheic basins often remain arheic and groundwater 

becomes the only permanent water source. In Sahara/Arabia, for instance, annual 

groundwater depletion (–33.23 (±4.37) Gt yr−1) matches the rate of the zonal TWS loss. Our 

estimate is similar to that of Richey et al.7 (about −29 (±6) Gt yr−1 during 2003–2013) if one 

sums up their estimated depletions of major aquifers including Arabian, Nubian, 

Northwestern Sahara, Murzuk-Djado Basin, Taoudeni-Tanezrouft Basin, and Lake Chad 

Basin, although these authors did not correct modeled surface anomalies by lake storage 

changes (e.g., minor increase in Lake Chad). In addition to unsustainable human withdrawal, 

groundwater declines in these desert zones may result from vadose capillary fluxes that 

transport water from aquifers to compensate for soil moisture loss40. Such declines are in 

sharp contrast to the groundwater gain in GRVSA (16.54 (±2.70) Gt yr−1; Fig. 4i), indicating 

persistent recharge as a result of excess precipitation (Fig. S13i–j).

In Western North America, climate-induced soil moisture decrease (Fig. S13c–d) dominates 

the net TWS loss (Fig. 4l). Meanwhile, studies8,33,41 suggest that human activities, such as 

irrigation and mining, are crucial causes of the surface water decline in Great Salt Lake (–

0.20 Gt yr−1, consistent with −0.17 Gt yr−1 in Wurtsbaugh et al8) and Salton Sea41 (–0.11 Gt 

yr−1) (Fig. S2), accounting for 12% of the zonal TWS loss. The contribution is more evenly 

partitioned among surface, soil, and aquifers in Dry Andes/Patagonia (Fig. 4k), where a 

quarter of the net TWS loss stems from the shrinkage of Lakes Titicaca, Poopό, and Mar 

Chiquita (Fig. S2). Such concurrent losses in multiple water stores imply an extensive 

impact of the recent precipitation deficit (Fig. S13e–f) and human activities on South 

America’s endorheic hydrology8,42,43.

Implications for global water cycle

Our findings reveal the recent decadal TWS decline in global endorheic basins, which 

largely outpaces the concurrent TWS change in the exorheic region. While exorheic TWS 

modulates the sea level by directly affecting surface runoff to the ocean, it is also subject to 

natural variability of the climate system (e.g., ENSO at multiyear timescales) that augments/

suppresses the delivery of water from the ocean4,14. From another perspective, we show that 

endorheic TWS, albeit limited in quantity, can dominate the variation in global TWS at 

decadal timescales. This decadal loss in endorheic TWS suggests that recent climate 

conditions, in conjunction with direct human activities, resulted in a substantial vapor 

outflow from the continental interiors. The consequential water surplus to the exorheic 

system might be acting as a non-negligible source of SLR. Limited by available TWS 

observations, our calculated trend may not imply a secular signal beyond the studied 

GRACE era. Nevertheless, this decadal endorheic loss is in line with satellite-observed 

decreases in surface water extent since ~19809,33, model-simulated increases in water stress 

over the past half century44,45, and reported declines in water volumes of major saline lakes 

over the past ~140 years8, all predominantly in arid/semi-arid regions. Under the latest 

climate change scenarios, reversal of such a net decline in the next half/one century seems 

uncertain, considering projected decreases in precipitation, soil moisture, and discharge but 

increases in potential evaporation, drought duration, and water stress in many endorheic 

regions3,5,46–50.
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Apart from a widespread net TWS loss, we quantify that the loss prevails comparatively in 

all three primary hydrological stores (surface, soil, and aquifers). However, their relative 

contributions vary among endorheic zones, resulting from strong spatial heterogeneity in 

flux-storage interactions and responses to climate and water management. As detailed in 

Methods and Supplementary Information, our partitioning of TWS losses relies on a synergy 

of multi-model ensemble and satellite observations, and emphasizes different components in 

the water cycle rather than attributions to natural variability versus secular forces. Despite 

uncertainties, our analysis exemplifies a critical effort toward the decoupling of climate-

human influences on the recent TWS shift from endorheic to exorheic systems. This 

analytical decoupling is essential for projecting and managing water stress in arid/semiarid 

regions under future climate change. Given such dual ramifications both to regional water 

sustainability and to global SLR, we thereby suggest a continued understanding of long-term 

TWS variation in global endorheic basins, and an explicit inclusion of its net contribution 

(such as by the Intergovernmental Panel on Climate Change) in future sea level budgeting.

