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Abstract

Adult tissue-specific stem cells are essential for homeostatic tissue maintenance and key to 

regeneration during injury repair or disease. Many critical stem cell functions rely on the presence 

of well-timed cues from the microenvironment or niche, which includes a diverse range of 

components, including neuronal, circulating and extracellular matrix inputs as well as an array of 

neighboring niche cells directly interacting with the stem cells. However, studies of stem cells and 

their niche have been challenging due to the complexity of adult stem cell functions, their intrinsic 

controls and the multiple regulatory niche components. Here, we review recent major advances in 

our understanding of the complex interplay between stem cells and their niche that were enabled 

by the tremendous technological leaps in single-cell transcriptome analyses, 3D in-vitro cultures 

and 4D in-vivo microscopy of stem cell niches.

GRAPHICAL ABSTARCT

Keywords

Stem cells; stem cell niche; hematopoiesis; hair follicle; intestine; single cell transcriptomics; 
single cell RNA sequencing; organoids; live imaging

Corresponding author: Rendl, Michael (michael.rendl@mssm.edu). 

Declarations of interest: none

Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our 
customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of 
the resulting proof before it is published in its final citable form. Please note that during the production process errors may be 
discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

HHS Public Access
Author manuscript
Curr Opin Cell Biol. Author manuscript; available in PMC 2019 December 01.

Published in final edited form as:
Curr Opin Cell Biol. 2018 December ; 55: 87–95. doi:10.1016/j.ceb.2018.06.012.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Introduction

Each day, an adult human generates billions of new cells to replace those that are lost 

naturally or by damage. At the top of the production hierarchies are adult stem cells (SCs), 

defined by their abilities for long-term self-renewal and multipotent differentiation into 

several different lineage-restricted cell types. The first definitive proof of the existence of 

adult SCs came from work by Till, McCulloch and others in the 1960s demonstrating the 

existence of a hematopoietic SC (HSC) pool responsible for maintaining the entire blood-

lineage throughout life [1–3]. Since then, multiple adult SCs have been discovered in several 

tissues and organs, such as the intestine [4,5], brain [6,7], mammary gland [8,9], and skin 

[10] including hair follicles [11–13].

While many of the special characteristics of SCs are intrinsic, no completely autonomous 

adult SC has been discovered. Rather, all known adult SCs rely to a large extent for proper 

function on external signals from its surroundings, termed the SC niche [14–16]. The niche 

communicates vital information regarding the regenerative needs of the tissue, the 

importance of which is exemplified by the detrimental effects of deviations from the crucial 

loss/production balance, as defects of SCs and their niches have been implicated in multiple 

human disorders and diseases [17].

The HSC sits atop a hierarchy of fate-committed multipotent progenitors (MPP) and 

terminally differentiated cells of the entire blood-lineage [18–20]. Self-renewal of HSCs and 

lineage-committed progenitors and their differentiation towards diverse blood lineages are 

regulated by multiple niche inputs from non-hematopoietic cell types, such as osteoblasts 

[21,22], peri-sinusoidal [23,24] and peri-arteriolar stromal cells [25], and endothelial cells 

[23,26], as well as from hematopoietic lineages, such as macrophages [27–29] and 

megakaryocytes [30].

Hair follicle SCs (HFSC) and downstream progenitors give rise to seven cell lineages that 

make up the hair shaft and its supporting channel during hair growth, a process that is 

interrupted by a naturally-occurring hair cycle of cyclical bouts of follicle destruction, a 

resting phase of relative quiescence, and re-growth [11–13,31]. Distinct niche signals 

controlling the balance of SC rest and activation are thought to emanate from essential niche 

components that include specialized mesenchymal dermal papilla cells [32–35], direct SC 

progeny of multipotent progenitors [36,37**] and neighboring nerves [38], as well as 

longer-range inputs from fibroblasts deep in the dermis [39], cells of the dermal adipocyte-

lineage [40], and immune cells [41–43].

