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Diagnosing pleiotropy is critical for assessing the validity of Mendelian randomization (MR) analyses. The popular
MR-Egger method evaluates whether there is evidence of bias-generating pleiotropy among a set of candidate genetic
instrumental variables. In this article, we propose a statistical method—global and individual tests for direct effects
(GLIDE)—for systematically evaluating pleiotropy among the set of genetic variants (e.g., single nucleotide polymorph-
isms (SNPs)) used for MR. As a global test, simulation experiments suggest that GLIDE is nearly uniformly more power-
ful than the MR-Egger method. As a sensitivity analysis, GLIDE is capable of detecting outliers in individual variant-level
pleiotropy, in order to obtain a refined set of genetic instrumental variables. We used GLIDE to analyze both body mass
index and height for associations with colorectal cancer risk in data from the Genetics and Epidemiology of Colorectal
Cancer Consortium and the Colon Cancer Family Registry (multiple studies). Among the body mass index—associated
SNPs and the height-associated SNPs, several individual variants showed evidence of pleiotropy. Removal of these
potentially pleiotropic SNPs resulted in attenuation of respective estimates of the causal effects. In summary, the pro-
posed GLIDE method is useful for sensitivity analyses and improves the validity of MR.

causal inference; direct effect; instrumental variables; sensitivity analysis

Abbreviations: BMI, body mass index; GIANT, Genetic Investigation of Anthropometric Traits; GECCO, Genetics and Epidemiology of
Colorectal Cancer; GLIDE, global and individual tests for direct effects; IV, instrumental variable; MR, Mendelian randomization; Q-Q,
quantile-quantile; SNP, single nucleotide polymorphism.

Editor’s note: An invited commentary on this article appears
on page 2681.

Mendelian randomization (MR) (1-4) is an inferential method
that uses germ-line genotypes (e.g., single nucleotide polymorph-
isms (SNPs)) as instrumental variables (IVs) to assess the causal
effect of an exposure on a disease outcome, and it is increasingly
popular in genetic epidemiology. By exploiting the random
assortment of genes from parents to offspring during gamete
formation and conception, which has been likened to “Nature’s
randomized experiment” (2, 5), MR holds promise for removing
the potential confounding and reverse causation that loom over
observational epidemiology. While this is conceptually appealing,
skepticism has persisted on whether the strong assumptions

required by MR (6-9) are plausible. Stated informally, these as-
sumptions require that genetic variants are independent of any
confounder of the exposure-disease relationship, that genetic
variants are associated with the exposure (preferably strongly),
and that there is no direct effect from the genetic variants to the
disease outcome other than through the pathway mediated by the
exposure—also known as “no pleiotropy.”

Pleiotropy, or more specifically, horizontal pleiotropy, re-
fers to the phenomenon wherein a gene or mutation affects
multiple phenotypes via independent biological pathways
(10, 11). Figure 1 illustrates the concept of MR and the criti-
cal no-pleiotropy assumption. As the founding principle, the
independence between genotypes and confounding variables
is backed up in theory by the random assortment of genes
from parents to offspring, and in practice it is further aided
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Figure 1. Causal diagram for Mendelian randomization. The goal is to
use genotypes as instrumental variables to infer the causal effect of an
exposure on a disease outcome. One critical assumption is that there is
no direct effect from the genotype to the disease (no pleiotropy).

through adjustment for population substructures. The strength
of the IV’s association with the exposure can be improved by
increasing the sample size and including additional known risk
loci. Perhaps the Achilles’ heel of MR is the potential for pleio-
tropic effects among the genetic risk variants associated with
complex diseases, given the biological plausibility of pleiotropy
in complex biological pathways and networks. Indeed, recent
genome-wide association studies have shown that pleiotropy is
pervasive in complex traits, with evidence of numerous genetic
variants’ affecting multiple traits, some of which represent hori-
zontal pleiotropy (12—-14).

