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Abstract

Artificial intelligence (AI) algorithms, particularly deep learning, have demonstrated remarkable 

progress in image-recognition tasks. Methods ranging from convolutional neural networks to 

variational autoencoders have found myriad applications in the medical image analysis field, 

propelling it forward at a rapid pace. Historically, in radiology practice, trained physicians visually 

assessed medical images for the detection, characterization and monitoring of diseases. AI 

methods excel at automatically recognizing complex patterns in imaging data and providing 

quantitative, rather than qualitative, assessments of radiographic characteristics. In this O pinion 

article, we establish a general understanding of AI methods, particularly those pertaining to image-

based tasks. We explore how these methods could impact multiple facets of radiology, with a 

general focus on applications in oncology, and demonstrate ways in which these methods are 

advancing the field. Finally, we discuss the challenges facing clinical implementation and provide 

our perspective on how the domain could be advanced.

Artificial intelligence (AI) has recently made substantial strides in perception (the 

interpretation of sensory information), allowing machines to better represent and interpret 
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complex data. This has led to major advances in applications ranging from web search and 

self-driving vehicles to natural language processing and computer vision — tasks that until a 

few years ago could be done only by humans1. Deep learning is a subset of machine learning 

that is based on a neural network structure loosely inspired by the human brain. Such 

structures learn discriminative features from data automatically, giving them the ability to 

approximate very complex nonlinear relationships (BOX 1). While most earlier AI methods 

have led to applications with subhuman performance, recent deep learning algorithms are 

able to match and even surpass humans in task-specific applications2–5 (FIG. 1). This is 

owing to recent advances in AI research, the massive amounts of digital data now available 

to train algorithms and modern, powerful computational hardware. Deep learning methods 

have been able to defeat humans in the strategy board game of Go, an achievement that was 

previously thought to be decades away given the highly complex game space and massive 

number of potential moves6. Following the trend towards a human-level general AI, 

researchers predict that AI will automate many tasks, including translating languages, 

writing best-selling books and performing surgery — all within the coming decades7.

Within health care, AI is becoming a major constituent of many applications, including drug 

discovery, remote patient monitoring, medical diagnostics and imaging, risk management, 

wearables, virtual assistants and hospital management. Many domains with big data 

components such as the analysis of DNA and RNA sequencing data8 are also expected to 

benefit from the use of AI. Medical fields that rely on imaging data, including radiology, 

pathology, dermatology9 and ophthalmology10, have already begun to benefit from the 

implementation of AI methods (Box 2). Within radiology, trained physicians visually assess 

medical images and report findings to detect, characterize and monitor diseases. Such 

assessment is often based on education and experience and can be, at times, subjective. In 

contrast to such qualitative reasoning, AI excels at recognizing complex patterns in imaging 

data and can provide a quantitative assessment in an automated fashion. More accurate and 

reproducible radiology assessments can then be made when AI is integrated into the clinical 

workflow as a tool to assist physicians.

As imaging data are collected during routine clinical practice, large data sets are — in 

principle — readily available, thus offering an incredibly rich resource for scientific and 

medical discovery. Radiographic images, coupled with data on clinical outcomes, have led to 

the emergence and rapid expansion of radiomics as a field of medical research11–13. Early 

radiomics studies were largely focused on mining images for a large set of predefined 

engineered features that describe radiographic aspects of shape, intensity and texture. More 

recently, radiomics studies have incorporated deep learning techniques to learn feature 

representations automatically from example images14, hinting at the substantial clinical 

relevance of many of these radiographic features. Within oncology, multiple efforts have 

successfully explored radiomics tools for assisting clinical decision making related to the 

diagnosis and risk stratification of different cancers15,16. For example, studies in non-small-

cell lung cancer (NSCLC) used radiomics to predict distant metastasis in lung 

adenocarcinoma17 and tumour histological subtypes18 as well as disease recurrence19, 

somatic mutations20, gene-expression profiles21 and overall survival22. Such findings have 

motivated an exploration of the clinical utility of AI-generated biomarkers based on 

standard-of-care radiographic images23 — with the ultimate hope of better supporting 
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radiologists in disease diagnosis, imaging quality optimization, data visualization, response 

assessment and report generation.

In this Opinion article, we start by establishing a general understanding of AI methods 

particularly pertaining to image-based tasks. We then explore how up-and-coming AI 

methods will impact multiple radiograph-based practices within oncology. Finally, we 

discuss the challenges and hurdles facing the clinical implementation of these methods.

AI in medical imaging

The primary driver behind the emergence of AI in medical imaging has been the desire for 

greater efficacy and efficiency in clinical care. Radiological imaging data continues to grow 

at a disproportionate rate when compared with the number of available trained readers, and 

the decline in imaging reimbursements has forced health-care providers to compensate by 

increasing productivity24. These factors have contributed to a dramatic increase in 

radiologists’ workloads. Studies report that, in some cases, an average radiologist must 

interpret one image every 3–4 seconds in an 8-hour workday to meet workload demands25. 

As radiology involves visual perception as well as decision making under uncertainty26, 

errors are inevitable — especially under such constrained conditions.

A seamlessly integrated AI component within the imaging workflow would increase 

efficiency, reduce errors and achieve objectives with minimal manual input by providing 

trained radiologists with pre-screened images and identified features. Therefore, substantial 

efforts and policies are being put forward to facilitate technological advances related to AI in 

medical imaging. Almost all image-based radiology tasks are contingent upon the 

quantification and assessment of radiographic characteristics from images. These 

characteristics can be important for the clinical task at hand, that is, for the detection, 

characterization or monitoring of diseases. The application of logic and statistical pattern 

recognition to problems in medicine has been proposed since the early 1960s27,28. As 

computers became more prevalent in the 1980s, the AI-powered automation of many clinical 

tasks has shifted radiology from a perceptual subjective craft to a quantitatively computable 

domain29,30. The rate at which AI is evolving radiology is parallel to that in other 

application areas and is proportional to the rapid growth of data and computational power.