Intestinal SCs (ISC) residing in the intestinal crypt base constantly replenish the villus 

epithelium of rapidly turned-over enterocytes, goblet and enteroendocrine cells, and other 

SC progeny that are lost by conveyor belt-like upward displacement [4,5,44] The intestinal 

regulatory niche contains pericryptal mesenchymal fibroblasts [45,46], myofibroblasts and 

smooth muscle cells [47,48], as well as gut-lumen micro-biota [49,50]. Paneth cells, the only 

differentiated SC progeny that migrate to the crypt base, also provide regulatory niche 

signals to ISCs [51–53].
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In this review we highlight recent major discoveries into the SC regulation by the niche that 

were made possible by groundbreaking new technological innovations of single cell-level 

profiling, complex cell cultures and organoids, and major advances in light microscopy 

(Figure 1). As we are not able to cover the entire extensive body of new knowledge gained in 

the SC field within the past few years, we refer to excellent recent reviews containing 

comprehensive updates in several SC niche systems [54–58].

Revealing complexity: single-cell profiling of organs

Precise regulation of gene expression in SCs and their niche is paramount for executing the 

molecular programs of SC quiescence, self-renewal and lineage differentiation. Specific sets 

of expressed genes and epigenetic configurations underlie functional distinctions between 

different cell types within complex tissues, including SCs and the cellular niche components. 

Since large-scale transcriptome analysis became technically feasible with the establishment 

of microarrays in Arabidopsis [59], it has been used with great impact as a window into SC 

and niche-specific properties and as a basis for discovering targets for functional studies in 

multiple SC niche systems [11,12,60–62]. Since then, technologies committed to monitoring 

the transcriptome of cells, as surrogate for protein expression, have flourished. RNA-

sequencing (RNA-seq) was established in rapid succession in Arabidopsis [63], yeast [64] 

and mammalian cells [65] that surveys mRNA content in a manner that is relatively 

unbiased, when compared to microarrays, and with superior sensitivity [65,66], and was 

quickly utilized to analyze transcriptional patterns in mammalian cells, including SCs [67–

69]. Purification of SCs and the diverse cell-types of their niche through cell sorting for 

transcriptomic analysis of bulk populations by RNA-seq enabled sensitive detection of gene 

expression, revealing their molecular identities with superior resolution and identifying the 

expression of ligand-receptor pairs between the SCs and their niche [70*,71]. While the 

sensitivity of this approach provides highly detailed molecular descriptions of the cell-types 

of interest, the data cannot resolve subtle heterogeneity within populations and detect the 

existence of rare sub-types. Immunofluorescence, flow cytometry, and mass cytometry [72] 

can enable deeper investigation of heterogeneity by interrogating single cells but are often 

limited by availability of detectors and/or antibodies.

With the advent of single-cell transcriptome analysis the transcriptional profiling power of 

RNA-seq can be combined with the ability to interrogate single cells [73]. Single-cell RNA-

sequencing (scRNA-seq) and developed analysis algorithms that compress high-dimensional 

data into two or three dimensions, like t-stochastic neighbor embedding [74] or principle 

components analysis, allow for efficient identification of heterogenous cell subtypes. In 

addition, pseudotime [75] and FatelD [76] algorithms enable prediction of differentiation 

trajectories and reveal step-wise transcriptional changes as cell fates are determined. As a 

result, SCs, niche cells and other cell types previously considered as relatively homogenous 

have been shown to be remarkably complex and heterogenous, pointing to a diversity of 

unique cellular functions and processes. In the epidermis and hair follicle, pseudotime and 

pseudospace, a closely related algorithm predictive of spatial localization, were used in 

tandem to construct a map of HFSC differentiation and discover changes in expression of 

key signaling, extracellular matrix, and cell adhesion components [77]. A more recent study 

