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SUMMARY

Prokaryotic Argonaute (Ago) proteins were recently
shown to target foreign genetic elements, thus
making them a perfect model for studies of interfer-
ence mechanisms. Here, we study interactions of
Rhodobacter sphaeroides Ago (RsAgo) with guide
RNA (gRNA) and fully complementary or imperfect
target DNA (tDNA) using biochemical and structural
approaches. We show that RsAgo can specifically
recognize both the first nucleotide in gRNA and com-
plementary nucleotide in tDNA, and both interactions
contribute to nucleic acid binding. Non-canonical
pairs and bulges on the target strand can be accom-
modated by RsAgo with minimal perturbation of the
duplex but significantly reduce RsAgo affinity to
tDNA. Surprisingly, mismatches between gRNA and
tDNA induce dissociation of the guide-target duplex
from RsAgo. Our results reveal plasticity in the ability
of Ago proteins to accommodate helical imperfec-
tions, show how this might affect the efficiency of
RNA silencing, and suggest a potential mechanism
for guide release and Ago recycling.

INTRODUCTION

The members of the Argonaute (Ago) protein family are key

players in RNA-mediated gene silencing and are widely distrib-

uted in archaea, eubacteria, and eukaryotes (Hutvagner and Si-

mard, 2008; Ipsaro and Joshua-Tor, 2015; Meister, 2013; Swarts

et al., 2014b). In eukaryotes, Ago proteins form complexes with

short interfering RNAs (siRNAs), microRNAs (miRNAs), and

PIWI-interacting RNAs (piRNAs) that recognize complementary

RNA targets resulting in mRNA degradation or translational

and transcriptional inhibition (Bartel, 2004; Kuhn and Joshua-

Tor, 2013; Parker, 2010). Structural biology studies on Ago pro-

teins and their complexes with guide and target nucleic acids

have greatly enhanced our understanding of gene silencing phe-

nomena starting with studies of prokaryotic Agos (pAgos) and
This is an open access article under the CC BY-N
their complexes (Sheng et al., 2014; Song et al., 2004; Wang

et al., 2009; Wang et al., 2008; Yuan et al., 2005) and subse-

quently extended to eukaryotic Agos and their complexes (El-

kayam et al., 2012; Faehnle et al., 2013; Nakanishi et al., 2012,

2013; Schirle and MacRae, 2012; Schirle et al., 2014) and to

PIWI proteins (Matsumoto et al., 2016).

Previous studies demonstrated that eukaryotic Ago proteins

can recognize RNA targets containing multiple mismatches

with Ago-associated RNA guides. This property plays a crucial

role in the regulation of gene expression by RNA-guided com-

plexes, which can thus recognize a wide range of RNA targets

with various degrees of complementarity, and with various out-

comes for the transcript fate. Analysis of target repression by

miRNAs and siRNAs revealed that base pairing between the

guide and the target is most important in the so-called seed re-

gion (positions 2–8 of guide RNA [gRNA]) and in the central guide

segment (around positions 10–11 of gRNA, corresponding to

the cleavage site in the RNA target), respectively (Bartel, 2004;

Dahlgren et al., 2008; Du et al., 2005; Kloosterman et al.,

2004). The ability to recognize mismatched RNA targets may

be particularly important for piRNA-binding PIWI-clade Agos,

which play key roles in silencing of multiple and diverse trans-

poson copies in the germline of most metazoan species.

In vitro studies of eukaryotic Agos demonstrated that mis-

matches between guide and target RNAs in the seed region

mostly interfere with target binding, whilemismatches in the cen-

tral part of the duplex decrease the catalytic rate of the complex

(Salomon et al., 2015; Wee et al., 2012). Similarly, mismatches

around the active center had the strongest effect on target cleav-

age by pAgos from Thermus thermophilus (TtAgo) and Marini-

toga piezophila (MpAgo) (Doxzen and Doudna, 2017; Wang

et al., 2008). However, the effects of mismatches on the archi-

tecture of ternary Ago complexes are poorly understood, and

the molecular structures of mismatched complexes remain

unknown.

While eukaryotic Agos use gRNAs to recognize and cleave

target RNAs (Liu et al., 2004), pAgos were shown to use gRNAs

(e.g., Rhodobacter sphaeroides RsAgo and MpAgo) or DNAs

(e.g., TtAgo) to recognize target DNAs (tDNAs) (Kaya et al.,

2016; Makarova et al., 2009; Olovnikov et al., 2013; Swarts

et al., 2014a, 2014b; Yuan et al., 2005). Functional studies
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Figure 1. Structure of RsAgo Bound to

gRNA and tDNA

(A) The domain architecture of RsAgo color-coded

by domains.

(B) The sequence and pairing alignments of

50-phosphorylated 18-mer gRNA (in red) and

24-mer tDNA (in blue); the nucleotides not

observed in the structure are shown in gray.

(C and D) 2.1 Å structure of the ternary complex

of RsAgo with gRNA and tDNA. The nucleic acid is

in a stick representation, while the protein is in a

ribbon (C) and a surface (D) representation.
suggested that pAgos defend genomes against invasive DNA

(Hur et al., 2014; Olovnikov et al., 2013; Schirle et al., 2014;

Swarts et al., 2014a, 2015), a function similar to their eukaryotic

counterparts. While some pAgos including TtAgo are active

nucleases, amino acid residues in the PIWI domain that are

required for catalytic endonuclease activity are not conserved

in RsAgo. Indeed, RsAgo does not cleave the DNA target and

cleavage seems to be mediated by another yet-to-be-identified

nuclease that cuts it on either side of the region paired with the

guide sequence (Olovnikov et al., 2013).