There are two classes of AI methods that are in wide use today (BOX 1; FIG. 2). The first 

uses handcrafted engineered features that are defined in terms of mathematical equations 

(such as tumour texture) and can thus be quantified using computer programs31. These 

features are used as inputs to state-ofthe-art machine learning models that are trained to 

classify patients in ways that can support clinical decision making. Although such features 

are perceived to be discriminative, they rely on expert definition and hence do not 

necessarily represent the most optimal feature quantification approach for the discrimination 

task at hand. Moreover, predefined features are often unable to adapt to variations in 

imaging modalities, such as computed tomography (CT), positron emission tomography 

(PET) and magnetic resonance imaging (MRI), and their associated signal-to-noise 

characteristics.
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The second method, deep learning, has gained considerable attention in recent years. Deep 

learning algorithms can automatically learn feature representations from data without the 

need for prior definition by human experts. This data-driven approach allows for more 

abstract feature definitions, making it more informative and generalizable. Deep learning can 

thus automatically quantify phenotypic characteristics of human tissues32, promising 

substantial improvements in diagnosis and clinical care. Deep learning has the added benefit 

of reducing the need for manual preprocessing steps. For example, to extract predefined 

features, accurate segmentation of diseased tissues by experts is often needed33. Because 

deep learning is data driven (Box 1), with enough example data, it can automatically identify 

diseased tissues and hence avoid the need for expert-defined segmentations. Given its ability 

to learn complex data representations, deep learning is also often robust against undesired 

variation, such as the inter-reader variability, and can hence be applied to a large variety of 

clinical conditions and parameters. In many ways, deep learning can mirror what trained 

radiologists do, that is, identify image parameters but also weigh up the importance of these 

parameters on the basis of other factors to arrive at a clinical decision.

Given the growing number of applications of deep learning in medical imaging14, several 

efforts have compared deep learning methods with their predefined feature-based 

counterparts and have reported substantial performance improvements with deep 

learning34,35. Studies have also shown that deep learning technologies are on par with 

radiologists’ performance for both detection36 and segmentation37 tasks in ultrasonography 

and MRI, respectively. For the classification tasks of lymph node metastasis in PET-CT, 

deep learning had higher sensitivities but lower specificities than radiologists38. As these 

methods are iteratively refined and tailored for specific applications, a better command of 

the sensitivity:specificity trade-off is expected. Deep learning can also enable faster 

development times, as it depends solely on curated data and the corresponding metadata 

rather than domain expertise. On the other hand, traditional predefined feature systems have 

shown plateauing performance over recent years and hence do not generally meet the 

stringent requirements for clinical utility. As a result, only a few have been translated into 

the clinic39. It is expected that high-performance deep learning methods will surpass the 

threshold for clinical utility in the near future and can therefore be expeditiously translated 

into the clinic.

Impact on oncology imaging

In this section, we focus on three main clinical radiology tasks that specifically pertain to 

oncology: abnormality detection, followed by characterization and subsequent monitoring of 

change (FIG. 3). These tasks require a diversified set of skills: medical, in terms of disease 

diagnosis and care, as well as technical, for capturing and processing radiographic images. 

Both these skills hint at the ample opportunities where up-and-coming AI technologies can 

positively impact clinical outcomes by identifying phenotypic characteristics in images. In 

addition to being used in radiographic cancer images, such as in thoracic imaging and 

mammography, these tasks are also commonly used in other oncology subspecialties with 

non-radiographic images (BOX 2). For each of these tasks, we investigate technologies 

currently being utilized in the clinic and provide highlights of research efforts aimed at 

integrating state-of-the-art AI developments in these practices.
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Detection.

Within the manual detection workflow, radiologists rely on manual perceptive skills to 

identify possible abnormalities, followed by cognitive skills to either confirm or reject the 

findings.

Radiologists visually scan through stacks of images while periodically adjusting viewing 

planes and window width and level settings. Relying on education, experience and an 

understanding of the healthy radiograph, radiologists are trained to identify abnormalities on 

the basis of changes in imaging intensities or the appearance of unusual patterns. These 

criteria, and many more, fall within a somewhat subjective decision matrix that enables 

reasoning in problems ranging from detecting lung nodules to breast lesions and colon 

polyps. As dependence on computers has increased, automated methods for the 

identification and processing of these predefined features — collectively known as 

computer-aided detection (CADe) — have long been proposed and occasionally utilized in 

the clinic31. Radiologist-defined criteria are distilled into a pattern-recognition problem 

where computer vision algorithms highlight conspicuous objects within the image40. 

However, these algorithms are often task-specific and do not generalize across diseases and 

imaging modalities. Additionally, the accuracy of traditional predefined feature-based CADe 

systems remains questionable, with ongoing efforts to reduce false positives. It is often the 

case that outputs have to be assessed by radiologists to decide whether a certain automated 

annotation merits further investigation, thereby making it labour intensive. In examining 

mammograms, some studies have reported that radiologists rarely altered their diagnostic 

decisions after viewing results from predefined, feature-based CADe systems and that their 

clinical integration had no statistical significance on the radiologists’ performance41,42. This 

is owing, in part, to the subhuman performance of these systems. Recent efforts have 

explored deep learning-based CADe to detect pulmonary nodules in CT43 and prostate 

cancer in multiparametric imaging, specifically multiparametric MRI44. In detecting lesions 

in mammograms, early results show that utilizing convolutional neural networks (CNNs; 

deep learning algorithms; Box 1) in CADe outperforms traditional CADe systems at low 

sensitivity while performing comparably at high sensitivity and shows similar performance 

compared with human readers45. These findings hint at the utility of deep learning in 

developing robust, high-performance CADe systems.