by Fuchs and colleagues identified heterogeneity amongst HF progenitors, and cognate 
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heterogeneity in the dermal papilla, forming “micro-niches” along the epithelial-

mesenchymal interface [37**]. Similar efforts have enabled the discovery of new, rare cell 

types in both intestinal organoids and the endogenous tissue, as well as heterogeneity 

amongst ISCs [78,79**]. Other studies have combined scRNA-seq with in-vivo and in-vitro 
observations of cells, to link transcriptome data with SC quiescence. Unique molecular 

profiles of isolated single HSCs and progenitors were associated with divisional history in 

culture, and identified niche components necessary for maintenance of dormancy [80*]. 

Additional scRNA-seq studies to identify cell-intrinsic factors regulating HSC quiescence 

revealed retinoic acid signaling as crucial for dormancy transcriptional programs [81]. 

Heterogeneity amongst niche components revealed the differential capacity to maintain adult 

SCs. Stromal osteolineage cells co-transplanted with HSCs/progenitors revealed distinct 

transcriptional signatures of these cells proximal and distal to engrafted HSCs/progenitors, 

and identified novel niche factors regulating HSC quiescence [82*]. Overall, scRNA-seq has 

revealed previously unknown complex spatial and temporal heterogeneity of both SCs and 

niche components and promises future discovery of key effectors of SC quiescence, 

maintenance and differentiation, as well as additions to the wide array of niche cell types 

and functions.

Modeling complexity: 2D co-cultures and 3D tissue-recapitulating 

organoids

Two-dimensional flat cell culture systems have long been used to model the cell 

relationships within tissues, while enabling relatively straightforward experimental 

manipulation. The simplicity of 2D cultures enables functional interrogation of identified 

targets - including those from scRNA-seq studies - in the SC niche for quiescence and 

differentiation programs. Critical niche components for maintaining murine HSCs have been 

identified in 2D culture using engineered hydrogel microwells that displayed scRNA-seq-

identified adhesion receptors JamC and Esam [80*]. In similar assays, differentiation of T-

lymphocytes from both murine and human HSCs was regulated by fibronectin-immobilized 

VCAM-1 and Delta-like-4 [83].

Whereas flat cultures lack the cellular and spatial complexity of tissues, three-dimensional 

cultures have made great strides to recapitulate elements of in-vivo spatial and structural 

organization by generating 3D structures out of biomaterials or by seeding cells within them. 

Seeded murine or human mesenchymal SCs onto 3D silk scaffolds generated a model for 

bone marrow adipose tissue (BMAT) and its bidirectional relationship with myeloma cell 

lines and for exploring BMAT-associated homeostatic and disease processes in the bone 

marrow [84*]. Another recent study showed that 3D epidermal and dermal clusters from 

young mouse back skin had the ability to self-organize and induce hair follicle formation. 

This capacity was lost in 3D clusters from old skin but could be rescued by addition of 

matrix metalloproteinases and other cytokines to the culture [85*].

While 3D cultures require artificial engineering, organoids, which can be generated from a 

single pluripotent or adult SC, have inherent self-organizing capabilities - reflective of in-
vivo cell rearrangement - thus enabling simultaneous study of structure and function [86]. 
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Organoids have great utility in screening genes and drug compounds but have also been used 

extensively in evaluating the “stemness” of adult SCs. Early work showed that mouse and 

human mammary epithelial SCs are capable of forming spheroids in culture, permitting 

efficient mammosphere production [87,88]. Many other organ systems have since 

established organoid protocols, including brain organoids derived from mouse and human 

induced pluripotent SCs [89,90]. A protocol for generating murine intestinal organoids was 

first described by the Clevers lab, in which a single ISC could differentiate into distinct 

crypt-villi structures of solely epithelial lineages [91]. Intestinal organoids have since been 

used to study many aspects of ISC and niche biology, utilizing both murine and human 

organoid systems, including coordinate metabolic requirements of ISCs and differentiated 

progeny [92*] and heterogeneity of differentiation programs [93]. Gene manipulation, using 

CRISPR, has also been effectively utilized in intestinal organoids; multigenic knock-outs of 

Wnt components in organoids demonstrated their requirement for organoid maintenance 

[94], and deletions of DNA-repair-associated genes were made in ISCs to identify which of 

these genes can recapitulate mutational signatures often found in human color cancers [95]. 