Structural studies of RsAgo in complex with gRNA and tDNA

(Miyoshi et al., 2016) and of TtAgo in complex with gDNA

and tDNA (Sheng et al., 2014) showed that both proteins

accommodate nucleic acid duplexes between their N-PAZ

and MID-PIWI lobes. Recent analysis of a PIWI-clade SIWI

protein from silkworm revealed unexpected similarities with

pAgos, including metal-dependent contacts with the RNA

guide 50 end in the MID pocket and similar organization of

the active sites (Matsumoto et al., 2016). Further structural

and functional studies of pAgos may shed light on the interfer-

ence pathways mediated by these proteins and their eukary-

otic counterparts and make a path to adopt pAgos as a tool

for genome and epigenome engineering. This prompted us to

undertake a structural study of RsAgo at the ternary complex

level and extend these efforts to address how mismatches

and bulges in the guide-target duplex are accommodated by

the RsAgo scaffold.

RESULTS

Structure of the Ternary RsAgo Complex
We successfully generated, purified, and crystallized a ternary

complex of full-length RsAgo (Figure 1A) bound to 50-phos-
454 Cell Reports 24, 453–462, July 10, 2018
phorylated 18-mer gRNA and comple-

mentary 24-mer tDNA (Figure 1B) and

collected X-ray data at 2.1-Å resolution

(X-ray statistics in Table S1). The structure

was solved following Se-methionine la-

beling of RsAgo to solve the phase prob-

lem (Table S1). The structure of the

ternary complex with bound nucleic acid

(gRNA in red and tDNA in blue) in a stick

representation and the color-coded pro-

tein either in a ribbon or surface represen-
tation are shown in Figures 1C and 1D, respectively. We can

trace all domains and linkers of the RsAgo protein, the entire

length of the 18-mer gRNA, and 21 out of 24 nt of the tDNA. In

comparison with the previously published structure of the

ternary RsAgo complex (Miyoshi et al., 2016), our structure con-

tains a longer segment of the tDNA, which exactly corresponds

to the length of short DNAs associated with RsAgo in vivo (Olov-

nikov et al., 2013).

Similar to previous ternary Ago complex structures, the gRNA-

tDNA duplex is positioned within a channel between the N-PAZ

and MID-PIWI lobes of the RsAgo protein (Figures 1C and 1D).

The bound duplex is fully Watson-Crick paired from position

2–20 to 18–180, with the binding channel traversing all the do-

mains of the Ago scaffold. The ternary RsAgo complex is stabi-

lized by a network of intermolecular hydrogen-bonding interac-

tions, with the entire set shown schematically in Figure 2A, and

a subset of which are shown in Figure 2B. These interactions

are most prominent for the 50 end of the phosphorylated gRNA

and opposite it on the tDNA, but are also dispersed over the

rest of the duplex. Except for intermolecular contacts to the

base edges of U1 and A10 (see below), the remainder of the inter-

molecular contacts are non-specific and involve the nucleic acid

sugar-phosphate backbone primarily spanning the 5–17 posi-

tions on the guide strand and positions 90–160 on the target

strand (Figure 2A). There are no intermolecular hydrogen

bonding contacts for positions 20–80 of the seed segment of

the tDNA strand (Figure 2A).

We have compared the structure of the bound gRNA-tDNA

duplex in the ternary RsAgo complex with canonical A-form

(Figures S1A–S1C) and B-form (Figures S1D–S1F) duplexes.

Notably, the gRNA-tDNA duplex overlays poorly with canonical

A-form and even more poorly with canonical B-form duplexes

along both its entire 2–18 length (Figures S1A and S1D), as



Figure 2. Intermolecular Interactions in the

Structure of RsAgo Bound to gRNA and

tDNA

(A) Schematic listing of the intermolecular contacts

in the complex. Hydrogen-bonding, electrostatic

and hydrophobic or stacking interactions of pro-

tein residues with the bases (rectangles), back-

bone sugar (pentagons), and phosphate (circles)

groups of the gRNA (in red) and tDNA (in blue) are

indicated. Protein residues are color-coded by

domains.

(B) Intermolecular contacts between the gRNA (in

red) and tDNA (in blue) strands with residues within

the Ago protein in the complex.

(C) Positioning of the target strand in the putative

catalytic pocket of the PIWI domain in the com-

plex. The putative catalytic residues Gly529,

Glu569, His605, and Glu746 are labeled and

shown in stick representation. The G90-T100-C110

segment of the target strand is also labeled. Note

the positioning of Glu569 in the ‘‘unplugged’’

conformation.
well over the 2–11 segment (Figures S1B and S1E) and the

12–18 (Figures S1C and S1F) segment. Thus, it appears that

the RsAgo scaffold distorts the bound gRNA-tDNA away from

canonical A- and B-helical duplex conformations. We have

also compared the structures of individual strands to either

A- or B-form (Figures S1G–S1L). Both the gRNA and the

tDNA strands of the gRNA-tDNA duplex superimpose poorly

with either canonical A-form or B-form (Figures S1G–S1L)

segments. We conclude that the gRNA-tDNA duplex is not an

A- and B-hybrid form.

Positioning of the 30 End of the Guide Strand in the
Ternary RsAgo Complex
Earlier studies had demonstrated that the 30 end of RNA guide in

binary Ago complexes containing bound guide strand (Elkayam

et al., 2012; Schirle and MacRae, 2012; Wang et al., 2008) or

ternary Ago complexes containing short target strands (Schirle

et al., 2014; Sheng et al., 2014; Wang et al., 2009) are positioned

in a binding pocket formed by the PAZ domain. The isolated PAZ

domainwas also shown to interact with RNA30 ends (Lingel et al.,
2004; Ma et al., 2004). By contrast, the 30 end of the guide is not

positioned in the PAZpocket in theRsAgo ternary complex and is

indeed far from thePAZpocket (Figures 1C and 1D), similar to the

structure of ternary complexes of TtAgo containing R15-bp

guide-target duplex (Sheng et al., 2014; Wang et al., 2009). This

conformational transition—release of gRNA 30 end from its bind-

ing pocket in the PAZ domain—likely accompanies formation of

the extended guide-target base pairing during target recognition.