Characterization.

Characterization is an umbrella term referring to the segmentation, diagnosis and staging of 

a disease. These tasks are accomplished by quantifying radiological characteristics of an 

abnormality, such as the size, extent and internal texture. While handling routine tasks of 

examining medical images, humans are simply not capable of accounting for more than a 

handful of qualitative features. This is exacerbated by the inevitable variability across human 

readers, with some performing better than others. Automation through AI can, in principle, 

consider a large number of quantitative features together with their degrees of relevance 

while performing the task at hand in a reproducible manner every time. For instance, it is 

difficult for humans to accurately predict the status of malignancy in the lung owing to the 

similarity between benign and malignant nodules in CT scans. AI can automatically identify 

these features, and many others, while treating them as imaging biomarkers. Such 
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biomarkers could hence be used to predict malignancy likelihood among other clinical end 

points including risk assessment, differential diagnosis, prognosis and response to treatment.

Within the initial segmentation step, while non-diseased organs can be segmented with 

relative ease, identifying the extent of diseased tissue is potentially orders of magnitude 

more challenging. Typical practices of tumour segmentation within clinical radiology today 

are often limited to high-level metrics such as the largest inplane diameter. However, in other 

clinical cases, a higher specificity and precision are vital. For instance, in clinical radiation 

oncology, the extents of both tumour and non-tumour tissues have to be accurately 

segmented for radiation treatment planning. Attempts at automating segmentation have 

made their way into the clinic, with varying degrees of success46. Segmentation finds its 

roots in earlier computer vision research carried out in the 1980s47, with continued 

refinement over the past decades. Simpler segmentation algorithms used clustered imaging 

intensities to isolate different areas or utilized region growing, where regions are expanded 

around user-defined seed points within objects until a certain homogeneity criterion is no 

longer met48. A second generation of algorithms saw the incorporation of statistical learning 

and optimization methods to improve segmentation precision, such as the watershed 

algorithm, where images are transformed into topological maps with intensities representing 

heights49. More advanced systems incorporate previous knowledge into the solution space, 

as in the use of a probabilistic atlas — often an attractive option when objects are ill-defined 

in terms of their pixel intensities. Such atlases have enabled more accurate automated 

segmentations, as they contain information regarding the expected locations of tumours 

across entire patient populations46. Applications of probabilistic atlases include segmenting 

brain MRI for locating diffuse low-grade glioma50, prostate MRI for volume estimation51 

and head and neck CT for radiotherapy treatment planning52, to name a few.

Recently proposed deep learning architectures for segmentation include fully convolutional 

networks, which are networks comprising convolutional layers only, that output 

segmentation probability maps across entire images53. Other architectures, such as the U-

net54, have been specifically designed for medical images. Studies have reported that a 

single deep learning system is able to perform diverse segmentation tasks across multiple 

modalities and tissue types, including brain MRI, breast MRI and cardiac CT angiography 

(CTA), without task-specific training55. Others describe deep learning methods for brain 

MRI segmentation that completely eliminate the need for image registration, a required 

preprocessing step in atlas-based methods56.

Multiple radiographic characteristics are also employed in subsequent diagnosis tasks. These 

are critical to determine, for instance, whether a lung nodule is solid or whether it contains 

non-solid areas, also known as ground-glass opacity (GGO) nodules. GGO nodules are 

rather challenging to diagnose and often require special management protocols, mainly 

owing to the lack of associated characteristics of malignancy or invasiveness in 

radiographs57. Generally, tumour radiographic characteristics may include information 

regarding size, maximum diameter, sphericity, internal texture and margin definition. The 

logic for diagnosis is based on these, often subjective, characteristics, enabling the 

stratification of objects into classes indicative of being benign or malignant. Methods to 

automate diagnoses are collectively referred to as computer-aided diagnosis (CADx) 
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systems. Similar to CADe, they often rely on predefined engineered discriminative features. 

Several systems are already in clinical use, as is the case with screening mammograms58. 

They usually serve as a second opinion in complementing a radiologist’s assessment59, and 

their perceived successes have led to the development of similar systems for other imaging 

modalities, including ultrasonography and MRI60. For instance, traditional CADx systems 

have been used on ultrasonography images to diagnose cervical cancer in lymph nodes, 

where they have been found to improve the performance of particularly inexperienced 

radiologists as well as reduce variability among them61. Other application areas include 

prostate cancer in multiparametric MRI, where a malignancy probability map is first 

calculated for the entire prostate, followed by automated segmentation for candidate 

detection62.

The accuracy of traditional predefined feature-based CADx systems is contingent upon 

several factors, including the accuracy of previous object segmentations. It is often the case 

that errors are magnified as they propagate through the various image-based tasks within the 

clinical oncology workflow. We also find that some traditional CADx methods fail to 

generalize across different objects. For instance, while the measurement of growth rates over 

time is considered a major factor in assessing risk, pulmonary nodule CADx systems 

designed around this criterion are often unable to accurately diagnose special nodules such 

as cavity and GGO nodules63. Such nodules require further descriptors for accurate 

detection and diagnosis — descriptors that are not discriminative when applied to the more 

common solid nodules64. This eventually leads to multiple solutions that are tailored for 

specific conditions with limited generalizability. Without explicit predefinition of these 

discriminative features, deep learning-based CADx is able to automatically learn from 

patient populations and form a general understanding of variations in anatomy — thus 

allowing it to capture a representation of common and uncommon cases alike.