Supplementation of intestinal epithelial organoids with niche components mimicked 

elements of in-vivo SC interactions with the niche; addition of intestinal stromal cells to 

intestinal organoid cultures has elucidated key secreted factors from the gut mesenchyme for 

SC maintenance [96*]. Recently, the Koehler lab defined a protocol for generating murine 

skin organoids from pluripotent SCs, comprising of both epithelial and mesenchymal cell 

types, capable of making hair, sebaceous glands, and other accessory structures [97**]. In 

this system, HFSC precursors co-develop with dermal papillae niche precursors, reminiscent 

of in-vivo HF morphogenesis. While starting as a system to evaluate SC characteristics, 

organoid protocols have been adapted to tractably explore complex intercellular 

relationships, including SC interactions with their niche.

Observing complexity: advances in in-situ, intravital and ex-vivo imaging

New techniques in light microscopy have begun to reveal the 3D spatial complexities of SC 

niches to complement the heterogeneity and rare populations identified by single cell gene 

expression profiling. Through the use of multiplexed immunofluorescence with optical 

tissue clearing for extended imaging depths, Schroeder and colleagues were able to describe 

the spatial organization of the bone marrow HSC niche within an entire rodent femur [98]. 

With the advantages of more sensitive and quantitative measures of gene expression 

compared to immunofluorescence, single molecule fluorescence in situ hybridization (FISH) 

on intestinal crypts enabled expression analysis of several SC markers in spatially distinct 

ISCs and the verification of rare lineages at single-transcript resolution [78,99]. Multiplexed 

error-robust FISH made further improvements by enabling detection of up to 1000 distinct 

mRNA targets within single cells and tissues greatly expanding the power of this technique 

to visualize the spatial complexities of gene expression within tissues including SC niches 

[100,101].

The ability to observe living cells in real-time can provide a myriad of information of 

cellular dynamics often not easily captured by the snapshot methods that freeze cells and 

their molecular machinery in time, but imaging living tissue with traditional widefield and 

confocal microscopy has been challenging due to light scattering. Multiphoton (MP) 

Heitman et al. Page 5

Curr Opin Cell Biol. Author manuscript; available in PMC 2019 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



microscopy with infrared light greatly expands tissue imaging depths and has enabled real-

time observation of live SCs in their native environments. MP imaging of surgically exposed 

calvariae first provided short-term live glimpses of the cellular dynamics during HSC 

homing to the bone marrow niche [102,103]. Shortly after, Van Rheenen and colleagues 

visualized intestine with MP imaging through an implanted abdominal imaging window for 

lineage tracing of ISCs over multiple days. This uncovered a passive displacement of crypt 

base columnar SCs in the upper niche which were functionally replaced by ISC progeny 

from the lower crypt base indicating a positional competitive advantage and an uncoupling 

of SC fate decisions from division [104].

Recently Greco and colleagues have utilized MP imaging to great effect in studying the 

dynamics of epidermal and HFSCs in their natural state in living mice [33,105,106**]. Since 

the skin and hair are easily accessible for imaging and do not require surgical preparation, 

the same field and even individual hair follicles could be re-identified with the guidance of 

visible landmarks such as blood vessel patterns and tattooed dots and tracked over a span of 

many months in revisit experiments [107]. This enabled the discovery of a precise spatial 

organization of SC progeny divisions and coordinated cell movements that control the rapid 

expansion of growing hair follicles [105], and revealed the control of SC fate by the cell 

position within the niche [33]. In addition to deep tissue imaging, the infrared laser was 

repurposed to heat-ablate cells with surgical precision and its effects were observed 

immediately after or over a longer time-span. Laser ablation of HFSCs or niche components 

of individual follicles and later revisits using adjacent unperturbed follicles as a built-in 

control uncovered a plasticity between different HFSC domains and demonstrated an 

essential role of dermal papilla niche cells for control of hair regression and HFSC activation 

during the hair cycle [105,108].