In addition, alignment of the PAZ domains of RsAgo, TtAgo,
C

human Ago1, and human Dicer demon-

strates that RsAgo lacks two (labeled 2

and 3) out of four segments that contribute

to the PAZ pocket (Figure S2A). Thus,

the PAZ domain of RsAgo is smaller in

size than the RNA-bound domains of

TtAgo, human Ago1, and human Dicer
(Figure S2B), and may not form a 30 end RNA-binding pocket

even in binary complexes with gRNAs.

Positioning of Putative Catalytic Pocket Residues in the
Ternary RsAgo Complex
The catalytic pockets of cleavage competent Agos contain

a catalytic tetrad within the PIWI domain that is primarily

composed of acidic residues (Nakanishi et al., 2012). RsAgo

contains substitutions of two out of four acidic catalytic residues

of the DEDX tetrad (Gly529, Glu569, His605, and Glu746 as

shown in Figures 2C and S3A). Previously, catalytically inactive

human Ago1 protein was shown to be activated by restoration

of a mutated tetrad residue (Faehnle et al., 2013; Nakanishi

et al., 2013). To reveal whether the catalytically competent state

may be also reconstituted in the RsAgo complex, we obtained a

variant of RsAgo with the complete catalytic tetrad containing

corresponding residues from TtAgo (substitutions G529D,

A604R, H605D, and E746D; Figure S3A) and analyzed its cleav-

age activity. We detected no cleavage of different DNA targets

(shown in Figure S4), even after prolonged incubations in

different buffer solutions (Figure S3B), suggesting that additional

changes might be necessary for correct positioning of amino

acid residues involved in catalysis.

In TtAgo, a key Glu residue swings into the catalytic pocket

during transition from a cleavage-incompetent (‘‘unplugged’’)

state in complex with guide DNA to a cleavage-competent

(‘‘plugged-in’’) state in the ternary complex with guide and

tDNAs (Sheng et al., 2014). A similar conformational change

is likely required for activation of catalysis by the eukaryotic
ell Reports 24, 453–462, July 10, 2018 455



Figure 3. Recognition Features of MID-PIWI Pockets in the Struc-

ture of RsAgo Bound to gRNA and tDNA and Analysis of RsAgo

Interactions with gRNA

(A and B) Positioning of the 50-pU1pU2 segment of the guide strand in theMID-

PIWI domain in the ternary complex. The guide RNA segment is shown in a

stick representation, while the protein is shown in a ribbon representation in (A)

and in a surface representation in (B). A bound Mg2+ is shown by a purple ball.

Hydrogen bonds are shown by dashed lines.

(C and D) Positioning of the A10-A20 segment of the target strand in the MID-

PIWI domain of the complex. The target DNA segment is shown in a stick

representation, while the protein is shown in a ribbon representation in (C) and

in a surface representation in (D).

(E) Sequences of gRNAs used in the binding experiments with wild-type (WT)

and R754A RsAgo variants. The apparent Kd values for each gRNA are shown

on the right; fold-changes relative to the WT RsAgo are indicated in bold.

Means and SDs from three to five independent experiments are shown.

(F) Binding of the 50-U and 50-A gRNA3 variants by WT and R754A RsAgo. In

each experiment, the binding is shown relative to the binding observed at the

maximal RsAgo concentration.
PIWI-clade SIWI protein (Matsumoto et al., 2016). Plugged-in

states are also observed in all available eukaryotic Ago2 com-

plexes (Schirle et al., 2014). In contrast, RsAgo adopts an un-

plugged conformation even in the ternary complex with tDNA,

with Glu569 positioned outside the catalytic pocket (Figure

2C), thus probably explaining the lack of its catalytic activity

(see also Miyoshi et al., 2016).
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Positioning of the Disrupted First RNA-DNA Base Pair in
the Ternary RsAgo Complex
Similar to previously published structures of RsAgo (Miyoshi

et al., 2016) and TtAgo (Sheng et al., 2014; Swarts et al.,

2014a, 2017; Wang et al., 2009), the 50-phosphate of the guide

strand is positioned within theMID pocket and anchored in place

through a network of direct hydrogen bonds from amino acid

side chains originating from the MID (Tyr463, Lys467, Gln478,

and Lys506) domain (Figures 3A and 3B). Indeed, mutation of

Tyr463 and Lys467 residues make RsAgo unable to bind RNA

guides in vivo (Olovnikov et al., 2013) and in vitro (Miyoshi

et al., 2016). Furthermore, phosphates 1 and 3 of the U1-U2

step of the bound guide are coordinated to a bound Mg2+, which

in turn is bonded to the carboxylate of C-terminal Ago residue

Leu777 (Figures 3A and 3B). This makes RsAgo similar to the

PIWI-clade SIWI protein (Matsumoto et al., 2016) but distin-

guishes it from Ago-clade Agos (exemplified by hAgo2), in which

corresponding contacts are formed by a conserved lysine resi-

due (Elkayam et al., 2012; Schirle and MacRae, 2012).