Architectures such as CNNs are well suited for supervised diagnostic classification tasks 

(FIG. 2b). For both the breast lesion and lung nodule classification tasks, studies report a 

substantial performance gain of deep learning-based CADx methods — specifically those 

utilizing stacked denoising autoencoders — over their traditional state-of-the-art 

counterparts. This is mainly owing to the automatic feature exploration mechanism and 

higher noise tolerance of deep learning. Such performance gain is assessed using multiple 

metrics, including the area under receiver operating characteristic curve (AUC), accuracy, 

sensitivity and specificity, to name a few35.

Staging systems, such as tumour-node-metastasis (TNM) in oncology, rely on preceding 

information gathered through segmentation and diagnosis to classify patients into multiple 

predefined categories65. This enables a well-informed choice of the type of treatment and 

aids in predicting survival likelihood and prognosis. Staging has generally seen little to no 

automation because it relies on qualitative descriptions that are often difficult to 

quantitatively measure. The automated staging of primary tumour size, nearby lymph nodes 

and distant metastasis requires different feature sets and approaches. While traditional 

machine learning might have relied on ensemble methods where multiple distinct models are 

combined, deep learning has the ability to learn joint data representations simultaneously66 

— making it well suited for such multi-faceted classification problems. Most deep learning 
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efforts to detect lymph node involvement and distant metastasis — and ultimately obtain an 

accurate staging — have been carried out on pathology images67,68. However, more work on 

radiographic images is expected to appear in the near future.

Monitoring.

Disease monitoring is essential for diagnosis as well as for evaluation of treatment response. 

The workflow involves an image registration preprocess where the diseased tissue is aligned 

across multiple scans, followed by an evaluation of simple metrics on them using predefined 

protocols — which is very similar to diagnosis tasks on single time-point images. A simple 

data comparison protocol follows and is used to quantify change. In oncology, for instance, 

these protocols define information regarding tumor size. Examples include the Response 

Evaluation Criteria in Solid Tumours (RECIST) and those created by the World Health 

Organization (WHO)69. Here, we find that the main goal behind such simplification is 

reducing the amount of effort and data a human reader must interact with while performing 

the task. However, this simplification is often based on incorrect assumptions regarding 

isotropic tum our growth. Whereas some change characteristics are directly identifiable by 

humans, such as moderately large variations in object size, shape and cavitation, others are 

not. These could include subtle variations in texture and heterogeneity within the object. 

Poor image registration, dealing with multiple objects and physiological changes over time 

all contribute to more challenging change analyses. Moreover, the inevitable interobserver 

variability70 remains a major weakness in the process. Computer-aided change analysis is 

considered a relatively younger field than CADe and CADx systems and has not yet 

achieved as much of a widespread adoption71. Early efforts in automating change analysis 

workflows relied on the automated registration of multiple images followed by subtraction 

of one from another, after which changed pixels are highlighted and presented to the reader. 

Other more sophisticated methods perform a pixel-by-pixel classification — on the basis of 

predefined discriminative features — to identify changed regions and hence produce a more 

concise map of change72. As the predefined features used for registration differ from those 

used for the subsequent change analysis, a multistep procedure combining different feature 

sets is required. This could compromise the change analysis step, as it becomes highly 

sensitive to registration errors. With computer-aided change analysis based on deep learning, 

feature engineering is eliminated and a joint data representation can be learned. Deep 

learning architectures, such as recurrent neural networks, are very well suited for such 

temporal sequence data formats and are expected to find ample applications in monitoring 

tasks.

Other opportunities.

In addition to the three primary clinical tasks mentioned above, AI is expected to impact 

other image-based tasks within the clinical radiology workflow. These include the 

preprocessing steps following image acquisition as well as subsequent reporting and 

integrated diagnostics (FIG. 3a).

Starting at the outset of the workflow, the first of these tasks to be improved is 

reconstruction. We find a widening gap between advancements in image acquisition 

hardware and image-reconstruction software, a gap that can potentially be addressed by new 
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deep learning methods for suppressing artefacts and improving overall quality. For instance, 

CT reconstruction algorithms have seen little to no change in the past 25 years73. 

Additionally, many filtered back-projection image-reconstruction algorithms are 

computationally expensive, signifying that a trade-off between distortions and runtime is 

inevitable74. Recent efforts report the flexibility of deep learning in learning reconstruction 

transformations for various MRI acquisition strategies, which is achieved by treating the 

reconstruction process as a supervised learning task where a mapping between the scanner 

sensors and resultant images is derived75. Other efforts employ novel AI methods to correct 

for artefacts as well as address certain imaging modality-specific problems such as the 

limited angle problem in CT76 — a missing data problem where only a portion of the 

scanned space can be reconstructed owing to the scanner’s inability to perform full 180° 

rotations around objects. Studies have also utilized CNNs and synthetically generated 

artefacts to combine information from original and corrected images as a means to suppress 

metal artefacts77. More work is needed to investigate the accuracy of deep learning-based 

reconstruction algorithms and their ability to recreate rare, unseen structures, as initial errors 

propagated throughout the radiology workflow can have adverse effects on patient outcome.

Another preprocessing task to be improved is registration, as touched upon previously in the 

monitoring section. This process is often based on predefined similarity criteria such as 

landmark and edge-based measures. In addition to the computational power and time 

consumed by these predefined feature-based methods, some are sensitive to initializations, 

chosen similarity features and the reference image78. Deep learning methods could handle 

complex tissue deformations through more advanced non-rigid registration algorithms while 

providing better motion compensation for temporal image sequences. Studies have shown 

that deep learning leads to generally more consistent registrations and is an order of 

magnitude faster than more conventional methods79. Additionally, deep learning is 

multimodal in nature where a single shared representation among imaging modalities can be 

learned80. Multimodal images in cancer have enabled the association of multiple quantitative 

functional measurements, as in the PET hybrids PET-MRI and PET-CT, thus improving the 

accuracy of tumour characterization and assessment81. With robust registration algorithms 

based on deep learning, the utility of multimodal imaging can be further explored without 

concerns regarding registration accuracy.