Methods

Defining endorheic regions.

Endorheic basin extents are mainly acquired from a total of 48,813 landlocked watersheds 

identified in the 15-second HydroSHEDS drainage basin dataset51 (Fig. S14a). Their spatial 

patterns are overall consistent with the depiction in the Global Drainage Basin Database52 

(GDBD). Among minor discrepancies, 10 watersheds landlocked in ITP, Manchuria, Siberia, 

and western US are captured only in GDBD (Fig. S14a), and thus included to supplement 

HydroSHEDS. These watersheds are aggregated into three enumeration scales: (i) 173 

endorheic units (Fig. 1a), each comparable to or larger than the size of a 3-degree spherical 

cap mascon (~100 thousand km2), (ii) 10 endorheic zones (Fig. 3a), including 6 primary 

zones in the continental level and 4 secondary zones within Central Eurasia, and (iii) the 

entire global endorheic system, i.e., the aggregated extent of all landlocked basins. Each 

endorheic unit, as further illustrated in Fig. S14b, is a single landlocked watershed if its size 

exceeds a mascon, or an agglomeration of contiguous/nearby watersheds until their total 

area exceeds a mascon. These units exclude sporadic landlocked watersheds smaller than a 

mascon and substantially detached from major endorheic clusters (black areas in Fig. 1a). 

The secondary zones of the Caspian Sea Basin and the Aral Sea Basin (Fig. 3a) include 

several surrounding endorheic watersheds to compensate for the GRACE signal leakage 

from the Caspian Sea and the Aral Sea. The Aral Sea Basin also integrates nearby endorheic 

watersheds receiving transbasin diversions from the Amu Darya and the Syr Darya.

Calculating endorheic TWS changes.

GRACE-observed monthly anomalies of equivalent water thickness (EWT) from April 2002 

to March 2016 in the JPL 3-degree equal-area mason solution (JPL-RL05M version 

2)26,27,53,54 are rescaled to each enumeration level (unit, zonal, and global) by an area-

weighted scaling: M = Σaimi/Σai, where M denotes a monthly anomaly for any enumeration 

region, mi the original anomaly in each mascon i that intersects with this region, and ai the 

intersection area. Deseasonalized time series M (with monthly climatology removed) is used 

to calculate the TWS trend by best-fit linear regression. The RL05M solution provides 0.5-
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degree gain factors simulated by the Community Land Model27. However, this model lacks 

surface water (SW) compartments (e.g., lakes and glaciers) and human processes, and the 

least-squares correction in the factor derivation tends to be dominated by the annual cycles 

of land water storage variations. Despite a partial recovery of the signal variation, the gain 

factors may not be suitable for calculating TWS trends at sub-mascon resolution. For these 

reasons, they are not applied in our rescaling process. Instead, rescaling-induced 

uncertainties are accounted for in our estimated zonal and global trends.

Specifically, uncertainties (eM) of monthly M in each enumeration region are propagated 

from the inherent errors (eM) associated with original mascon data and the rescaling 

uncertainties (er) induced by signal leakage in fringe mascons. Similar to M, a monthly em is 

calculated as Σ aiei
2/Σai, where ei denotes the provided data uncertainty for each mascon i 

that intersects with this region. To infer er, we compute the intersection area (ai) as a 

proportion (P) of each mascon (Fig. S15). A fringe mascon is indicated by a value of P 
between 0 and 1 (hereafter “internal fringe portion”). For each month, we first calculate the 

average EWT anomaly in the mascons enclosed by this region (i.e., P = 1). This assesses the 

signal in the region interior exclusive of external leakage impacts, despite a sacrifice of the 

signal in the internal fringe portion. We then lower the threshold (t) of P by a step of 0.05, 

and calculate the average anomaly (Mt) in the full mascons with P ≥ t, until t = 0 (i.e., all 

fringe mascons included). In this way, Mt gradually picks up the missing signal within this 

endorheic region as the internal fringe portion decreases. Meanwhile, it absorbs increasing 

signal leakage as the external fringe portion expands. The variance of Mt, therefore, reflects 

the uncertainty of signal scaling at sub-mascon resolution. Given this logic, the standard 

deviation in the array of Mt (Fig. S16) is used as a measure of this monthly er. Time series 

eM and the variation of residuals from the trend fitting are then propagated to infer a 95% CI 

of the TWS trend using a Monte Carlo method as in Wang et al55.

