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Mendelian randomization (MR) is gaining in recognition and popularity as a method for strengthening causal inference
in epidemiology by utilizing genetic variants as instrumental variables. Concurrently with the explosion in empirical MR
studies, there has been the steady production of newapproaches forMRanalysis. The recently proposed “global and indi-
vidual tests for direct effects” (GLIDE) approach fits into a family ofmethods that aim to detect horizontal pleiotropy—at the
individual single nucleotide polymorphism level and at the global level—and to adjust the analysis by removing outlying
single nucleotide polymorphisms. In this commentary, we explain how existing methods can (and indeed are) being used
to detect pleiotropy at the individual and global levels, although not explicitly using this terminology. By doing so, we show
that the true comparator for GLIDE is not MR-Egger regression (as Dai et al., the authors of the accompanying article
(AmJEpidemiol. 2018;187(12):2672–2680), claim) but rather the humble heterogeneity statistic.

heterogeneity statistic; horizontal pleiotropy; Mendelian randomization; MR-Egger regression; outlier detection

Abbreviations: df, degrees of freedom; GLIDE, global and individual tests for direct effects; InSIDE, instrument strength independent of
direct effect; IVW, inverse-variance–weighted; MR,Mendelian randomization; MR-PRESSO,Mendelian randomization pleiotropy residual
sumandoutlier; SNP, single nucleotide polymorphism.

Mendelian randomization (MR) (1) is gaining in recognition
and popularity as a method for strengthening causal inference in
epidemiology by utilizing genetic variants as instrumental vari-
ables. Its use has been accelerated in recent years by the increasing
availability of genome-wide association studies and large-scale
biobank cohort data. Indeed,most traits that are analyzedwith suf-
ficiently large sample sizes (e.g., hundreds of thousands of indivi-
duals) yield large numbers of robustly associated variants. Human
height is perhaps themost extreme example,with over 3,000 inde-
pendent variants identified so far (2). To ascertain, for example,
whether height exerts a generic causal effect on risk of colorectal
cancer, we would need to assume that each variant additionally
1) is not associated with any confounders of the height–colorectal
cancer relationship and 2) only affects the risk of colorectal cancer
through height (or an automatic concomitant of height, such as
cell number). It seems implausible in this case that all 3,000 var-
iants will meet these strict assumptions, due to their exerting an
influence on multiple downstream traits through many different
pathways. This phenomenon is referred to as horizontal plei-
otropy (3, 4), and its existence is well documented (5).

Concurrently with the explosion in empirical MR studies,
there has been the steady production of new approaches forMR
analysis. For example, simple methods have been adapted from
mainstream meta-analysis to synthesize causal estimates ob-
tained from many independent variants, while accounting for
both heterogeneity and bias due to pleiotropy. These include
the inverse-variance–weighted (IVW) approach (6), MR-Egger
regression (7) and multivariate extensions thereof (8, 9). Another
stream of methods instead aim for natural robustness to pleiot-
ropy, rather than enacting an explicit bias correction. These
include theweightedmedian estimator (10) andmode-based esti-
mation (11, 12). (For a recent review, see Hemani et al. (13).) All
of these methods require only summary data estimates of single
nucleotide polymorphism (SNP)–trait associations that are often
nondisclosive and publicly available (14).

The approach recently proposed by Dai et al. (15), termed
“global and individual tests for direct effects” (GLIDE), fits into a
family of methods that aim to detect horizontal pleiotropy—at the
individual SNP level and at the global level—and to adjust the
analysis by removing outlying SNPs. Specifically, the GLIDE
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method is introduced for contexts in which individual-level
data are available on a set of genetic instruments, an exposure
and a binary outcome, and where the data have been collected
under case-control sampling. A relative riskmodel is used under a
rare disease assumption to address the issue of noncollapsibility,
and inverse probability weighting is used to adjust for ascertain-
ment bias. It uses P values derived by simulation and a P value
combination approach to derive tests for pleiotropy. Dai et al.
show that the GLIDE method is far more powerful at detecting
global pleiotropy than isMR-Egger regression (15).

Verbanck et al. (5) have also recently proposed a new test for
global pleiotropy based on a simulated unweighted heterogene-
ity statistic, aswell as an approachwithwhich to detect and remove
individual outliers from the analysis. Their method—“Mendelian
randomization pleiotropy residual sumand outlier” (MR-PRESSO)
is close in spirit toGLIDE.

It is welcome that theMR problem is now being scrutinized by
many independent scientific groups across the world. This will
undoubtedly lead to improved methods, inference, and under-
standing. In this commentary, we explain how existing methods
(partly borrowed frommainstreammeta-analysis) can, and indeed
are, being used to detect pleiotropy at the individual and global
levels, although not explicitly using this terminology. By doing
so, we show that the true comparator for GLIDE is notMR-Egger
regression but rather the humble heterogeneity statistic.