In the ternary RsAgo complex, residues U1 on the gRNA

strand and A10 on the tDNA strand are both aligned and

anchored within their respective pockets. While residues

U2-A20 form a Watson-Crick pair, the U1-A10 pair is disrupted

by the splaying apart of the 1–2 step on the guide strand and

10–20 step on the target strand. Residue U1 in gRNA is specif-

ically recognized through hydrogen bonding of its N3 to the

backbone carbonyl of Ala454 and its C4 carbonyl to the side

chain of Arg754 (Figure 3A). The 50-pU1pU2 step is positioned

within a surface-accessible pocket (Figure 3B). On the partner

tDNA strand, the A10–A20 step is also splayed apart (Figures

3C and 3D), with the A10 base anchored within its own pocket

(Figures 2A and 3D) through hydrogen bonding of its 6-amino

group with the side chain of Tyr329 and its N3 with the side chain

of Gln689 (Figure 3C).

To explore the specificity of the first RNA-DNA base pair

recognition by RsAgo, we measured apparent dissociation con-

stants for the gRNA and tDNA binding using a filter binding assay

(see Experimental Procedures for details). In agreement with

published data (Miyoshi et al., 2016), 50-U-containing gRNAs

were bound by RsAgo with high affinity (Kd,app = 1.5–2 nM) (Fig-

ures 3E and 3F). Replacement of 50-U with C or A dramatically

decreased gRNA affinities (Kd,app = 300–400 nM). Alanine substi-

tution of residue Arg754 that forms a contact with the base of

50-U increased Kd,app for the binding of 50-U-gRNA molecules

�4- to 6-fold, but had much lower or no effect on the binding

of 50-C and 50-A gRNAs (Figures 3E and 3F). Thus, this residue

contributes to specific recognition of the first gRNA position by

RsAgo.

To reveal whether RsAgo has a preference for the adenine

at the 10 position of tDNA, we measured the interactions of

gRNA-loaded RsAgo with either fully complementary tDNA, or

tDNA variants containing substitutions of this residue (shown

in Figure S4). In these experiments, gRNA was first incubated

with a 2-fold molar excess of RsAgo, to prevent annealing of

free gRNA to tDNA, followed by titration of labeled tDNA with

increasing amounts of the gRNA-RsAgo complex. The apparent

Kd for binding of fully complementary tDNA determined in this

assay was an order of magnitude lower than the Kd for gRNA



Figure 4. Apparent Affinities of gRNA-Loaded RsAgo to tDNAs

Containing Mismatches at Various Positions

The plot shows apparent Kd values for the binding of complementary and

mismatched DNA targets, schematically shown below. The y axis is in the

logarithmic scale, and the red line indicates the 5-fold level of the Kd,app value

for fully complementary tDNA (1U-A0). The sequences of all oligonucleotides

with corresponding Kd values are shown in Figure S4. The data are means and

SDs from three to five independent measurements.
(0.13 versus 1.8 nM), demonstrating that the binary complex

of gRNA with RsAgo has a very high affinity for specific DNA tar-

gets. In agreement with previous reports (Miyoshi et al., 2016), no

significant DNA binding was observed in the absence of gRNA

(Kd > 1,000 nM).

Replacement of A10 in tDNA with either G, or C, or T measur-

ably decreased apparent tDNA affinity (2- to 2.5-fold increase in

the Kd,app values) (Figures 4 and S4). Furthermore, these substi-

tutions significantly decreased the maximal tDNA binding

observed at saturating gRNA-RsAgo concentrations (from

�70% for A10 tDNA to 15%–30% for the other three variants; Fig-

ure S5A), an observation further discussed in the next section.

Alanine substitution of residue Gln689, which forms a direct con-

tact with the base of A10, had only minor effects on tDNA binding

irrespective of the 10 nucleotide identity (Figure S5B), suggesting

that other residues contribute to the specific tDNA recognition.

Effects ofMispairing between Guide and Target Strands
on Target Recognition by RsAgo
To determine the effects of mismatches on target recognition by

RsAgo, we used a series of tDNAmolecules with substitutions at

different positions, starting from the first (10) to the last (180) nu-
cleotides of the corresponding gRNA (Figure S4). For positions

30 and 80, located in the proximal and distal parts of the seed

region, we analyzed several possible substitutions: A3,A30,
A8,A80, A8,G80, G8,A80, G8,T80, and also 2-nt bulges (A0-A0 or
T0-T0) between positions 30 and 40 in the tDNA strand. For posi-

tions from 110 to 180, outside of the seed region, we substituted

two nucleotides at once (e.g., 110–120, 130–140) (Figure S4). For

each tDNA, we measured its binding to RsAgo pre-loaded with

the same gRNA that was used for structural analysis, except

for the G8,A80 and G8,T80 pairs in which gRNA contained a sub-

stitution of G8 for A8.
Substitutions at most positions of the seed region significantly

decreased apparent target affinity (Figures 4 and S4). The

strongest effects were observed for positions 20, 30, 40, 60, and
80; mismatches at these positions (e.g., A3,A30, G8,A80) and
2-nt bulges (30+2A, 30+2T) increased the apparent Kd values for

tDNA binding 10-fold or more. The effects of mismatches at po-

sition 80 depended on the nucleotide substitution; the A8,G80,
G8,A80, and G8,T80 pairs were bound with greatly decreased

affinity while the A8,A80 mismatch only moderately affected

tDNA binding (Figure 4). Substitutions in tDNA outside of the

seed region, including C9,C90 and double mismatches at posi-

tions 110–120, 130–140, and 150–160, also strongly increased Kd,app

values, with only the last two nucleotides (170–180) being unim-

portant for binding. Thus, pairing both within and downstream

of the seed region in gRNA contributes to specific target recog-

nition by RsAgo.

Removal of extra nucleotides from either 50 or 30 DNA ends

(‘‘no 30’’ and ‘‘no 50’’ targets) did not decrease apparent tDNA

affinity to gRNA-loaded RsAgo. In contrast, increasing the length

of the 50 and 30 ends by 5-nt (‘‘long 50/30’’) decreased tDNA

affinity (Figures 4 and S4). Thus, additional DNA segments are

unlikely to contribute to target binding by RsAgo.