The combined approach of utilizing live imaging on organoid cultures further alleviates the 

drawbacks of studying fixed tissues, which lack real-time visualization of intra- and 

intercellular dynamics, or of 2D cultures that do not necessarily recapitulate the complexities 

of in-vivo tissues, while adding the great advantage of scalability for high-throughput 

assays. For example, through live imaging of intestinal organoids and the use of Ca2+-

activated fluorescent reporters Julius and co-workers recently identified enterochromaffin 

cells as responding to neural inputs and relaying information about luminal metabolites to 

the enteric nervous system via synapses [88]. Another recent study showed a distinct 

heterogeneity in oxygenation between intestinal organoids through live-imaging using a 

phosphorescent O2 probe [109]. Finally, the ability to generate organoids from human SCs 

for in vitro live imaging combined with the efficiency of generating fluorescence reporter 

lines with CRISPR-Cas9 genome editing greatly bolsters studies in human systems [110]. 

As a recent example, live imaging during the development of human brain organoids was 

used to model the biomechanics of cerebral folding, a characteristic of humans not shared 

with standard model rodent species [111*]. This study showcases the power of human 

organoid systems to pick up when there are limitations to animal models, static imaging and 

traditional cell culture in order to better recapitulate aspects of the complexity of SCs and 

the niche during development, homeostasis and disease.
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Conclusions and outlook

Advances in single cell profiling, in-vitro culture and advanced light microscopy have 

further enabled SC researchers in the dissection of the complex intricacies of adult SC 

interactions with the niche on a larger scale and at a more refined level than ever before. 

These emerging technologies have begun to provide powerful new avenues to interrogate 

heterogeneity and complexity, diversity in function in SCs and niche components, and their 

essential crosstalk (Figure 2). However, as newly developed methods and technologies have 

to fully pass rigorous scrutiny and validation before ubiquitous acceptance and 

implementation to the modern biologist’s tool-kit, researchers should carefully consider their 

limitations when drawing conclusions and support findings with more traditional, well-

established techniques. Regardless, these new technologies open the door to exploration of 

the complexities of SC functions and the regulation by the niche that was previously not 

thought possible and promise to continue the successful journey towards elucidating the key 

regulation behind SC identity and behavior that may allow for the development of 

regenerative therapies and treatment of disease.
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Highlights

• New technologies overcome barriers from complexities of stem cells and their 

niches

• Single-cell profiling reveals heterogeneity, rare cells and fate trajectories

• 3D organoid culture models stem cell and niche interactions in-vitro

• 3D multiplexed and 4D in-vitro and intravital live imaging resolves 

complexities
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Figure 1. Next-generation technologies, often used in combination or complementation, advance 
insights into SC niche complexities.
(a) Molecular profiling by population-based RNA sequencing and by single cell RNA 

sequencing reveal unprecedented level of gene expression complexities and cell 

heterogeneity in SCs and their niches. (b) In-vitro cultures with 2D engineered matrices and 

co-culture, 3D spheroid aggregates, and structured 3D organoids enable modeling of SC 

interactions with their niches. (c) 3D multicolor light microscopy of 3D cleared tissues and 

4D intravital and in-vitro live imaging allow observation of SC niche complexities in vivo 
and in real-time.
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Figure 2. Recent insights on hematopoietic, intestinal and skin/hair follicle SCs and their niches 
by new technologies.
Major new advances from recent papers using new technologies are grouped by SC niche 

system and technology.
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