Radiology reports lie at the intersection of radiology and multiple oncology subspecialties. 

However, the generation of these textual reports can be a laborious and routine time-

consuming task. When compared with conventional dictation, even structured reporting 

systems with bulleted formatting have been shown not to improve attending physicians’ 

perceptions of report clarity82. As the report generation task falls towards the end of the 

radiology workflow, it is the most sensitive to errors from preceding steps. Additionally, the 

current radiologist-oncologist communication model has not been found to be optimally 

coordinated — especially with regard to monitoring lesions over time83. Owing to the often 

different formats in which data are recorded by medical professionals, Al-run, automatic, 

report-generation tools can pave the way for a more standardized terminology — an area 

that currently lacks stringent standards and an agreed-upon understanding of what 

constitutes a ‘good’ report84. Such tools could also replace the traditional qualitative text-

based approach with a more interactive quantitative one, which has been shown to improve 
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and promote collaboration between different parties85. Within lung cancer screening, this 

could include quantified information about the size and location of a nodule, probability of 

malignancy and associated confidence level. These well-structured reports are also 

immensely beneficial to population sciences and big data mining efforts. Following deep 

learning advances in the automatic caption generation from photographic images86, recent 

efforts have explored means to diagnose abnormalities in chest radiography scans and 

automatically annotate them in a textual format87.

After carrying out various clinical tasks and generating radiology reports (FIG. 3a), Al-based 

integrated diagnostics could potentially enable health-care-wide assimilation of data from 

multiple streams, thus capitalizing on all data types pertaining to a particular patient. In 

addition to radiology reports describing findings from medical images and their associated 

metadata, other data could be sourced from the clinic or from pathology or genomics testing. 

Data from wearables, social media and other lifestyle-quantifying sources could all 

potentially offer valid contributions to such a comprehensive analysis. This will be crucial in 

providing AI biomarkers with robust generalizability towards different end points. Such 

consolidation of standard medical data, using traditional AI methods, has already 

demonstrated the ability to advance clinical decision making in lung cancer diagnosis and 

care21.

AI challenges in medical imaging

We are currently witnessing a major paradigm shift in the design principles of many 

computer-based tools used in the clinic. There is great debate about the speed with which 

newer deep learning methods will be implemented in clinical radiology practice88, with 

speculations for the time needed to fully automate clinical tasks ranging from a few years to 

decades. The development of deep learning-based automated solutions will begin with 

tackling the most common clinical problems where sufficient data are available. These 

problems could involve cases where human expertise is in high demand or data are far too 

complex for human readers; examples of these include the reading of lung screening CTs, 

mammograms and images from virtual colonoscopy. A second wave of efforts is likely to 

address more complex problems such as multiparametric MRI. A common trait among 

current AI tools is their inability to address more than one task, as is the case with any 

narrow intelligence. A comprehensive AI system able to detect multiple abnormalities 

within the entire human body is yet to be developed.

Data continue to be the most central and crucial constituent for learning AI systems. With 

one out of four Americans receiving a CT examination89 and one out of ten receiving an 

MRI examination90 annually, millions of medical images are produced each year. 

Additionally, recent well-implemented advances in US-based digital health systems — such 

as the Picture Archiving and Communication System (PACS) — have ensured that medical 

images are electronically organized in a systematic manner91,92, with parallel efforts in 

Europe93 and developing countries94. It is clear that large amounts of medical data are 

indeed available and are stored in such a manner that enables moderate ease in access and 

retrieval. However, such data are rarely curated, and this represents a major bottleneck in 

attempting to learn any AI model. Curation can refer to patient cohort selection relevant for 
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a specific AI task but can also refer to segmenting objects within images. Curation ensures 

that training data adheres to a defined set of quality criteria and is clear of compromising 

artefacts. It can also help avoid unwanted variance in data owing to differences in data-

acquisition standards and imaging protocols, especially across institutions, such as the time 

between contrast agent administration and actual imaging. An example of data curation 

within oncology could include assembling a cohort of patients with specific stages of disease 

and tumour histology grades. Although photographic images can be labelled by nonexperts, 

using, for instance, crowdsourcing approaches, medical images do require domain 

knowledge. Hence, it is imperative that such curation is performed by a trained reader to 

ensure credibility — making the process expensive. It is also very time consuming, although 

utilizing recent deep learning algorithms promises to reduce annotation time substantially: 

meticulous slice-by-slice segmentation can potentially be substituted by single seed points 

within the object, from which full segmentations could be automatically generated. The 

amount of data requiring curation is another limiting factor and is highly dependent on the 

AI approach — with deep learning methods being more prone to overfitting and hence often 

requiring more data.

The suboptimal performance of many automated and semi-automated segmentation 

algorithms46 has hindered their utility in curating data, as human readers are almost always 

needed to verify accuracy. More complications arise with rare diseases, where automated 

labelling algorithms are non-existent. The situation is exacerbated when only a limited 

number of human readers have previous exposure and are capable of verifying these 

uncommon diseases. One solution that enables automated data curation is unsupervised 

learning. Recent advances in unsupervised learning, including generative adversarial 

networks95 and variational autoencoders96 among others, show great promise, as 

discriminative features are learned without explicit labelling. Recent studies have explored 

unsupervised domain adaptation using adversarial networks to segment brain MRI, leading 

to a generalizability and accuracy close to those of supervised learning methods97. Others 

employ sparse autoencoders to segment breast density and score mammographic texture in 

an unsupervised manner98. Self-supervised learning efforts have also utilized spatial context 

information as supervision for recognizing body parts in CT and MRI volumes through the 

use of paired CNNs99. Nevertheless, public repositories such as The Cancer Imaging 

Archive (TCIA)100 offer unparalleled open-access to labelled medical imaging data, 

allowing immediate AI model prototyping and thus eliminating lengthy data curation steps.