COCHRAN’SQ STATISTIC

Following equation 2 in the paper by Dai et al. (15) and
using their notation, we start by assuming the causal relative
risk model for the outcome Y given the jth genetic variant (or
SNP)Gj out ofm holds in a cohort (e.g., cohort 1) of individuals

{ ( = | )} = β + (β α + β ) ( )⁎Y G Glog Pr 1 . 1j j j j0 1 2

Here αj represents the association between the jth SNP and the
exposure X, β j2 represents the pleiotropic effect of SNP j on the
outcome Y, and β1 represents the causal effect of X on Y we
wish to estimate. This setup is illustrated in Figure 1, where we
assume that horizontal pleiotropy operates via pathways that are
independent of the exposure, although this is not crucial to any
of our following arguments.

Assume, as Dai et al. do (15), that an independent, external
data source (e.g., cohort 2) is available with whichwe can obtain
an estimate for the parameter αj with negligible error. That is,
our estimate α̂ ≈ αj j. This requires cohort 2 to be large and also
homogenous with respect to cohort 1 (16, 17). Further assume
that our estimate for the jth SNP-outcome association has vari-
anceσYj

2 . We can then derive an estimate, β̂j, for the causal effect

parameterβ1. This is obtained by dividing the jth SNP-outcome

association β̂YGj by the jth SNP-exposure association αj. The
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The inverse-variance–weighted average of the m ratio esti-
mates β̂ = ∑ β̂ ∑w w/j j j jIVW . Finally, define Cochran’s Q sta-

tistic = ∑ = ∑ (β̂ − β̂ )Q Q wj j j j j IVW
2. When all m SNPs are

uncorrelated, and the independent samples in cohort 1 and
cohort 2 are drawn from the same underlying population, the
IVW estimate is asymptotically equivalent to the 2-stage least-
squares estimate that would be obtained with individual-level
data. If β = 0j2 for all j in (1, …, m), so that the global null

hypothesis of no pleiotropy is true, then

• β̂IVW is an unbiased estimate for β1;
• Cochran’s Q statistic should follow a χ2 distribution with

−m 1degrees of freedom (df); and
• provided that m is sufficiently large, the jth contribution to

Q,Qj, is approximately χ2 distributed on 1 df.

Therefore,Q can be used to test for global pleiotropy andQj can
be used to test for individual pleiotropy. The use of Cochran’sQ
statistic makes perfect sense, since it is equivalent to the Sargan
test statistic for detecting invalid instruments (18) from the
econometrics literature.

MR-EGGERREGRESSION

Whenβ ≠ 0j2 for some j in 1,…,m, then the IVW estimate
can still unbiasedly estimate the causal effect when 1) the sam-
ple covariance between αj and β j2 is zero—the “instrument
strength independent of direct effect” (InSIDE) assumption—
and 2) the sample mean of the β j2 terms is zero. This is referred
to as balanced pleiotropy. Pleiotropy is said to be “directional”
if the InSIDE assumption holds but the sample mean of the β j2

terms is nonzero. TheMR-Egger method performs a regression
of the SNP-outcome associations on the SNP-exposure associa-
tions with the intercept left unconstrained to test this hypothesis,
by assuming themeanmodel:

[β̂ ] = β + β αE .YGj E E j0 1

The MR-Egger method still relies on the InSIDE assumption,
but if satisfied the intercept term β E0 provides an estimate of
the mean pleiotropic effect, and the slopeβ E1 provides an esti-
mate of the causal effect β1 adjusted for any nonzero mean
pleiotropy. After fitting the MR-Egger regression model and
adjusting for the mean pleiotropic effect, it is then possible to

Gj X Y
αj β1

U

β2j

Figure 1. Relationship between genetic variantGj, exposure X, out-
come Y, and unmeasured variable(s) U, with effects as defined in
equation 1.
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test whether any residual heterogeneity due to pleiotropy re-
mains. This can be assessed by using Rucker’sQ statistic:
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Under the null hypothesis that all SNPs have the same direct
effect (β = β )j2 2 , estimating and adjusting for their mean value
(via β̂ E0 ) is sufficient to completely remove all pleiotropy from
the analysis. If this is true (which is unlikely):

• Rucker’s ′Q statistic should follow a χ2 distribution with
−m 2 df and

• The jth component of ′Q , ′Qj should approximately follow
a χ2 distribution on 1 df.

Rejection of the null hypothesis implies that residual direct ef-
fects, with magnitudesβ − β̂j E2 0 , remain in the data. Therefore,
Rucker’s ′Q statistic and its individual components ′Qj can be
used to test for global and individual pleiotropy afterMR-Egger
adjustment.

SIMULATION EXAMPLE

To illustrate the above, Figure 2A shows the power of
Cochran’sQ statistic and Rucker’s ′Q statistic to detect global
pleiotropy at the 5% significance level for simulated MR data
sets of 25 SNPs. Also shown on the same plot is the power of the
MR-Egger method to detect a statistically significant intercept at
the 5% level. The simulation assumes balanced pleiotropy, but

we vary themagnitude of the pleiotropic effects so that their max-
imum value lies between 0 and±0.2. The simulation is therefore
analogous to Figure 2B in the paper byDai et al. (15).