Methods for detecting pleiotropy and, more ambitiously,
estimating the causal effect in the presence of pleiotropy, have
been under active development. Notably, Egger regression—a
tool for detecting small-study bias in meta-analysis—has been
adapted to test for the impact of pleiotropy on the casual effect
of interest (15). This test exploits the observation that if there is
no pleiotropy, a dosage relationship should be present between
the individual genetic associations with the exposure and the
corresponding genetic associations with the outcome (16). A
linear regression model is fitted between the 2 sets of genetic as-
sociations, and a nonzero intercept suggests that there is evi-
dence of pleiotropy. In the presence of direct effects, and under
the “instrument strength independent of direct effect” (InSIDE)
assumption, the MR-Egger test yields a valid causal effect esti-
mate, though such an assumption is untestable and may be diffi-
cult to justify. Along the same lines, it has been shown that the
causal effect can be estimated unbiasedly when fewer than 50%
of IVs are invalid, either by the median estimator (17) or by the
¢, shrinkage estimation procedure (18).

When a number of SNPs are used as candidate IVs in MR, it
is possible that some variants are valid IVs but others are not.
Several informal diagnostic statistics for detecting outliers and
investigating pleiotropy have been proposed in MR-Egger and
other meta-analytical methods—for example, the heterogeneity
in dependent instrument (HEIDI) outlier test (19-21). There is a
pressing need to develop more rigorous significance tests for
global and individual-variant pleiotropy. Such analyses will
lead to sensitivity analyses that remove variants exhibiting evi-
dence of pleiotropy and estimate causal effects with a more jus-
tified set of IVs. This is a challenging task because, without
additional constraints, the IV regression approach cannot assess
simultaneously the causal effect of primary interest and the indi-
vidual direct effects.
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Binary outcomes pose additional modeling challenges. Most
of the existing approaches were formulated for a quantitative
trait by linear regression, a feature inherited from the classical
2-stage least-squares regression approaches in the econometrics
literature. Strictly speaking, these methods cannot be immediately
used for MR analyses with binary disease outcomes. While logis-
tic regression has been the workhorse and the odds ratio is the de
facto association estimate for binary outcomes, using an odds ratio
as the causal estimand is difficult for causal inference (22-24).
This is mostly due to the noncollapsibility of the odds ratio (25),
meaning that the stratum-specific odds ratio is not equal to the
marginal odds ratio ignoring strata even when the stratifica-
tion variable is not related to the exposure. The use of 2-stage
IV approaches in logistic regression yields approximations of
causal odds ratios for rare disease outcomes (8, 26).

In this article, we propose a statistical method—global
and individual tests for direct effects (GLIDE)—with which to
assess pleiotropy and conduct sensitivity analyses for MR
when a number of SNPs were used as candidate IVs, assuming
that genetic variants are indeed independent of confounding
variables. The novel contribution of GLIDE is a rigorous signif-
icance analysis for global and individual-variant pleiotropy,
using a quantile-quantile (Q-Q) plot and a permutation proce-
dure. Causal effects are defined in terms of relative risk, a mea-
sure that is collapsible and well interpretable for binary disease
endpoints (27). Though individual direct effects are not simulta-
neously identifiable through the IV regression, we show that
“surrogate direct effects”—the direct effects for one individual
variant at a time, not conditional on other variants—are estimable
and provide valid tests for individual direct effects under plausible
conditions. Using the proposed GLIDE method, investigators can
determine whether the set of genetic variants being evaluated for
IVs show any evidence of global pleiotropy and, if so, which var-
iants exhibit evidence of pleiotropy and therefore should be
removed in a sensitivity analysis. We conduct extensive simula-
tion studies to evaluate the performance of the proposed GLIDE
method relative to the MR-Egger method. Finally, we use GLIDE
to analyze the associations of body mass index (BMI; weight
(kg)height (m)z) and height with colorectal cancer risk in data
from the Genetics and Epidemiology of Colorectal Cancer
(GECCO) Consortium and the Colon Cancer Family Registry.

METHODS

Consider an MR study with a binary disease outcome Y and a
set of m independent genetic variants (2 >> 1), denoted by
G = (Gy, ..., G,,), that have been identified as candidate IVs to
infer the causal effect of the intermediate exposure X on the out-
come Y. Typically, these genetic variants are independent loci
derived from prior genome-wide association studies. For an MR
analysis, X is not required to be measured in the study, as long as
X can be predicted by the set of genotypes G and the previously
reported association parameters. Suppose the causal effect of X on
Y is confounded by a collection of unmeasured variables U.
Assume that the independence assumption for G holds, so that
G L1 U. For simplicity of notation, additional measured confound-
ing variables are omitted, but the formulation follows immediately
when measured confounding variables are added. The interest
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herein is to test the third IV assumption of no pleiotropy that
there is no direct effect of G on Y other than the hypothe-
sized mediation effect through X. In what follows, the no-
tions of “direct effect” and “pleiotropic effect” will be used
interchangeably.