To further evaluate our estimated TWS changes, we determine how the EWT trend in each 

region changes from its endorheic interior to periphery. This is done by calculating the linear 

trend in monthly Mt with a gradually lowered t, as shown in Fig. S17 (blue profiles). For a 

region under a net TWS decline, a rising profile implies that the rate of water loss tends to 

weaken as one moves away from the endorheic interior. If we assume that this pattern is also 

true at sub-mascon scales, the magnitude of EWT decline in the internal portion of a fringe 

mascon would be greater than that in the external portion. Our signal scaling based on 

simple area partitioning of the fringe mascons thus underrates the actual water loss in the 

peripheral endorheic areas (where signals of weaker decline leak into the internal portions), 

leading to an overall conservative TWS trend for this enumeration region. This case applies 

to the entire endorheic system and most zones that experienced TWS declines. The 

exception in Dry Andes/Patagonia (Fig. S17c) is likely attributed to the complex endorheic 

boundary (Fig. S15a) and the leakage of stronger EWT declines from the exorheic Andes. In 

the Aral Sea Basin, fully enclosed mascons are found in the Amu Darya and Syr Darya 

regions (Fig. S15c) but the most significant water loss occurred in the Aral Sea. This 

explains the weak initial decline (when P = 1 in Fig. S17i) in this region. As P continues to 

decrease, the EWT trends are overall stable (black profile) despite increasing leakage of 

water loss in the nearby Caspian Sea (blue profile). Similarly, a decreasing profile for any 
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region under a net TWS gain implies that our estimated TWS increase is likely underrated. 

This is seen in the GRVSA (Fig. S17e) and ITP (Fig. S17j). However, since their total water 

gain accounts for a marginal proportion (~17%) of the total water loss in the other regions, 

our reported net TWS decline in global endorheic basins is overall conservative (Fig. S17a).

Although our results do not apply the mascon-set of 0.5-degree gain factors, their impact is 

assessed by comparing EWT trends calculated with versus without the gain factors for each 

endorheic zone (black and red profiles in Fig. S17). Because the inclusion of gain factors 

only affects signal rescaling at sub-mascon resolution, the EWT trends at each t are 

calculated from the average anomalies within the intersected or internal mason portions 

(where P ≥ t). The profiles illustrate how EWT trends between the two solutions (with and 

without gain factors) increasingly differ as more incomplete mascons are included in 

rescaling. The two solution profiles appear highly consistent in each zone, and their 

divergence is enclosed by the 95% CIs induced by the inherent mascon data errors 

(transparent shades). Therefore, including the gain factors will make no significant 

difference to the estimation of global/zonal TWS trends.

Estimating lake storage changes.

We calculate storage changes in 142 large waterbodies (a total area of ~540k km2; Figs. S1–

S2) that account for ~75% of the lakes/reservoirs in area and ~98% in volume across 

endorheic basins56,57. Level time series during our study period are collected from multi-

mission altimeter observations (e.g., Envisat, Jason, TOPEX/Poseidon, and SARAL/AltiKa), 

as archived in the Database for Hydrological Time Series of Inland Water (DAHITI)58 

(https://dahiti.dgfi.tum.de/en), the Hydroweb59 (http://hydroweb.theia-land.fr), and the 

USDA G-REALM (www.pecad.fas.usda.gov/cropexplorer/global_reservoir). Hypsometry is 

considered for 38 (87% in area) of the 142 lakes, where level-area functions for 8 largest 

lakes (79%) are calibrated in this study using time-variable inundation areas mapped from 

MODIS imagery (250-m MOD09Q1) (Figs. S3–S10), and level-area functions for the other 

30 lakes (8%) are retrieved from the Hydroweb. For each of these 38 lakes, time series 

volume anomalies are calculated as the integrals of the hypsometric function from the 

average water level, and the mean volume seasonality is further removed for linear trend 

fitting. Volume anomalies in each of the remaining 104 lakes (13%) are approximated by 

water level time series that are assumed to vary with a static inundation area mapped from 

Landsat imagery acquired during 2008–2009 (representing the middle-stage extent during 

our study period) using methods in Sheng et al57.