Certain changes in tDNA had a pronounced effect not only on

the apparent Kd values but also on themaximal fraction of bound

tDNA at saturating gRNA-RsAgo concentrations. While 70% of

the fully complementary tDNA was bound in these conditions,

the binding was decreased more than 2-fold for several tDNAs,

including substitutions of residues 10, 30, 40, and 90, and 2-nt

bulges between positions 30 and 40 (Figure S5A). This prompted

us to analyze formation of the ternary complexes by native gel

electrophoresis. Titration of fully complementary P32-labeled

tDNA strand (tDNA*) with preformed gRNA-RsAgo complex led

to the appearance of the lowmobility ternary complex, with small

amounts of free gRNA-tDNA* duplex (Figure 5A, left panel).

In contrast, titration of preformed gRNA-tDNA* duplex with free

RsAgo revealed essentially no ternary complex formation up to

300–1,000 nM RsAgo concentrations (Figure 5A, right panel).

Similarly, apparent Kd value for duplex binding measured by

the filter binding assay was >1,000 nM. Thus, RsAgo cannot

interact with preformed RNA-DNA hybrids. Interestingly, previ-

ously published gel shift experiments revealed ternary complex

formation only at high RsAgo concentrations (100 nM) (Miyoshi

et al., 2016), suggesting that they were performed under sub-

optimal conditions.

In the case of tDNA* containing a 2-nt bulge (3+2A0), only a

minor fraction of it was observed in the ternary complex, with a

majority found in the free gRNA-tDNA* duplex (Figure 5A, middle

panel), in agreement with the filter binding assay (Figures 4

and S4). The free gRNA-tDNA duplex could be formed either in

solution, as a result of incomplete gRNA binding to RsAgo, or

as a result of duplex dissociation from the ternary complex after

tDNA binding. To test which of these possibilities was more

likely, we performed gel shift experiments with labeled gRNA

strand (gRNA1*). Two competitor unlabeled gRNAs were used

to prevent re-binding of dissociated nucleic acids to RsAgo:

gRNA1 or unrelated gRNA4 that could not anneal to the tDNA

strand and would not interfere with the ternary complex forma-

tion (Figure S4).
Cell Reports 24, 453–462, July 10, 2018 457



Figure 5. Analysis of Ternary Complex For-

mation by Native Gel Electrophoresis

(A) Titration of labeled tDNA with increasing

amounts of the preformed gRNA-RsAgo complex

(1:2 ratio, RsAgo concentrations are shown at the

top) for either fully complementary (‘‘Comp,’’ left)

or 3+2A0 (middle) targets. Titration of preformed

gRNA-tDNA duplex with RsAgo (right).

(B) Formation of binary and ternary complexes

containing labeled gRNA1*. The components were

mixed as described in the text; gRNA1 and gRNA4

are indicated as ‘‘1’’ and ‘‘4.’’ The arrowheads

indicate the order of addition of the labeled and unlabeled competitor gRNAs; the competitor gRNAs were added either before or 5min after mixing of RsAgo and

gRNA1*, followed by the addition of tDNA (when indicated) and incubation for 20min at 30�C. The concentrations of gRNA1*, competitor gRNAs, and RsAgo were

20 nM, 1 mM, and 40 nM; tDNA was added to 40 nM. Positions of free nucleic acids and binary and ternary complexes are shown on the sides of the gels. The

labeled components in each experiment are indicated with asterisks.
Free gRNA1* was efficiently bound by RsAgo, when mixed at

the 1:2 ratio (Figure 5B, lane 2). Addition of excess phosphory-

lated unlabeled gRNA1 or gRNA4 prevented binary complex

formation when the competitors were added before gRNA1* (Fig-

ure 5B, lanes 3 and 4). Competitor gRNAs had only minor effect

on the preformed binary complex (lanes 5 and 6), suggesting

that gRNA1* does not dissociate during the course of experiment

(t1/2 > 20 min). When fully complementary tDNA was added to

the binary complex, the ternary complex was formed with high

efficiency, and no release of gRNA1* was observed (lane 7).

The presence of excess competitor gRNA4 (added after binary

complex formation) did not affect ternary complex formation,

suggesting that the complex is stable during measurements

(lane 8). In contrast, when bulged tDNA (3+2A0) was added to

the binary complex, a majority of gRNA1* was observed in free

duplex with tDNA, while only a minor part of it remained in the

binary and ternary complexes (lane 9). The same pattern was

observed in the presence of competitor gRNA4, suggesting

that once released, the duplex cannot rebind RsAgo even in

the absence of competitor (compare lanes 9 and 10).

These observations favor the scenario in which mismatched

tDNA is first bound by the binary gRNA-RsAgo complex to

form the ternary complex, followed by dissociation of the

gRNA-tDNA duplex. To further explore this mechanism, we

analyzed the kinetics of dissociation of ternary complexes after

the addition of tDNA (Figure S6). While fully complementary

tDNA formed stable ternary complex, gRNA1*-tDNA duplexes

were gradually released from the complexes with mismatches

or bulges in the seed region (1U,T0, 3A,A0, 3+2A0). At the same

time, tDNAs with mismatches at positions 80 and 150–160 formed

almost as stable complexes as the fully complementary target

(Figure S6).

Alignment of Non-canonical Pairs and Bulges within the
Seed Segment of Ternary RsAgo Complexes
To get structural insight into the effects of mismatches between

gRNA and tDNA on their interactions with RsAgo, we solved the

structures of its ternary complexes with non-canonical pairs at

positions 30 (A3,A30; Figures 6A and 6B) and 80 (A8,A80,
A8,G80, and G8,A80; Figures 6C and 6D, 6E and 6F, and 6G

and 6H, respectively) (X-ray statistics in Tables S2 and S3).