The causal effect of the intermediate exposure X on the out-
come Y is defined on the relative risk scale through a log-linear
model:

log{Pr(Y = 11X, U, G)} = By + BX + D p,,G; + psU
j=1

1)

where B, is the causal effect of X on Y and B,; is the direct effect
of the jth variant G;. This is a structural equation model in which
causal effects are condmonal on unmeasured confounding vari-
ables U. The global null hypothesis of interest is that there is no
direct effect for any genetic variant, expressed as

Hy: p,; =0 for all .

If this global null hypothesis is rejected, the interest is to then
assess which individual variants show evidence of a direct effect
and therefore should be deleted in the subsequent analysis. How-
ever, neither testing the global hypothesis nor diagnosing individ-
ual variants can be accomplished by regressing Y on (X, G)
because of the presence of the unmeasured confounding, U.

Suppose a genetic risk score has been developed externally
to predict X from G, denoted by R(G) = E(XIG) = Zj o,;Gj,
where o; is the previously derived nonzero weight (coefficient)
associated with G;. The variability of estimating o; in prior stud-
ies when X is a quantitative trait can be negligible in IV estima-
tion (28). By definition, X = R(G) + &, and G is independent
of the error term €. Plugging the expression of X into model 1
(equation 1), we have

log{Pr(Y = 11U, G, €)}
=Py + BR(G) + Bie + X, G + B3U

Since G is independent of € and U, integration of € and U leads
to

log{Pr(Y =11G)} = B + BRG) + D B,,G.  (2)
J
The fundamental problem in estimating direct effects 3,; through

the IV regression approach is that there are m IVs but now
m + 1 causal effects to be estimated in model 2 (equation 2).
The design matrix for model 2 is rank-deficient, since R(G) is a
linear combination of G;’s. Therefore B,,’s are not identifiable.

Instead, one has to devise tests for nonzero p,; indirectly
under some constraints—for example, the MR-Egger test (15).
If B,; = 0 for all j, then the genetic effects on Y, expressed as
Pia; + P; in our notation, and the genetic effects on X ()

should have a dose-response relationship and form a straight
line with the intercept 0. This forms the basis for indirect tests of
global pleiotropy through testing of the intercept in the

MR-Egger method. As informal ways to assess individual
pleiotropy, other methods have been developed that involve
assessment of heterogeneity in causal effect estimates based
on individual genetic variants one at a time (19-21).

While the direct effects in model 2 (equation 2) are not simul-
taneously identifiable, we propose GLIDE, an indirect method
with which to test the global null hypothesis and at the same
time provide diagnostics for pleiotropy for individual variants.
The key novelty is the development of an individual-level sig-
nificance test of pleiotropy for each SNP under suitable condi-
tions. Specifically, a sequence of m log-linear models are fitted
to (R(G), Gj), each assessing the “marginal” direct effect for
one genetic variant at a time:

log{Pr(Y = 1IR(G), G} = ¥o1 + ";R(G) + 15;G1,

log{Pr(Y = 1|R(G)’ Gm)} = YOm + Y1n1R(G) + YZme
3)

We call y,, the “surrogate direct effect,” which is related to the
true direct effect 3,; and is directly testable. In Web Appendix
1 (available at https://academic.oup.com/aje), we show that y,,’s
can be expressed explicitly as functions of f3,;, @;, and some
distributional parameters for G;’s. We derive 3 results that form
the basis of our proposed test procedure. First, if the global null
hypothesis H is true (i.e., if ,; = 0 for all ), then y,; = 0 for all
J-Second, if f,;, = 0 forall j* # j, theny,; = P, for the jth vari-
ant. Third, when the majority of 8,,’s are zero or when o;B,; is
positive for some j and negative for others, v,; is numerically
close to,..