Albeit intuitively leading to higher states of intelligence, the recent paradigm shift from 

programs based on well-defined rules to others that learn directly from data has brought 

certain unforeseen concerns to the spotlight. A strong theoretical understanding of deep 

learning is yet to be established101 despite the reported successes across many fields — 

explaining why deep learning layers that lie between inputs and outputs are labelled as 

‘hidden layers’ (Box 1; fig. 2b). Identifying specific features of an image that contribute to a 

predicted outcome is highly hypothetical, causing a lack of understanding of how certain 

conclusions are drawn by deep learning. This lack of transparency makes it difficult to 

predict failures, isolate the logic for a specific conclusion or troubleshoot inabilities to 

generalize to different imaging hardware, scanning protocols and patient populations. Not 
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surprisingly, many uninterpretable AI systems with applications in radiology have been 

dubbed ‘black-box medicine’ (REF102).

From a regulatory perspective, discussions are underway regarding the legal right of 

regulatory entities to interrogate AI frameworks on the mathematical reasoning for an 

outcome103. While such questioning is possible with explicitly programmed mathematical 

models, new AI methods such as deep learning have opaque inner workings, as mentioned 

above. Sifting through hundreds of thousands of nodes in a neural network, and their 

respective associated connections, to make sense of their stimulation sequence is 

unattainable. An increased network depth and node count brings more complex decision 

making together with a much more challenging system to take apart and explore. On the 

other hand, we find that many safe and effective US Food and Drug Administration (FDA)-

approved drugs have unknown mechanisms of action104,105. From that perspective and 

despite the degree of uncertainty surrounding many AI algorithms, the FDA has already 

approved high-performance software solutions, though they are known to have somewhat 

obscure working mechanisms. Regulatory bodies, such as the FDA, have been regulating 

CADe and CADx systems that rely on machine learning and pattern-recognition techniques 

since the earliest days of computing. However, it is the shift to deep learning that now poses 

new regulatory challenges and requires new guidance for submissions seeking approval. 

Even after going to market, deep learning methods evolve over time as more data are 

processed and learned from. Thus, it is crucial to understand the implications of such 

lifelong learning in these adaptive systems. Periodic testing over specific time intervals 

could potentially ensure that learning and its associated prediction performance are 

following forecasted projections. Additionally, such benchmarking tests need to adapt to AI 

specifics such as the sensitivity of prediction probabilities in CNNs.

Other ethical issues may arise from the use of patient data to train these AI systems. Data are 

hosted within networks of medical institutions, often lacking secure connections to state-of-

the-art AI systems hosted elsewhere. More recently, Health Insurance Portability and 

Accountability Act (HIPAA)-compliant storage systems have paved the way for more 

stringent privacy preservation. Studies have explored systems that enable multiple entities to 

jointly train AI models without sharing their input data sets — sharing only the trained 

model106,107. Other efforts use a decentralized ‘federated’ learning approach108. During 

training, data remains local, while a shared model is learned by combining local updates. 

Inference is then performed locally on live copies of the shared model, eliminating data 

sharing and privacy concerns. ‘Cryptonets’ are deep learning networks trained on encrypted 

data, and they even make encrypted predictions that can be decrypted only by the owner of a 

decryption key — thus ensuring complete confidentiality throughout the entire process109. 

All these solutions, albeit still in early developmental stages, promise to create a sustainable 

‘data to AI’ ecosystem — without undermining privacy and HIPAA compliance.

Future perspectives

From the early days of X-ray imaging in the 1890s to more recent advances in CT, MRI and 

PET scanning, medical imaging continues to be a pillar of medical treatment. Current 

advances in imaging hardware — in terms of quality, sensitivity and resolution — enable the 
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discrimination of minute differences in tissue densities. Such differences are, in some cases, 

difficult to recognize by a trained eye and even by some traditional AI methods used in the 

clinic. These methods are thus not fully on par with the sophistication of imaging 

instruments, yet they serve as another motivation to pursue this paradigm shift towards more 

powerful AI tools. Moreover, and in contrast to traditional methods based on predefined 

features, we find that deep learning algorithms scale with data, that is, as more data are 

generated every day and with ongoing research efforts, we expect to see relative 

improvements in performance. All these advances promise an increased accuracy and 

reduction in the number of routine tasks that exhaust time and effort.

Aligning research methodologies is crucial in accurately assessing the impact of AI on 

patient outcome. In addition to the undeniable importance of reproducibility and 

generalizability, utilizing agreed-upon benchmarking data sets, performance metrics, 

standard imaging protocols and reporting formats will level the experimentation field and 

enable unbiased indicators. It is also important to note that AI is unlike human intelligence 

in many ways; excelling in one task does not necessarily imply excellence in others. 

Therefore, the promise of up-and-coming AI methods should not be overstated. Almost all 

state-of-the-art advances in the field of AI fall under the narrow AI category, where AI is 

trained for one task and one task only — with only a handful exceeding human intelligence. 

While such advances excel in interpreting sensory perceptual information in a bottom-up 

fashion, they lack higher-level, top-down knowledge of contexts and fail to make 

associations the way a human brain does. Thus, it is evident that the field is still in its 

infancy, and overhyped excitement surrounding it should be replaced with rational thinking 

and mindful planning. It is also evident that AI is unlikely to replace radiologists within the 

near or even distant future. The roles of radiologists will expand as they become more 

connected to technology and have access to better tools. They are also likely to emerge as 

critical elements in the AI training process, contributing knowledge and overseeing efficacy. 