Notably, the maximal resolution of some of these structures
458 Cell Reports 24, 453–462, July 10, 2018
(1.81–1.85 Å for A,A non-canonical pairs) even exceeded

the resolution of the complex containing fully complementary

gRNA-tDNA.

In the case of both A,A mismatches at positions 30 and 80, we

observe formation of a cisWatson-Crick A3/A8–Hoogsteen A30/
A80 non-canonical A,A0 pairs stabilized by a single hydrogen

bond (Figures 6B and 6D). The adenine on the gRNA strand

(A3 and A8) adopts an anti conformation, while adenine on the

target strand (A30 and A80) adopts a syn conformation (Figures

6B and 6D). A comparison between the A,A0-containing (in color)

and A,T0-containing (in silver) ternary RsAgo complexes shows

minimal localized distortions for both the A3,A30 (Figures S7A

and S7B) and A8,A80 (Figures S7C and S7D) non-canonical

pairs, without disruption of the flanking Watson-Crick pairs.

In the case of A,G0 (Figure 6F) and G,A0 (Figure 6H) non-ca-

nonical pairs at position 8,80, the purine on the gRNA strand

adopts an anti conformation, while the purine on the tDNA strand

adopts a syn conformation. Thus, for the A8,G80 non-canonical
pair, the alignment is cis Watson-Crick A8–Hoogsteen G80

stabilized by one hydrogen bond (Figure 6F), while for the

G8,A80 non-canonical pair the alignment is cis Watson-Crick

G8–Hoogsteen A80 stabilized by two hydrogen bonds (Fig-

ure 6H). Once again the distortions are localized to the mismatch

site for both the A8,G80 (Figures S7E and S7F) and G8,A80 (Fig-
ures S7G and S7H) non-canonical pairs, with minimal disruption

of the flanking Watson-Crick pairs.

Finally, we also solved the structures of ternary RsAgo com-

plexes with dual bulges, either A0-A0 (Figure 7A) or T0-T0 (Fig-
ure 7C) between positions 30 and 40 within the seed segment of

the tDNA strand (X-ray statistics in Table S4). In each case, either

the A0-A0 bulge (Figure 7B) or the T0-T0 bulge (Figure 7D) loops out
of the duplex, while retaining flanking Watson-Crick pairs. The

backbone of the looped-out segment can be traced in both

bulges (Figures 7B and 7D). By contrast, for the A0-A0 bulge,
the first looped-out A is disordered (Figure 7B), while for the

T0-T0 bulge, both T bases are disordered (Figure 7D).

DISCUSSION

Our structural and biochemical studies report on formation of

ternary RsAgo complex with the gRNA and tDNA strands. We

find that helical imperfections between gRNA and tDNA can be



Figure 6. Pairing Alignments of A,A0, A,G0,
and G,A0 Non-canonical Pairs within the

Seed Segment in the Complex of RsAgo

with gRNA and tDNA

(A) Sequence alignment of the gRNA-tDNA

showing the position of the A3,A30 non-canonical
pair.

(B) Pairing alignment of the cis Watson-Crick

A3(anti),Hoogsteen A30(syn) pair in the ternary

complex. The 2Fo-Fc omit electron density map is

contoured at 1.0s.

(C) Sequence alignment of the gRNA-tDNA

showing the position of the A8,A80 non-canonical
pair.

(D) Pairing alignment of the cis Watson-Crick

A8(anti),Hoogsteen A80(syn) pair in the ternary

complex. The 2Fo-Fc omit electron density map is

contoured at 1.0s.

(E) Sequence alignment of the gRNA-tDNA

showing the position of the A8,G80 non-canonical
pair.

(F) Pairing alignment of the cis Watson-Crick

A8(anti),Hoogsteen G80(syn) pair in the ternary

complex. The 2Fo-Fc omit electron density map is

contoured at 1.0s.

(G) Sequence alignment of the gRNA-tDNA

showing the position of the G8,A80 non-canonical
pair.

(H) Pairing alignment of the cis Watson-Crick

G8(anti),Hoogsteen A80(syn) pair in the ternary

complex. The 2Fo-Fc omit electron density map is

contoured at 1.0s.
tolerated in the ternary complex. However, they significantly

reduce the apparent affinity of the RsAgo-gRNA complex to

the tDNA, thus providing a molecular mechanism for highly spe-

cific target recognition. Furthermore, we found that the interac-

tion with an imperfect target causes dissociation of gRNA from

the RsAgo protein. These features make RsAgo and other pAgos

attractive as a potential tool for highly specific genome manipu-

lation. Below, we briefly discuss the interactions that contribute

to specific recognition of the gRNA and tDNA by RsAgo and

implications of these features for functional Ago activities.

Anchoring and Recognition of the Disrupted First Guide-
Target Base Pair in the Ternary RsAgo Complex
The U1 base of gRNA in the ternary complex is stacked over a

Tyr ring, with the 50-phosphate positioned in the MID-PIWI

pocket and coordinated to a bound Mg2+ cation, and the

C-terminal carboxylate of RsAgo inserted into this pocket (Fig-

ure 3A). Similar features were observed previously in another

RsAgo structure (Miyoshi et al., 2016), as well as in TtAgo (Sheng

et al., 2014; Wang et al., 2008), archaeal Ago (Ma et al., 2005;

Parker et al., 2005), and eukaryotic PIWI-clade Ago (Matsumoto

et al., 2016) complexes.