These results delineate a test procedure for the unidentifiable
parameters 3,; through the estimable quantities, the y,,’s. The

core of our GLIDE procedure is to evaluate the P values associ-
ated with y,;, denoted by p;, with respect to their null distributions

derived from Monte Carlo simulations. The benefit of diagnosing
pleiotropy by means of P values is that they are agnostic to the
sign of direct effects, thereby circumventing the issue in balanced
pleiotropy where some direct effects are positive and others are
negative. To summarize the evidence for global pleiotropy, we
combine the P values by Fisher’s method, —2 ) log( p;), and
compare the observed value with its null distribution to compute
the P value for global pleiotropy. A unique feature of GLIDE is
that it gives an intuitive Q-Q plot of p;’s for diagnosing individual
variant pleiotropy. To perform a sensitivity analysis with the set
of more justified IVs, the procedure can be applied iteratively by
deleting potentially pleiotropic variants.

The null distributions of p; under Hy require careful deri-
vation. First, because each v,; is conditional on R(G), which

is shared across m models, the z scores associated with p;’s,

denoted by z;’s, are correlated even though the G;’s are mutu-
ally independent. As such, a naive Bonferroni test for m var-
iants that ignores the correlation structure may not be optimal.
In Web Appendix 2, we derive the asymptotic distribution of
?2j’s from the estimating equation theory. Second, although

each y,; is an estimable quantity, the joint distribution of ?zj’s is

degenerate with rank m — 1, meaning that if m — 1 ?zj’s are
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first obtained, then the one left out is not stochastic and indeed
completely determined from previous m — 19,,’s. This is for-
mally proven in Web Appendix 2. This observation is reminis-
cent of the rank deficiency of B,; in model 2 (equation 2). On
the basis of these results, a parametric Monte Carlo simulation
program is devised to obtain the null distribution of z;’s, account-
ing for both correlation and rank deficiency in the multivariate
asymptotic null distribution (Web Appendix 3). The null distri-
butions of the quantiles of m observed P values are obtained and
compared with the observed quantiles. Testing of the global null
hypothesis can then be achieved by comparing the Fisher’s com-
bination statistic with its null distribution. The familywise error
rate or false discovery rate can be used to perform significance
tests for individual pleiotropic effects.

For case-control MR studies, fitting model 3 (equation 3)
while accounting for case-control sampling could be accom-
plished by means of the inverse probability weighting method
using estimation procedures for relative risk models as dis-
cussed previously, if such weights are known or can be derived
from the population incidence of the disease Y (27). For many
cancers, the incidence is low and the odds ratio estimates from
standard logistic regression approximate the relative risk esti-
mates, so any software that implements logistic regression can
be used to derive surrogate direct effects and associated P val-
ues. The crux of computation in the GLIDE procedure is to gen-
erate null distributions of surrogate direct effects, particularly
when there are a large number of candidate IV SNPs. We have
developed an R package (R Foundation for Statistical Comput-
ing, Vienna, Austria) for GLIDE, freely available from the Com-
prehensive R Archive Network (https://cran.r-project.org/), with
which to implement and disseminate the proposed method.

RESULTS
Simulation to assess validity and power

A case-control MR study was simulated to assess the per-
formance of the proposed GLIDE procedure. The data vector
for a subject contains a binary outcome Y, an exposure X that
has a normal distribution, 25 SNPs as candidate IVs, and a
variable U representing unmeasured confounding between
X and Y. The SNPs were generated from a multinomial distribu-
tion at (0, 1, 2), with probabilities corresponding to minor allele
frequencies randomly selected from a uniform distribution with a
range from 0.1 to 0.4. The data-generating models for
Y, X, G, U)are

U= €1 (4)
X=Z(X_1‘Gi+U+€2 (5)

J
E(Y) = exp BO + Z ijj + ﬁIX + U + &3], (6)

J

where f; is the causal effect of X onY (set to be either 0 or 0.5),
o;’s represent the strength of IVs, y,’s are the direct effects to be
tested, and (¢, &;, €3) are drawn from independent normal distri-
butions with mean 0 and variance 0.25. We assume that G is
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independent of U in the simulation study shown in the main text,
and we left the scenario with G being dependent on U in Web
Appendix 4 as a sensitivity analysis. We generated o;’s from a
uniform distribution with a range from 0.1 to 0.2. The direct ef-
fects y;’s are zero under the null hypothesis or drawn from a uni-
form distribution under the alternative hypothesis, which may be
correlated with o;’s. In all simulation settings, we chose the value
of B, to achieve a disease prevalence 0.01 and generate a popula-
tion of 50,000 or 250,000 individuals. All cases and an equal
number of controls were sampled in the case-control study. The
case-control sampling scheme was accounted for in analyses by
the inverse probability weighting method.