Multiple error sources are identified to propagate the uncertainties of lake volume 

anomalies, which are used to infer 95% CIs for lake storage trends by the Monte Carlo 

method55 (as for TWS trends). For the 8 lakes with calibrated hypsometry, error sources 

include (i) level uncertainties provided in the altimetric data, (ii) mapping errors for 

inundation area, estimated from a relative bias of 5% in MODIS-based large waterbody 

extraction60, and (iii) uncertainties in calibrated hypsometry, calculated as the RMSE of 

fitted level-area functions (Figs. S3–S10). For each of the remaining 134 lakes, the trend CI 

is propagated from source (i), and another error term that attempts to reflect the overall 

uncertainty due to unknown fitting errors in the hypsometry retrieved from Hydroweb (for 
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the 30 lakes), the ignored lake area variation (for the other 104 lakes), and gaps in the 

acquired level time series. We quantify this error term to be 14% (95% CI) of each lake 

storage trend, inferred from the 8 lakes where storage trends estimated using Hydroweb 

hypsometry or only water levels are validated against the estimates using our calibrated 

hypsometry. For the other smaller waterbodies where storage changes are unquantified in 

our study, we consider that they in total generate a 95% uncertainty of 10 Gt yr−1. If 

assuming lake volume change is proportional to lake area (akin to a simple bucket model 

where water budget variations reflect precipitation-evaporation residuals multiplied by the 

bucket cap size), we have one third of the net annual water loss in our studied 142 lakes to 

be ~10 Gt yr−1. This uncertainty is partitioned to different endorheic zones by their total 

small waterbody areas.

Estimating glacier mass changes.

Changes in glacier mass balance are estimated for three secondary zones in Central Eurasia 

(ITP, the Aral Sea Basin, and Others; Fig. 4a) that contain ~98% of the total glacier extent in 

global endorheic basins (Fig. S11). Our estimations are based on the 30-m gridded dataset of 

glacier surface elevation changes (thereafter dh/dt) from 2000 to 2016 in High Mountain 

Asia (HMA)11. The rates of dh/dt are derived by fitting a linear regression through time 

series of co-registered digital elevation models (DEMs) constructed from ASTER stereo 

images during 2000–2016. Details are given in Brun et al.11.

We obtain 132 dh/dt maps (in 1° grid with estimation uncertainties) covering the endorheic 

HMA. Pixels over non-glacierized regions are masked by the Randolph Glacier Inventory 

6.061. Over the glacierized regions, pixels with absolute dh/dt rates above 50 m yr−1 are 

excluded as noise. Similar to Brun et al.11, Gardelle et al.62 and Neckel et al.63, glacier-

hypsometry-averages are used to represent the average dh/dt for region-wide units. To 

reduce the uncertainty due to spatial heterogeneity of glacier changes, we divide the 

glacierized areas into several sub-regions11,64 including northwestern ITP, southern ITP, 

Qilian Mountains, Kunlun Mountains within the Tarim Basin, southern Tian Shan, northern 

Tian Shan, the Pamirs, and the remaining areas. Glacierized areas in each sub-region are 

considered as one virtual contiguous ice body, where glacier hypsometry is calculated using 

100-m elevation bands discretized by the ALOS World 3D-30m DEM65. For each elevation 

band, dh/dt pixel values are filtered to the level of three normalized absolute deviations 

relative to the median of the elevation band11. Filtered dh/dt values are averaged for each 

elevation band, and the rate of volume change is calculated as the sum of the mean dh/dt 

multiplied by the glacier area in this band. The volume change is converted to mass change 

assuming a conversion factor of 850 (±60) kg m−3 66 and a negligible difference between the 

rates in 2000–2016 and 2002–2016. Glacier mass change rates for different elevation bands 

are then subtotaled to secondary endorheic zones (Table S2).

Besides the above-mentioned secondary zones in Central Eurasia, small clusters of glaciers 

scattered in the Caspian Sea Basin (726 km2 or 0.02% of the zonal area), Dry Andes/

Patagonia (438 km2 or 0.03%), and Western North America (17 km2 or <0.01%) (Fig. S11; 

Table S3). By referring to previous studies of glacier changes around these zones64,67,68, 

glacier mass changes may only account for miniscule portions of the zonal TWS declines 
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(Table S3, where glacial changes are largely under the TWS change uncertainties). For this 

reason, glacier mass changes in these zones are not explicitly quantified, and instead 

considered as modeled SWE variations over their glacierized regions.

Partitioning net TWS changes.