Previous studies established that gRNA bound to RsAgo

exhibited a strong bias for uracil at position 1 (Miyoshi et al.,

2016; Olovnikov et al., 2013). This specificity is partially ex-

plained by formation of a specific intermolecular hydrogen

bonding between the carbonyl group at position 4 of U1 and

the Arg754 side chain in the RsAgo ternary complex (Figures

2A, 3A, 3E, and 3F). Similarly, sequence-specific recognition of
the 50-base in the guide strandwere shown for several eukaryotic

Agos (Boland et al., 2010; Frank et al., 2010; Matsumoto et al.,

2016; Schirle and MacRae, 2012; Wang et al., 2009; Mi et al.,

2008). On the contrary, TtAgo was proposed to have little spec-

ificity for the 50-base binding (Swarts et al., 2014a, 2017).

tDNAs bound to RsAgo in vivo exhibited a strong bias for

adenine at the position opposite 50-U on the gRNA strand (Olov-

nikov et al., 2013). While this could be a mere consequence of

their biogenesis from complementary genomic targets, replace-

ment of A10 with other nucleotides decreased tDNA binding,

even though gRNA and tDNA are not paired at this position (Fig-

ures 4 and S5A). The interactions of RsAgo with A10 on tDNA

seem to be important for stabilization of the ternary complex,

because replacements of this residue resulted in dissociation

of the gRNA-tDNA duplex (Figures S5A and S6). We observe

that A10 in the RsAgo ternary complex is anchored within

its own pocket (Figure 3D), with its 6-amino group forming

specific intermolecular hydrogen bonds with the hydroxyl group

of a Tyr residue (Figure 3C), possibly explaining the observed

specificity.

Specific recognition of the A10 residue in the target RNA strand

was previously demonstrated for human Ago2 (Schirle et al.,

2014), and a similar pocket was potentially identified in the

SIWI protein (Matsumoto et al., 2016). By contrast, TtAgo prefer-

entially binds G10 in the target strand, which is also stabilized by

specific hydrogen bonding (Sheng et al., 2014; Swarts et al.,

2017). Thus, the ability to recognize the target nucleotide at po-

sition 10 may be an ancient feature of Ago proteins present in the

common ancestor of prokaryotic and eukaryotic lineages.
Cell Reports 24, 453–462, July 10, 2018 459



Figure 7. Looping Out of A-A and T-T

Bulges on the DNA Target Strand within

the Seed Segment in the Complex of RsAgo

with gRNA and tDNA

(A) Sequence of the gRNA-tDNA showing the po-

sition of the A0(+1)-A0(+2) bulge between residues 30

and 40 on the tDNA strand.

(B) Structure of the gRNA-tDNA duplex in the

vicinity of the looped out A0(+1)-A0(+2) bulge in the

ternary complex. The 2Fo-Fc electron density is

contoured at 1.0s.

(C) Sequence of the gRNA-tDNA showing the

position of the T0(+1)-T0 (+2) bulge between resi-

dues 30 and 40 on the tDNA strand.

(D) Structure of the gRNA-tDNA duplex in the

vicinity of the looped out T0(+1)-T0(+2) bulge in the

ternary complex. The 2Fo-Fc electron density is

contoured at 1.0s.
Accommodation of Non-canonical Pairs and Bulges
within Seed Segment of Ternary RsAgo Complexes
In this work, we reveal how a subset of non-canonical pairs

can be accommodated within the RsAgo-bound RNA-DNA het-

eroduplex. We observe the same cis Watson-Crick–Hoogsteen

A,A0 non-canonical pairs at positions 3,30 (Figure 6B) and 8,80

(Figure 6D) in the RsAgo ternary complex. In each case, the A

on the gRNA strand adopts an anti alignment, while the A0 on
the tDNA strand adopts a syn alignment. The observed align-

ment is stabilized by only one N-H,,N hydrogen bond and a po-

tential non-linear C-H,,N hydrogen bond. To our knowledge this

type of cisWatson-Crick-Hoogsteen A,A non-canonical pair has

not been reported previously, with most examples of A,A non-

canonical pairs stabilized by two N-H,,N hydrogen bonds

(Leontis et al., 2002). It is conceivable that the Ago scaffold re-

stricts alternate A,A pairing alignments in the RsAgo ternary

complex.

We observe cis Watson-Crick–Hoogsteen A8(anti),G80(syn)
(Figure 6F) and cis Watson-Crick–Hoogsteen G8(anti),A80(syn)
(Figure 6H) pairing for A,G0 and G,A0 non-canonical pairs at

position 8,80 in the ternary RsAgo complex. The first pair is sta-

bilized by oneN-H,,Nhydrogen bond andwould require proton-

ation of A8 to form a second N-H,,N hydrogen bond (Gao and

Patel, 1988; Leontis et al., 2002). The second pair is stabilized

by two N-H,,N hydrogen bonds, a feature observed for G,A
non-canonical pairs reported previously (Hunter et al., 1986;

Leontis et al., 2002). Similarly to the A,A non-canonical pairs,

the base on the gRNA strand adopts an anti alignment, while

the base on the tDNA strand adopts a syn alignment (Figures

6F and 6H) for both A8,G80 and G8,A80 pairs. This may reflect

the greater flexibility to adopt a syn alignment within the target

strand of the seed segment (Figures 6B, 6D, 6F, and 6H), given

that the sugar-phosphate backbone of this segment is not

involved in intermolecular recognition (Figure 2A).