As different forms of AI exceed human performance, we expect it to evolve into a valuable 

educational resource. Human operators will not only oversee outcomes but also seek to 

interpret the reasoning behind them — as a means of validation and as a way to potentially 

discover hidden information that might have been overlooked (FIG. 1).

In contrast to traditional AI algorithms locked within proprietary commercial packages, we 

find that the most popular deep learning software platforms available today are open-source. 

This has fostered, and continues to foster, experimentation on a massive scale. In terms of 

data, AI efforts are expected to shift from processed medical images to raw acquisition data. 

Raw data are almost always downsampled and optimized for human viewers. This 

simplification and loss of information are both avoidable when the analyses are run by 

machines but are associated with caveats including reduced interpretability and impeded 

human validation. As more data are generated, more signal is available for training. 

However, more noise is also present. We expect the process of discerning signal from noise 

to become more challenging over time. With difficulties in curating and labelling data, we 

foresee a major push towards unsupervised learning techniques to fully utilize the vast 

archives of unlabelled data.
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Open questions include the ambiguity of who controls AI and is ultimately responsible for 

its actions, the nature of the interface between AI and health care and whether 

implementation of a regulatory policy too soon will cripple AI application efforts. Enabling 

interoperability among the multitude of AI applications that are currently scattered across 

health care will result in a network of powerful tools. This AI web will function at not only 

the inference level but also the lifelong training level. We join the many calls110 that 

advocate for creating an interconnected network of de-identified patient data from across the 

world. Utilizing such data to train AI on a massive scale will enable a robust AI that is 

generalizable across different patient demographics, geographic regions, diseases and 

standards of care. Only then will we see a socially responsible AI benefiting the many and 

not the few.
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Glossary

Area under receiver operating characteristic curve
(AUC). A sensitivity versus specificity metric for measuring the performance of binary 

classifiers that can be extended to multi-class problems. The area under the curve is equal to 

the probability that a randomly chosen positive sample ranks above a randomly chosen 

negative one or is regarded to have a higher probability of being positive.

Artificial intelligence
(AI). A branch of computer science involved with the development of machines that are able 

to perform cognitive tasks that would normally require hum an intelligence.

Caption generation
The often automated generation of qualitative text describing an illustration or image and its 

contents.

Ground-glass opacity
(GGO). A visual feature of some subsolid pulmonary nodules that is characterized by focal 

areas of slightly increased attenuation on computed tomography. Underlying bronchial 

structures and vessels are often visually preserved (being even more recognizable owing to 

increased contrast), thus making the detection and diagnosis of such nodules somewhat 

challenging.

Health Insurance Portability and Accountability Act
(HIPAA). A US act that sets provisions for protecting and securing sensitive patient medical 

data.

Image registration
A process that involves aligning medical images either in terms of spatial or temporal 

characteristics, mostly intramodality and occasionally intermodality.
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Imaging modalities
A multitude of imaging methods that are used to non-invasively generate visualizations of 

the human anatomy. Examples of these include computed tomography (CT), computed 

tomography angiography (CTA), magnetic resonance imaging (MRI), mammography, 

ultrasonography (echocardiography) and positron emission tomography (PET).

Initializations
Within optimization problems, constantly adjusted parameters during run time need to be 

initialized to some value before the start of the process. Good initialization techniques aid 

models in converging faster and hence speed up the iteration process.

Machine learning
A branch of artificial intelligence and computer science that enables computers to learn 

without being explicitly programmed.

Multiparametric imaging
Medical imaging in which two or more parameters are used to visualize differences between 

healthy and diseased tissue. In multiparametric magnetic resonance imaging (MRI), these 

parameters include T2-weighted MRI, diffusion-weighted MRI and dynamic 

contrastenhanced MRI, among others.

Predefined engineered features
A set of context-based human-crafted features designed to represent knowledge regarding a 

specific data space.

Probabilistic atlas
A single composite image formed by combining and registering pre-segmented images of 

multiple patients that thus contains knowledge on population variability.

Radiomics
A data-centric field investigating the clinical relevance of radiographic tissue characteristics 

automatically quantified from medical images.

Report generation
The communication of assessments and findings in both image and text formats among 

medical professionals.

Segmentation
The partitioning of images to produce boundary delineations of objects of interest. Such a 

boundary is defined by pixels and voxels (3D pixels) when performed in 2D and 3D, 

respectively.

Self-supervised learning
A type of supervised learning where labels are determined by the input data as opposed to 

being explicitly provided.

Supervised learning
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A type of machine learning where functions are inferred from labelled training data. 

Example data pairs consist of the input together with its desired output or label.

Unsupervised learning
A type of machine learning where functions are inferred from training data without 

corresponding labels.

Wearables
A collective term describing health-monitoring devices, smartwatches and fitness trackers 

that have recently been integrated into the health-care ecosystem as a means to remotely 

track vitals and adhere to treatment plans.
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Artificial intelligence methods in medical imaging

Machine learning algorithms based on predefined engineered features

Traditional artificial intelligence (AI) methods rely largely on predefined engineered 

feature algorithms (Fig. 2a) with explicit parameters based on expert knowledge. Such 

features are designed to quantify specific radiographic characteristics, such as the 3D 

shape of a tumour or the intratumoural texture and distribution of pixel intensities 

(histogram). A subsequent selection step ensures that only the most relevant features are 

used. Statistical machine learning models are then fit to these data to identify potential 

imaging-based biomarkers. Examples of these models include support vector machines 

and random forests.