We partition GRACE-observed net TWS changes to SW, soil moisture (SM), and 

groundwater contributions through a comprehensive synergy of model simulations and 

satellite observations. Considering that some of the frequently used large-scale hydrological 

models lack SW and groundwater compartments69, we rely on hydrological models only for 

simulating monthly anomalies in SM, snow water equivalent (SWE), and canopy water 

(CW). Storage trends in major waterbodies and GIC are derived from multi-mission satellite 

measurements (see previous sections), and then combined with modeled SWE and CW 

trends to calculate the net SW change (Table S5). Eventually, the groundwater contribution 

is separated as the residual between GRACE-observed TWS change and the estimated SW 

and SM changes.

Similar to some existing studies69,70, we consider two widely-applied global hydrological 

models (WGHM71,72 and PCR-GLOBWB73) and five land surface models (LSMs) from the 

Global Land Data Assimilation System (GLDAS)74 (CLM, Mosaic, Noah, VIC, and CLSM) 

to simulate monthly changes in SWE, CW, and SM during 2002–2016 (see Table S1 for 

model descriptions). To account for model discrepancies induced by different climate 

forcing and parameterizations, we follow a typical ensemble approach, where 

deseasonalized multi-model time series are averaged to represent monthly anomalies and 

standard deviations among the model time series as ensemble uncertainties. Because the 

available modeling period for CLSM and PCR-GLOBWB discontinues after 2014, their 

time series are not included in the calculation of ensemble means. Instead, we compare their 

time series with the ensemble means from the other five models during 2002–2014, and use 

the monthly differences to further expand the ensemble uncertainties.

Several studies noticed that the amplitude of SM variation from WGHM is substantially 

lower than those of other models75,76, which is also seen in our studied endorheic basins 

(Fig. S18). To avoid possible biases in trend calculation, WGHM is excluded from the 

ensemble of SM anomalies, but is used to infer additional ensemble uncertainties together 

with CLSM and PCR-GLOBWB. We also assume that the during the studied GRACE era, 

direct irrigation impacts on SM were regional and limited to seasonal timescales, and did not 

considerably alter the interannual SM trends at zonal/global scales (also see Supplementary 

Information). Our modeled SM anomalies are validated against in situ measurements from 

the Soil Climate Analysis Network (SCAN; www.wcc.nrcs.usda.gov/scan) in endorheic 

North America (Fig. S19). For most SCAN stations, deseasonalized SM time series from 

measurements and models show significant correlations, and the discrepancies between their 

interannual trends are within the 95% CIs. Detailed validations are provided in 

Supplementary text, Fig. S20, and Table S6.

As previously described, our glacier mass changes are based on detected elevation changes 

from stereo-correlated time series DEMs11. These changes include the contributions of both 

alpine glaciers and snowpack. To avoid double-counting, we replace modeled SWE over 
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glacierized endorheic HMA by satellite-observed glacier mass changes. This replacement 

also minimizes the influence of modeled SWE errors that are often amplified in alpine 

environments77,78. To further validate modeled SWE changes in other regions, we select 

endorheic North America with high-quality SWE estimates from the Snow Data 

Assimilation (SNODAS) program79 (Supplementary text). The time series of modeled and 

SNODAS anomalies show evident differences in magnitude, but agree fairly well in 

interannual trend (with a discrepancy insignificant to the CIs; Fig. S21). Although this 

validation is limited in North America, the amount of water stored in snowpack and canopies 

in endorheic basins is relatively small. This is reflected by the combined loss of SWE and 

CW (3.64 (±1.90) Gt yr−1), contributing <4% of the global endorheic TWS loss (Table S5). 

Thus the influence of their modeling uncertainties on our TWS partitioning is likely 

miniscule.

Assessing TWS responses to climate forcing.

Climate impacts on TWS changes are assessed by exploring (i) the correlations between 

annual net TWS changes and total precipitation and (ii) the trends in monthly temperature 

anomalies, for the global endorheic system and each endorheic zone (Fig. S13). We 

emphasize TWS changes in response to precipitation on an annual basis, in order to remove 

the influence of correlations dominated by seasonal variation. We calculate temperature 

trends to assess recent warming in endorheic regions and facilitate the discussion of 

warming-induced glacier retreat and possible enhancement of potential evapotranspiration. It 

is worth noting that evapotranspiration responds to radiative and aerodynamic variables in 

addition to temperature80, so we do not claim that warming alone necessarily caused the 

observed TWS loss. However, since existing evapotranspiration data do not adequately 

account for the impact of open surface water, the response of TWS changes to actual 

evapotranspiration is not explored.