Control of type | error rate. Table 1 shows the empirical type I
error rates in 2,000 simulated data sets when Y, = 0 for all j, so

that there is no direct effect for any of the 25 genetic variants.
For GLIDE, we evaluate whether the Fisher’s combination sta-
tistic for the surrogate direct effects attains the type I error level
at 0.05. For the MR-Egger method, we test whether the intercept
of the Egger regression is zero, using the weighted least squares
procedure (15). As expected, both tests achieve proper control
of the type I error rate for the 2 sample sizes considered, whether
or not there is a causal effect of X on Y. The validity of the 2
methods requires the independence between G;’s and U, as addi-
tional simulations in Web Appendix 4 (Web Table 1) show.
Statistical power for testing for global pleiotropy. In Figure 2
and Web Figure 1, we show the statistical power achieved for
detection of global pleiotropy under a variety of distributions
of v;’s. The details of the parameter settings in these simula-
tion experiments are described in Web Appendix 5. Figure 2
shows scenarios where there is a causal effect of X on Y, namely
B, = 0.5 in model 6 (equation 6), among which Figures 2A-2C
show scenarios where the distributions of the direct effects and
the instrumental strengths are uncorrelated and 2D shows a sce-
nario where the direct effects and the instrumental strengths are
indeed correlated. In Figure 2A, the direct effects are all positive.
In Figure 2B, some direct effects are negative and others are posi-
tive, representing a scenario close to “balanced pleiotropy” (15).
In Figure 2C, only a subset of variants (15 out of the 25 (60%))
have pleiotropic effects. Note that even if the distributions of the
direct effects and the instrumental strengths are probabilistically
uncorrelated in Figures 2A-2C, in each simulated data set the
covariance of a; and y; in the sample is not exactly zero; therefore

Table1. Type | Error Rate for the Proposed GLIDE Test and the
MR-Egger® Test When the Nominal P Value Is 0.05

Sample Size, no. Causal Effect Test
Cases Controls 1) GLIDE MR-Egger
500 500 0 0.0436 0.0489
0.5 0.0457 0.0505
2,500 2,500 0 0.0482 0.0494
0.5 0.0484 0.0503

Abbreviations: GLIDE, global and individual tests for direct effects;
MR, Mendelian randomization.
@ Egger’s test for assessing pleiotropy in MR.
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Figure 2. Statistical power, in simulations, of the global and individual tests for direct effects (GLIDE) and Mendelian randomization (MR)-Egger
methods to test the global null hypothesis that there is no direct effect for any genetic variant. The sold line represents results of the GLIDE test, and
the dotted-dashed line represents results of the MR-Egger test. A) The direct effects are all positive; B) some direct effects are positive and some
are negative; C) a proportion of single nucleotide polymorphisms (SNPs) (60%) have pleiotropic effects; D) all SNPs have direct effects that are cor-
related with the genetic associations with the intermediate exposure. RR, relative risk.

a naive inverse-variance—weighted estimate of the causal effect
will be biased in all 4 scenarios (simulation results not shown).

In all 4 scenarios shown in Figure 2, GLIDE outperforms
MR-Egger substantially. The power improvement can reach as
much as 20% when all direct effects are positive in Figure 1A,
while a much greater power gain is seen in Figures 2B and 2D.
The improvement stems from the MR-Egger test suffering
reduced power performance when some direct effects are nega-
tive and others are positive, since the intercept in the MR-Egger
regression tends to get close to 0 (but not exactly 0), as negative
and positive effects may cancel out in the overall impact on the
intercept. It is important to note that balanced pleiotropy that
does not distort estimation in the MR-Egger method is a numer-
ical coincidence and is rarely exactly satisfied in practice. When
the causal effect 3, was set to be zero while all other parameters
remained unchanged (Web Figure 1), the power comparisons
showed no difference from Figure 2.