The power of Cochran’sQ statistic andRucker’s ′Q statistic to
detect global pleiotropy is seen to increase sharply as a function
of direct effect magnitudes, whereas the power of MR-Egger to
detect a nonzero intercept increases slowly. In fact, its power de-
pends strongly on the amount of variability in the instrument
strengths across the set of SNPs (17, 19). The key message
we wish to convey in this commentary is the following:

MR-Egger regression provides a very poor test for global plei-
otropy, and it was never intended to be used for this purpose.
Cochran’s Q statistic and Rucker’s ′Q statistic should instead be
used.

Figure 2B shows, for a single MR analysis containing 25
SNPs, the individual contributions to Cochran’sQ statistic and
Rucker’s ′Q statistic. This time, the data are generated under
directional pleiotropywithmean value 0.1 to induce a difference
between the Q and ′Q contributions. Horizontal lines indicate
the 95th percentile and Bonferroni-corrected 99.8th percentile
of the χ2 (1 df) distribution; the latter threshold can be used to
guide the detection of individual outliers in order to control
the familywise error rate. In this case, 2 variants’ contributions
to Q are extreme enough to be considered for removal. The
fact that no variant’s contribution to ′Q is large enough to war-
rant removal is a sign that the MR-Egger model constitutes a
better fit to the data than the IVW model in this instance. This is
not surprising because it is a 2-parameter rather than a 1-parameter
model. The R computer code (R Foundation for Statistical
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Figure 2. A) Power of Cochran’sQ statistic, Rucker’sQ′ statistic, and the Mendelian randomization (MR)-Egger intercept to detect global pleiotropy
for simulated MR data containing 25 single nucleotide polymorphisms. B) Individual contributions to Cochran’s Q statistic and Rucker’s Q′ statistic.
The single nucleotide polymorphisms were individually numbered from 1 to 25 for illustrative purposes. Horizontal lines indicate the 95th (dotted lines)
and 99.8th (dashed line) percentiles of the χ2 distributionwith 1 degree of freedom.
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Computing, Vienna, Austria) used to perform the simulations
in Figure 2 can be found in the accompanying Web Appendix
(available at https://academic.oup.com/aje).

A framework for usingQ and ′Q to detect global pleiotropy
and decide on the appropriateness of either IVW or MR-Egger
regression for a given analysis is contained in an article by
Bowden et al. (17). (See also Thompson et al. (20) and
Schmidt and Dudbridge (21) for closely related Bayesian ap-
proaches.) The GLIDE method proposed by Dai et al. (15) is an
interesting addition to the literature onMRmethods, but it should
be compared directly with Cochran’sQ statistic and Rucker’s ′Q
statistic when evaluating its utility in this regard. It may well give
very similar results.

Because of their derivation under the 2-stage least-squares
framework, the IVW and MR-Egger approaches are only
approximate when the outcome is binary, due to the noncollap-
sibility of the odds ratio (22), and case-control sampling is used.
The GLIDE approach does at least address these issues head-on
with the use of a causal relative risk model. However, when the
binary outcome has a relatively low prevalence, a more straight-
forward logistic regression with inverse probability weighting
provides a convenient and reasonable way to obtain parameter
estimates for GLIDE’s causal relative risk model (23). Indeed,
in the authors’ own applied example, this is the approach taken
(15). Furthermore, because each SNP explains only a small
amount of variation in the exposure in an MR study and makes
up a small contribution of the total instrument strength, a linear
model provides a surprisingly accurate approximation with which
to identify a “local” causal effect. For further details of this ar-
gument, see Appendix A.2 in another paper by Zhao et al. (24).

COMPARISONWITHMR-PRESSOANDTHEMRROBUST
ADJUSTEDPROFILE SCORE

Dai et al. assume in the development of their method that SNP-
exposure associations utilized in the analysis are estimated with
negligible error (i.e., that they are strong instruments) (15). This is
referred to as the “nomeasurement error” assumption (25).When
the no measurement error assumption is violated due to the pres-
ence of weak instruments, the standard meta-analytical frame-
work outlined in this commentary breaks down and the type I
error rate of Cochran’s Q statistic for detecting pleiotropy can
be grossly inflated. This fact has also been noted by Verbanck
et al. (5), which provided the motivation for MR-PRESSO. In
recent work (25), we modified the inverse variance weights
used to calculate Cochran’s Q statistic to improve their perfor-
mance with weak instruments. Verbanck et al. helpfully com-
pared MR-PRESSOwith a preliminary version of our modified
Q statistic and showed that it performs similarly (5).

Both MR-PRESSO and GLIDE use tests for individual
pleiotropy to explicitly remove variants from the analysis
before estimating the causal effect. A simpler and argu-
ably more objective approach is to use robust estimators that
penalize, rather than remove the contribution of, outlying var-
iants. See, for example, theMR “robust adjusted profile score”
approach of Zhao et al. (24), which also accounts for bias due
to weak instruments.

In conclusion, we hope we have explained how to use the
standard heterogeneity statistic to learn about individual and

global pleiotropy in MR, as a useful comparator to GLIDE.
Further comparison of all of these approaches is needed to reach
a better understanding of their relative merits.
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