Deep learning algorithms

Recent advances in AI research have given rise to new, non-deterministic, deep learning 

algorithms that do not require explicit feature definition, representing a fundamentally 

different paradigm in machine learning111–113. The underlying methods of deep learning 

have existed for decades. However, only in recent years have sufficient data and 

computational power become available. Without explicit feature predefinition or 

selection, these algorithms learn directly by navigating the data space, giving them 

superior problem-solving capabilities. While various deep learning architectures have 

been explored to address different tasks, convolutional neural networks (CNNs) are the 

most prevalent deep learning architecture typologies in medical imaging today14. A 

typical CNN comprises a series of layers that successively map image inputs to desired 

end points while learning increasingly higher-level imaging features (Fig. 2b). Starting 

from an input image, ‘hidden layers’ within CNNs usually include a series of convolution 

and pooling operations extracting feature maps and performing feature aggregation, 

respectively. These hidden layers are then followed by fully connected layers providing 

high-level reasoning before an output layer produces predictions. CNNs are often trained 

end-to-end with labelled data for supervised learning. Other architectures, such as deep 

autoencoders96 and generative adversarial networks95, are more suited for unsupervised 

learning tasks on unlabelled data. Transfer learning, or using pre-trained networks on 

other data sets, is often utilized when dealing with scarce data114.
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Examples of clinical application areas of artificial intelligence in oncology

Radiology-based

Thoracic imaging.

Lung cancer is one of the most common and deadly tumours. Lung cancer screening can 

help identify pulmonary nodules, with early detection being lifesaving in many patients. 

Artificial intelligence (AI) can help in automatically identifying these nodules and 

categorizing them as benign or malignant.

Abdominal and pelvic imaging.

With the rapid growth in medical imaging, especially computed tomography (CT) and 

magnetic resonance imaging (MRI), more incidental findings, including liver lesions, are 

identified. AI may aid in characterizing these lesions as benign or malignant and 

prioritizing follow-up evaluation for patients with these lesions.

Colonoscopy.

Colonic polyps that are undetected or misclassified pose a potential risk of colorectal 

cancer. Although most polyps are initially benign, they can become malignant over 

time115. Hence, early detection and consistent monitoring with robust AI-based tools are 

critical.

Mammography.

Screening mammography is technically challenging to expertly interpret. AI can assist in 

the interpretation, in part by identifying and characterizing microcalcifications (small 

deposits of calcium in the breast).

Brain imaging.

Brain tumours are characterized by abnormal growth of tissue and can be benign, 

malignant, primary or metastatic; AI could be used to make diagnostic predictions116.

Radiation oncology.

Radiation treatment planning can be automated by segmenting tumours for radiation dose 

optimization. Furthermore, assessing response to treatment by monitoring over time is 

essential for evaluating the success of radiation therapy efforts. AI is able to perform 

these assessments, thereby improving accuracy and speed.

Non-radiology-based

Dermatology.

Diagnosing skin cancer requires trained dermatologists to visually inspect suspicious 

areas. With the large variability in sizes, shades and textures, skin lesions are rather 

challenging to interpret9. The massive learning capacity of deep learning algorithms 

qualifies them to handle such variance and detect characteristics well beyond those 

considered by humans.
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Pathology.

The quantification of digital whole-slide images of biopsy samples is vital in the accurate 

diagnosis of many types of cancers. With the large variation in imaging hardware, slide 

preparation, magnification and staining techniques, traditional AI methods often require 

considerable tuning to address this problem. More robust AI is able to more accurately 

perform mitosis detection, segment histologic primitives (such as nuclei, tubules and 

epithelium), count events and characterize and classify tissue117–120.

DNA and RNA sequencing.

The ever-increasing amount of available sequencing data continues to provide 

opportunities for utilizing genomic end points in cancer diagnosis and care. AI-based 

tools are able to identify and extract high-level features correlating somatic point 

mutations and cancer types121 as well as predict the effect of mutations on sequence 

specificities of RNA-binding and DNA-binding proteins122.
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Fig. 1 |. Artificial versus human intelligence.
This plot outlines the performance levels of artificial intelligence (AI) and human 

intelligence starting from the early computer age and extrapolating into the future. Early AI 

came with a subhuman performance and varying degrees of success. Currently, we are 

witnessing narrow task-specific AI applications that are able to match and occasionally 

surpass human intelligence4–6,9. It is expected that general AI will surpass human 

performance in specific applications within the coming years. Humans will potentially 

benefit from the human-AI interaction, bringing them to higher levels of intelligence.
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Fig. 2 |. Artificial intelligence methods in medical imaging.
This schematic outlines two artificial intelligence (AI) methods for a representative 

classification task, such as the diagnosis of a suspicious object as either benign or malignant. 

a | The first method relies on engineered features extracted from regions of interest on the 

basis of expert knowledge. Examples of these features in cancer characterization include 

tumour volume, shape, texture, intensity and location. The most robust features are selected 

and fed into machine learning classifiers. b | The second method uses deep learning and does 

not require region annotation — rather, localization is usually sufficient. It comprises several 

layers where feature extraction, selection and ultimate classification are performed 

simultaneously during training. As layers learn increasingly higher-level features (Box 1), 

earlier layers might learn abstract shapes such as lines and shadows, while other deeper 

layers might learn entire organs or objects. Both methods fall under radiomics, the data-

centric, radiology-based research field.
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Fig. 3 |. Artificial intelligence impact areas within oncology imaging.
This schematic outlines the various tasks within radiology where artificial intelligence (AI) 

implementation is likely to have a large impact. a | The workflow comprises the following 

steps: preprocessing of images after acquisition, image-based clinical tasks (which usually 

involve the quantification of features either using engineered features with traditional 

machine learning or deep learning), reporting results through the generation of textual 

radiology reports and, finally, the integration of patient information from multiple data 

sources. b | AI is expected to impact image-based clinical tasks, including the detection of 

abnormalities; the characterization of objects in images using segmentation, diagnosis and 

staging; and the monitoring of objects for diagnosis and assessment of treatment response. 

TNM, tumour–node–metastasis.
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