Systematic studies of nucleic acid bulges have shown that

they can either stack into or alternately loop out of the duplex

dependent on flanking sequence, the nature of tertiary interac-

tions, and the role of cations (Hermann and Patel, 2000). In the

present study, both bases of A0-A0 and T0-T0 bulges positioned

between 30 and 40 nucleotides on the tDNA strand were found
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to loop out of the duplex in the ternary RsAgo complexes (Fig-

ures 7B and 7D). Although we can monitor the sugar-phosphate

backbone at the bulge site, electron density for the looped-out

bases was not observed except for one adenine residue (Figures

7B and 7D). There is minimal distortion in the duplex segment

flanking the dual looped-out bases at the bulge site in the ternary

RsAgo complexes. This contrasts recently reported effects of

single-nucleotide bulges at positions 60 and 70 of the target

strand in ternary complexes of TtAgo, which were shown to

significantly affect the duplex conformation and its interactions

with the protein (Sheng et al., 2017). This result highlights

the ability of nucleic acid duplexes to accommodate helical

imperfections without significant distortion of flanking base

pair segments, depending on the position of the bulge relative

to the nucleic acid/protein interface.

Implications for Functional Activities of Ago Proteins
Despite minimal perturbations of the overall ternary complex

structure, distortions of the gRNA-tDNA interactions at different

heteroduplex positions have significant effects on tDNA binding.

In particular, mismatches or bulges at positions 20, 30, 40, 60, or 80

strongly impair target binding (Figure 4), suggesting that correct

guide-target alignment within the seed region play a critical role

in the ternary complex formation. This is likely explained by the

absence of protein-mediated interactions with the tDNA in the

seed region (Figure 2A).

Previous studies of eukaryotic Agos demonstrated that mis-

matches in the seed region between siRNAs and miRNAs and

their target mRNAs also have deleterious effects on the target

repression in vivo and its cleavage in vitro (Bartel, 2009; Dahlgren

et al., 2008; Du et al., 2005; Kloosterman et al., 2004; Salomon

et al., 2015; Wee et al., 2012). In addition, a 30-supplementary

site in miRNAs was shown to contribute to the target mRNA

recognition by eukaryotic Ago complexes (Bartel, 2009; Wee

et al., 2012). Similarly, mismatches at several positions down-

stream of the seed region significantly reduced tDNA binding

by the gRNA-RsAgo complex, suggesting that the 30-site con-

tributes to the tDNA recognition by RsAgo.

We found that mismatches between the gRNA and the tDNA

can significantly destabilize the ternary complex, thus leading



to its disassembly. In particular, mismatches and bulges at

positions 30 and 40 in the seed region severely decreased the

efficiency of ternary complex formation even at high RsAgo con-

centrations (Figures 5A and S5A). We demonstrated that this is

likely explained by dissociation of the mismatched gRNA-tDNA

heteroduplex from RsAgo (Figures 5B and S6). These experi-

ments suggested an unexpected mechanism of gRNA release

from RsAgo, triggered by binding of imperfect DNA targets.

Intriguingly, recent analysis of human Ago2 interactions with

non-canonical mRNA targets demonstrated that mismatches

in the seed region of miRNAs resulted in their trimming and un-

loading from Ago2 in cell lysates (Park et al., 2017). Therefore,

the mechanism for unloading of RNA guides from Ago proteins

may be conserved in evolution and may facilitate guide ex-

change and Ago recycling, thus allowing fast re-programming

of the interference systems toward various genetic targets.

Highly specific recognition of tDNA by RsAgo makes it and

other pAgos attractive candidates to use as a potential tool

for genome manipulation that will be orthogonal to widely used

CRISPR/Cas9-genome editing systems. While RsAgo is inactive

as an endonuclease and our attempts to restore its catalytic

activity by point mutagenesis were unsuccessful (Figure S3),

pAgos from other species have guide-dependent endonuclease

activity both in vitro and in vivo (Kaya et al., 2016; Swarts et al.,

2014a, 2015; Wang et al., 2008). In contrast to CRISPR/

Cas9, pAgo-gRNA complex can potentially target virtually any

sequence of interest as efficient recognition of the target does

not require the presence of Protospacer adjacent motif (PAM),

a short sequence following the DNA sequence targeted by

Cas9. However, the use of pAgos as a genetic tool will depend

on the development of approaches that would allow efficient

formation of their binary and ternary complexes with guide

nucleic acids inside eukaryotic cells, which will be an important

goal for future studies.

EXPERIMENTAL PROCEDURES

Protein Expression and Purification

63His-tagged full-length R. sphaeroides Ago (RsAgo) gene was inserted

into pET-30a expression vector and transformed into E. coli strain BL21

(DE3). For detailed purification protocol, see Supplemental Experimental

Procedures.

Crystallization, Data Collection, and Structure Determination

Diffraction data were collected at 100 K at beamline NE-CAT 24-IDC at the

Advanced Photon Source (APS), Argonne National Laboratory. All data were

processed with the HKL2000 suite (Otwinowski and Minor, 1997). Data-

processing statistics are summarized in Tables S1–S4. See Supplemental

Experimental Procedures for details.

Analysis of RsAgo Interactions with gRNA and tDNA

All RNA and DNA oligonucleotides used for analysis of RsAgo-nucleic acid

interactions are shown in Figure S4. Determination of apparent Kd values

was performed using nitrocellulose filtration method; binary and ternary com-

plexes were analyzed by native gel electrophoresis; for detailed protocols, see

Supplemental Experimental Procedures.

DATA AND SOFTWARE AVAILABILITY

The accession numbers for the ternary RsAgo complexes reported in this

study are PDB: 6D8P (ternary RsAgo complex with fully paired gRNA-target
DNA duplex), 6D92 (ternary RsAgo complex containing A3,A30 pair), 6D95
(ternary RsAgo complex containing A8,A80 pair), 6D9K (ternary RsAgo

complex containing A8,G80 pair), 6D9L (ternary RsAgo complex containing

G8,A80 pair), 6D8A (ternary RsAgo complex containing A-A bulge), and

6D8F (ternary RsAgo complex containing T-T bulge).

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures,

seven figures, and four tables and can be found with this article online at

https://doi.org/10.1016/j.celrep.2018.06.021.
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