Estimation of individual direct effects. A simulation study
was conducted to evaluate the bias of the estimated surrogate
direct effect for a particular genetic variant (y;;) in model 3

(equation 3) as estimates of true individual direct effects (ﬁzj).
The degree of approximation between y;; and f3,; is critical to the

use of the Q-Q plot as a means to identify individual variants
with potentially pleiotropic effects. The models and results of
this simulation study were relegated to Web Appendix 6 (Web
Table 2). Under diverse simulation settings, the results in Web
Table 2 suggest that the estimated surrogate direct effect cap-
tures the corresponding true direct effect and the bias is largely
negligible.

GECCO data analyses

We analyzed epidemiologic and genetic data from 10,226
colorectal cancer cases and 10,286 population-based controls
of European ancestry from 11 studies (6 cohort studies and 5
case-control studies) included in the GECCO Consortium and
the Colon Cancer Family Registry (Web Appendix 7). Full details
on these consortia (GECCO and the Colon Cancer Family Regis-
try) have been published elsewhere (29). We previously reported

Am J Epidemiol. 2018;187(12):2672-2680
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results for 77 BMI-linked SNPs and 696 height-linked SNPs
identified in the Genetic Investigation of Anthropometric Traits
(GIANT) Consortium as IVs in MR analyses using GECCO
and Colon Cancer Family Registry data (30, 31). These results
suggested that genetically determined BMI and height are both
associated with the risk of colorectal cancer, indicating evidence
of causality (30, 31).

We now investigate the validity of these 77 BMI-linked SNPs
and 696 height-linked SNPs as IVs, using both GLIDE and the
MR-Egger regression approaches. Two genetic risk scores were
computed on the basis of association estimates in the GIANT
Consortium (32, 33). Because colorectal cancer is a rare disease
in these populations, surrogate direct effect estimates and their
respective P values in model 3 (equation 3) were obtained via a
logistic regression model approximating a log-linear model for
relative risk estimates. The null distribution of P values was ob-
tained from 50,000 simulated data sets following the degenerate
multivariate normal distribution.

A
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Figures 3A and 3C show scatterplots of the reported genetic
associations from the GIANT genome-wide association study
(30, 31) and the associations with risk of colorectal cancer in
GECCO, respectively. Figures 3B and 3D show the respective
Q-Q plots of P values derived from the GLIDE method. MR-
Egger regression suggests that there is no evidence of pleiotropy
for either analysis (BMI: intercept = 0.001, P = 0.89; height:
intercept = 0.002, P = 0.33). The P values for testing of global
pleiotropy from GLIDE are 0.55 (BMI) and 0.02 (height), in-
dicating that there is evidence of global pleiotropy for the
height MR analysis. The Q-Q plots are more informative for
diagnosing individual variants. Figure 3 shows that there are
2 BMlI-linked variants (rs16951275 and rs12286929) with
evidence of a direct effect (solid squares; false discovery rate <
0.2) and 3 height-linked SNPs (1rs3923086, rs11144688, and
1rs6085662) with evidence of a direct effect (solid squares; false
discovery rate < 0.2). We use a false discovery rate of 0.2 as the
significance cutoff because we want to be conservative in selecting
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Figure 3. Application of Menedelian randomization (MR)-Egger regression and the proposed global and individual tests for direct effects
(GLIDE) test to data from the Genetics and Epidemiology of Colorectal Cancer (GECCO) Consortium in a study of body mass index (BMI; weight
(kg)/height (m)?) and height in colorectal cancer (CRC) risk. The solid squares represent single nucleotide polymorphisms (SNPs) with some evi-
dence of pleiotropy detected by GLIDE; the open circles represent SNPs which did not exhibit evidence of pleiotropy. A) MR-Egger regression
results showing the intercept and slope for 77 SNPs previously shown to be linked to BMI in the Genetic Investigation of Anthropometric Traits
(GIANT) Consortium (30, 31). B) Proposed GLIDE test results showing the quantile-quantile (Q-Q) plot for P values derived from assessment of
surrogate direct effects for BMI. C) MR-Egger regression results showing the intercept and slope for 696 SNPs previously shown to be linked to
height in the GIANT consortium. D) Proposed GLIDE test results showing the Q-Q plot for P values derived from assessment of surrogate direct

effects for height. RR, relative risk.
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Table 2. Estimates of Surrogate Direct Effects for Single Nucleotide
Polymorphisms With Some Evidence of Pleiotropy Detected via the
GLIDE Method in Analyses of Body Mass Index and Height
Associations With Colorectal Cancer Risk®

