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Abstract
Laccases are multi-copper oxidoreductases with broad biotechnological applications. Here, we report detailed biochemical 
characterization of purified recombinant laccases originating from Myceliophthora thermophila (MtL) and Trametes trogii 
(TtL). We identified optimal conditions for decolorization of commercial dyes and textile wastewater samples. We also 
tested the toxicity of decolorized wastewater samples using human peripheral blood mononuclear cells. MtL and TtL were 
expressed in Saccharomyces cerevisiae, and secreted enzymes were purified by consecutive hydrophobic and gel chromatog-
raphy. The molecular masses of TtL (~ 65 kDa) and MtL (> 100 kDa) suggested glycosylation of the recombinant enzymes. 
Deglycosylation of MtL and TtL led to 25% and 10% decreases in activity, respectively. In a thermal stability assay, TtL 
retained 61% and MtL 86% of the initial activity at 40 °C. While TtL retained roughly 50% activity at 60 °C, MtL lost stabil-
ity at temperatures higher than 40 °C. MtL and TtL preferred syringaldazine as a substrate, and the catalytic efficiencies for 
ABTS oxidation were 7.5 times lower than for syringaldazine oxidation. In the presence of the mediator HBT, purified TtL 
almost completely decolorized dyes within 30 min and substantially decolorized wastewater samples from a textile factory 
(up to 74%) within 20 h. However, products of TtL-catalyzed decolorization were more toxic than MtL-decolorized products, 
which were almost completely detoxified.
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Introduction

Laccases (EC 1.10.3.2) belong to a group of oxidoreductases 
that accept a broad range of substrates, including phenols, 
aromatic and aliphatic amines, and organometallic com-
pounds. Laccases, often referred to as “green catalysts,” 
reduce molecular oxygen to water during monoelectronic 
oxidation of substrates (Riva 2006). The enzymes have great 

potential for biotechnological applications in the pulp and 
paper industry (Widsten and Kandelbauer 2008), the food 
industry (Osma et al. 2010), nanobiotechnology, biosensor 
research (Arca-Ramos et al. 2016), bioremediation processes 
(Kadri et al. 2017), and the textile industry (Chatha et al. 
2017). Moreover, in the presence of mediators, laccases can 
oxidize substrates with a high redox potential (Khlifi et al. 
2010) and catalyze conversion of non-phenolic substrates 
(Mate and Alcalde 2015). This environmentally friendly oxi-
dation has contributed to the increasing use of laccases in the 
synthesis of organic compounds (Cannatelli and Ragauskas 
2017).

Use of laccases in the textile industry is relatively well-
established. These enzymes can replace hydrogen perox-
ide in biobleaching processes to remove natural pigments 
from cellulosic materials prior to dyeing them or treating 
them with sodium hypochlorite, as in “denim washing.” 
Laccases also can modify protein fibers to improve their 
water or shrink resistance (Pezzella et al. 2015). However, 
laccases are most frequently used for decolorization and 
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detoxification of dyes and wastewaters (WWs) from textile 
factories (Forgacs et al. 2004; Singh et al. 2015). The dye 
chemical structure, specifically the number and locations 
of functional groups, influences the laccase decolorization 
efficiency. Dyes containing electron-donating substituents 
(–CH3, –NH2, –OH) are degraded by laccases more effi-
ciently than dyes with electron-withdrawing substituents 
(–Cl, –NO2, –SO3H, –COOH). Laccases with high redox 
potential, originating mainly from ligninolytic fungi, are 
generally preferred for dye decolorization (Legerská et al. 
2016). Some dyes, such as anthraquinone, can serve as lac-
case catalysis mediators for azo dye degradation (Senthive-
lan et al. 2016; Zeng et al. 2012).

WW from textile factories typically has a high pH and 
temperature and often contains other chemicals including 
salts, heavy metals, detergents, and surfactants (Ali et al. 
2009). Decolorization procedures must be optimized to 
account for these factors, and additional procedures, such 
as membrane filtration, adsorption, coagulation, Fenton’s 
oxidation, and photo-catalytic oxidation, may need to 
be employed (Singh and Arora 2011). Hybrid processes 
combining two or more treatment methods represent an 
efficient and low-cost alternative. Chemical methods for 
pre-treatment and biological methods for post-treatment 
(e.g., ozonation or irradiation for pre-treatment followed 
by microbial degradation) or vice versa have been studied 
for these purposes (Holkar et al. 2016). Treatment with 
cross-linked aggregates of laccases combined with differ-
ent filtration techniques to eliminate pollutants is another 
example of a hybrid process (Grandclément et al. 2017). 
Biological methods based on laccases or a laccase/mediator 
system have been studied extensively and are often used for 
WW treatment, as well as bioremediation processes in gen-
eral (Archna and Kiran 2012; Barrios-Estrada et al. 2018; 
Naghdi et al. 2018; Sharma et al. 2018). The stability of 
laccases used in decolorization processes can be enhanced 
by immobilizing the enzymes [for review, see Bilal et al. 
(2017)] or the microorganisms producing recombinant lac-
cases (Herkommerova et al. 2018). Engineering appropriate 
expression vectors (Antosova and Sychrova 2016; Ranieri 
et al. 2009), altering the laccase structure (Luo et al. 2018; 
Mate and Alcalde 2015; Wang et al. 2017), and optimiz-
ing the host cultivation conditions also contribute to lac-
case decolorization efficiency (Antosova and Sychrova 2016; 
Patel and Gupte 2016; Zhu et al. 2016).