To account for uncertainties in climate variables, we retrieve the monthly means of 

precipitation and temperature anomalies during 2002–2016 from multiple observation/

assimilation sources. Sources of precipitation data include the CPC Merged Analysis of 

Precipitation (CMAP)81 (www.esrl.noaa.gov/psd/data/gridded/data.cmap.html), the Global 

Precipitation Climatology Center (GPCC) precipitation82 (total full v7; 

www.esrl.noaa.gov/psd/data/gridded/data.gpcc.html), the Global Precipitation Climatology 

Project (GPCP)83 (www.esrl.noaa.gov/psd/data/gridded/data.gpcp.html), and the 

PRECipitation REConstruction over Land (PREC/L)84 (www.esrl.noaa.gov/psd/data/

gridded/data.precl.html). As merged analysis and reanalysis precipitation data tend to show 

evident uncertainties over ITP85, its precipitations are acquired from a 0.25° gridded 

observation dataset85–87 provided by the National Climate Center of China Meteorological 

Administration. Sources of temperature data include the NOAA Global Surface 

Temperature88,89 (www.esrl.noaa.gov/psd/data/gridded/data.noaaglobaltemp.html), the 

Berkeley Earth Surface Temperature90 (http://berkeleyearth.org/data), and mean surface air 

temperature from the GLDAS LSMs.
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Data availability.

Calculated water storage changes in global endorheic regions are distributed through 

PANGAEA (doi: in process). Storage changes in major lakes and reservoirs are available 

upon reasonable request to the corresponding author (JW). Glacier mass change data are 

available through Nature Geoscience article doi:10.1038/NGEO2999.

Code availability.

All analytical codes generated in this paper are available upon request.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Terrestrial water storage (TWS) changes within global endorheic and exorheic basins from 

GRACE observations, April 2002 to March 2016. (a) Trends in individual endorheic units, 

each comparable to the 3-degree mascon in size (~100k km2). No trends are calculated for 

sporadic endorheic regions (black) smaller than a mascon. (b) Monthly anomalies in 

endorheic (black) and exorheic (green) regions. (c) Deseasonalized anomalies (axes as in b). 

Error bars show 95% confidence intervals (CIs) of monthly anomalies induced by mascon 

data errors. Shadings illustrate 95% CIs for best-fit linear trends induced by both mascon 

and rescaling errors (see Methods for uncertainty analysis).
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Figure 2. 
Linkage between TWS anomalies and El Niño-Southern Oscillation (ENSO). Left y-axis 

shows deseasonalized monthly anomalies of global exorheic (green) and endorheic (black) 

TWS (error bars as in Fig. 1c). Right y-axis shows ENSO intensities in multivariate ENSO 

index (MEI)28,29 (accessed from www.esrl.noaa.gov/psd/enso/mei/table.html). Positive MEI 

values indicate El Niño and negative values La Niña. Exorheic anomalies are significantly 

corrected with MEI (Pearson r = −0.50, p < 0.001), with the strongest correlation (–0.60) 

achieved by lagging MEI one season behind TWS anomalies (shown here). Under the same 

condition, endorheic anomalies appear less sensitive to ENSO modulations (also see 

Supplementary Information).
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Figure 3. 
Endorheic TWS changes in different geographic zones. (a) Six primary zones defined as 

basin groups by continental and climatic similarities, where Central Eurasia further 

highlights four secondary zones, i.e., the Caspian Sea Basin, the Aral Sea Basin, the Inner 

Tibetan Plateau, and the other regions. (b) Summary of zonal TWS trends (gigatons of water 

loss per year and mm of equivalent SLR per year). Error bars represent 95% CIs for each 

TWS trend. (c–h) Monthly series of deseasonalized zonal TWS anomalies (as in Fig. 1; axis 

labels consistent with h).
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Figure 4. 
Endorheic net TWS changes partitioned into contributions of different hydrological storages. 

(a) As in Fig. 3a. (b) The global total of endorheic storage change and attributions to surface 

water, soil moisture, and groundwater (gigatons of water loss per year and mm of equivalent 

SLR per year). (c–l) Zonal net storage changes and different storage contributions (axis 

labels as in b). Error bars represent 95% CIs. Bar colors for different water storages follow 

the convention for blue (surface water and groundwater) and green (soil moisture) water 

resources.
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