Table 3. Causal Effect Estimates Obtained With and Without the 2
Single Nucleotide Polymorphisms Showing Evidence of Pleiotropy in
Analyses of Body Mass Index and Height Associations With
Colorectal Cancer Risk®

Study and Surrogate Direct  Nominal

Causal Effect

SNPID No. Gene Effect (RR®) PValue DR Study and IV Estimate (RR?) 95%Cl PValue
BMI° BMI°

rs16951275 MAP2K5 1.09 0.0006 0.046 Original 77 SNPs 1.32 1.10,1.58 0.003

rs12286929 CADM?2 0.94 0.0048 0.183 Refined 75 SNPs 1.26 1.06, 1.51 0.009
Height Height

rs3923086  AXIN2 1.08 29x10* 0.12 Original 696 SNPs 1.07 1.01,1.14 0017

rs11144688 PCSK5 1.14 35%x10™* 0.12 Refined 693 SNPs 1.06 1.00,1.13 0.053

rs6085662 BMP2 1.08 55x10™* 0.13

Abbreviations: AXIN2, axis inhibition protein 2 gene; BMI, body mass
index; BMP2, bone morphogenetic protein 2 gene; CADM2, cell adhesion
molecule 2 gene; FDR, false discovery rate; GLIDE, global and individual
tests for direct effects; ID, identification; MAP2K5, mitogen-activated pro-
tein kinase kinase 5 gene; PCSK5, proprotein convertase subtilisin/kexin
type 5 gene; RR, relative risk; rs, reference SNP; SNP, single nucleotide
polymorphism.

@ Data were obtained from 11 studies (6 cohort studies and 5 case-
control studies) included in the Genetics and Epidemiology of Colorectal
Cancer Consortium and the Colon Cancer Family Registry (Web
Appendix 7).

® The RR was calculated per 5-unit increment for BMI and per 10-
cm increment for height.

© Weight (kg)/height (m)>2.

valid IVs for MR. As such, these results suggest that these SNPs
should be omitted in the subsequent refined MR estimation.
For clarity, these SNPs with evidence of pleiotropy are also
highlighted in Figures 3A and 3C as solid squares.

These 5 SNPs and their associated genes are listed in Table 2,
each having a small surrogate direct effect estimate in relative
risk. Notably, in annotation work in the GIANT studies, Locke
et al. (32) and Wood et al. (33) have reported that the genes
associated with these SNPs are linked to important cellular
functions and multiple pathways: The mitogen-activated pro-
tein kinase kinase 5 gene (MAP2K5) is in the MAP kinase sig-
naling pathway involved in growth factor—stimulated cell
proliferation and muscle cell differentiation; the cell adhesion
molecule 2 gene (CADM?2) involves cell-to-cell adhesion and
synaptic function in neuronal development and the immune
system; the axis inhibition protein 2 gene (AXIN2) is a negative
regulator of wingless/integrated (Wnt)/B-catenin signaling; the
proprotein convertase subtilisin/kexin type 5 gene (PCSK5) is
involved in endopeptidase activities, abnormal skeleton devel-
opment, basal cell carcinoma, and Wnt-protein binding; and the
bone morphogenetic protein 2 gene (BMP2) encodes a secreted
ligand of the transforming growth factor p family of proteins,
which are involved in a number of cellular functions. In either
analysis, the MR-Egger test was not able to detect any evidence
of pleiotropic effects (Figure 3).

Next, as a sensitivity analysis, we removed the 5 SNPs with
some evidence of pleiotropy and recomputed the genetic risk
scores and estimated surrogate direct effects for the remaining 75
BMI SNPs and 693 height SNPs, respectively. The Q-Q plots of

Abbreviations: BMI, body mass index; Cl, confidence interval; GECCO,
Genetics and Epidemiology of Colorectal Cancer; IV, instrumental variable;
RR, relative risk; SNP, single nucleotide polymorphism.

@ Data were obtained from 11 studies (6 cohort studies and 5 case-
control studies) included in the GECCO Consortium and the Colon
Cancer Family Registry (Web Appendix 7).

® The RR was calculated per 5-unit increment for BMI and per 10-
cm increment for height. Estimates were adjusted for age, sex, the top
3 principal components in GECCO genome-wide association study
data, and the 11 GECCO studies (included as indicator variables in the
regression).

°Weight (kg)/height (m)>2.

the P values suggested that the refined sets of SNPs exhibit little
evidence of pleiotropy in either analysis (Web Figure 2). Table 3
shows the resulting causal estimates obtained when the SNPs
with evidence of pleiotropy were excluded in the refined 2-stage
IV regression. The estimates were adjusted for age, sex, the top 3
principal components in the GECCO genome-wide association
study data, and the 11 GECCO studies (included as indicator
variables in the regression). In both the BMI analyses and the
height analyses, excluding the violating SNPs results in an
attenuated effect size for the causal estimate and an increased P
value, because those deleted SNPs are typically the outliers of
genetic association. This data example showcases the utility of
the proposed method: It enables assessment of individual var-
iants and leads to sensitivity analyses that remove potentially
invalid IVs, thereby improving the validity of MR analysis.

DISCUSSION

In this article, we have proposed a diagnostic tool, GLIDE,
for assessing global and individual pleiotropy in MR studies.
Our method is formulated for estimating causal relative risk in
a log-linear model and therefore is tailored specifically for
binary disease outcomes. The unique feature of our method
with respect to existing methods is that it provides a rigorous
assessment of pleiotropy for individual genetic variants, there-
fore allowing sensitivity analyses with a more justified subset
of I'Vs. Furthermore, for assessment of global pleiotropy, our
simulations and data examples show that the power of GLIDE
is uniformly better than the MR-Egger regression method.

In analyses evaluating associations of BMI and height with
the risk of colorectal cancer, GLIDE detected 2 BMI-linked
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SNPs and 3 height-linked SNPs that showed evidence of plei-
otropy. Removing these SNPs in subsequent MR analyses re-
sulted in attenuated causal effects, since those SNPs often
present as outliers in genetic associations. These examples
highlight the importance of evaluating and diagnosing IVs
before causal testing. As we elaborated in the Introduction,
pleiotropic effects can be common for genes and mutations
that affect complex traits. Assessment of any direct effects
of genotypes on the outcome (i.e., the presence of pleiotropy)
can also be tested using mediation analysis, if the information
on the intermediate exposure and all confounders is available.
However, such an analysis yields inaccurate results when the
exposure is measured with error, which is often the case when a
single measurement per subject (e.g., blood pressure) is used to
represent a long-term average of the exposure (e.g., blood pres-
sure) over time. Thus, the mediation analysis approach is lim-
ited in practice, and our method does not have these limitations.

GLIDE works best for MR analyses with many indepen-
dent variants, where a Q-Q plot of P values can be informa-
tive. If there are only a few variants (<10), it becomes difficult
to visualize and assess evidence of violations from a Q-Q plot
and subsequently remove individual variants that may drive
the violation. Paradoxically, more SNPs in the IV would increase
the statistical power of testing the causal effect but at the same
time lower the power of GLIDE to assess the potential of individ-
ual variants’ pleiotropic effects due to multiple testing. One possi-
ble extension of GLIDE is to group variants by pathways or
chromosomes and test pleiotropy by group.

GLIDE assumes that genetic variants are independent of con-
founding variables. Violation of this independence assumption
will lead to false-positive findings in assessing pleiotropy (Web
Table 1). GLIDE does not solve the fundamental problem when
estimating direct effects through the IV regression approach, as
these individual causal direct effects are not identifiable together
with the causal effect of interest. The surrogate direct effects
estimated through GLIDE are merely approximations of the
direct effects when there are many variants, and when there
are positive and negative direct effects. Though GLIDE is
generally more sensitive than MR-Egger regression for de-
tecting pleiotropy, it does not always detect direct effects.
There are scenarios in which surrogate direct effects are
zero yet true direct effects are not all zero. This limitation is
inevitable, because individual causal direct effects are not
identifiable without additional constraints.

Genetic epidemiology is advancing from discovering
genome-wide associations to more functionally characterizing
genetic associations. In this context, causal inference and media-
tion analyses are becoming important tools for epidemiologic
analysis, providing a stronger, causal interpretation rather than a
mere association. However, investigators need to exert caution
and carefully examine the underlying assumptions of IVs before
engaging in causal estimation. The proposed GLIDE method is
useful for assessing variants for evidence of pleiotropy and
improving the validity of the MR approach.
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