The toxicity of decolorized products is another impor-
tant parameter to consider in WW treatment. In general, 
lower toxicity is achieved in the presence of natural media-
tors (e.g., acetosyringone, syringaldehyde, vanillin) (Khlifi 
et al. 2010) or by application of synthetic mediators (e.g., 
2,6-dimethoxyphenol or 1-hydroxybenzotriazole). The latter 
often yields better decolorization but can have both positive 
and negative effects on the final sample toxicity. Tests based 

on inhibition of the growth of different microorganisms or 
seed germination (phytotoxicity test) (Benzina et al. 2013) 
can be used to determine toxicity. Both increases in toxicity 
of WW treated with laccases (Benzina et al. 2013; Dellai 
et al. 2013) and detoxification of WW by laccases (Guan 
et al. 2015; Khlifi et al. 2010) have been reported. Optimiz-
ing the WW decolorization conditions based on the proper-
ties of the laccases used and incorporating product toxicity 
analysis are, therefore, important considerations for effective 
biotechnological application of these enzymes.

Here, we biochemically characterized two purified lac-
cases originating from Myceliophthora thermophila (MtL) 
and Trametes trogii (TtL). Our analysis was aimed at their 
optimal application in decolorization of synthetic dyes and 
WWs from textile factories. In parallel, we performed tox-
icity analysis of decolorized synthetic dyes and WW sam-
ples following laccase treatment using a luminescent cell 
viability assay. To the best of our knowledge, this is the first 
report describing optimization of decolorization processes 
by recombinant MtL, as well as the first to assess toxicity of 
decolorized products using human cells. Our findings sug-
gest that some decolorized WWs from textile factories can 
pose a health risk for humans, highlighting the importance 
of product toxicity testing following laccase treatment.

Materials and methods

Chemicals

Synthetic dyes (Bromophenol Blue, Coomassie Brilliant 
Blue, Remazol Brilliant Blue R), substrates (Syringaldazine, 
ABTS: 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic 
acid), Metol), mediator (HBT: 1-hydroxybenzotriazole) 
and N-glycosidase F enzyme for deglycosylation of puri-
fied laccases were purchased from Sigma-Aldrich (St. Louis, 
MO, USA). The synthetic dye Saturn Blue was purchased 
from Synthesia (Semetín, Czech Republic). Samples of tex-
tile WW were obtained from CNM textil a.s. (Baška, Czech 
Republic). Other chemicals used for buffer preparation were 
purchased from PENTA s.r.o. (Prague, Czech Republic).

Microorganisms and cultivation conditions

The yeast strain Saccharomyces cerevisiae BW31a trans-
formed with expression plasmid pVT-100U-MtL [T2 mutant 
of MtL; MtL gene was mutated by directed evolution to 
enhance its expression in S. cerevisiae, Bulter et al. (2003)] 
or pVT-100U-TtL (LCC1 isoform of TtL; TtL gene was syn-
thetized with optimized codons for S. cerevisiae) was used 
for recombinant production of secreted laccases MtL and 
TtL from Myceliophthora thermophila and Trametes trogii, 
respectively (Antosova et al. 2018). The yeast cells were 
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cultivated in 500 mL (in a 2 L shake flask) of minimal YNB 
medium (6.7 g/L) without amino acids (ForMedium™) 
supplemented with 2% (w/v) glucose, 0.8% (w/v) alanine, 
0.6 mM  CuSO4 and BSM-Ura (Brent supplement mixture 
drop-out uracil, ForMedium™) at the recommended con-
centration according to the provider’s manual, at 30 °C for 
3 days.

Purification of laccases

Secreted laccases were isolated from cell-free supernatants 
obtained from S. cerevisiae cultivation. The yeast cells were 
harvested by centrifugation (5000×g for 15 min), and the 
supernatants were filtered over Durapore Membrane Filters, 
PVDF, pore size 0.45 µm, diameter 47 mm (Sigma-Aldrich, 
St. Louis, MO, USA). Sodium dihydrogen phosphate and 
ammonium sulfate were added to the filtrates to final con-
centrations of 50 mM and 1.5 M, respectively, and the pH 
was adjusted to 7. These samples were applied onto a Phe-
nyl Sepharose 6 Fast Flow column (HiTrap™ Phenyl FF, 
GE Healthcare, Piscataway, NJ, USA) equilibrated with 
50 mM phosphate buffer (pH 7) supplemented with 1.5 M 
ammonium sulfate. Fractions containing active laccases 
were eluted with 50 mM phosphate buffer (pH 7) and con-
centrated with Amicon Ultra filters (30 K, Millipore, Tul-
lagreen, Carrigtwohill, Co. Cork, Ireland) to a volume of 
5 mL. The concentrated samples were loaded onto a Super-
dex™ 75 10/300 GL column (GE Healthcare, Piscataway, 
NJ, USA) equilibrated with 50 mM phosphate buffer (pH 
7). Eluted fractions containing active laccases were pooled. 
The efficiency of each purification step was analyzed by lac-
case activity measurement and SDS-PAGE. Purified laccases 
were identified by N-terminal sequencing and peptide mass 
fingerprinting. For the further experiments, purified lac-
cases were dialyzed to remove salts (D-TUBE DIALYZER 
MEGA, 20 mL, MWCO 6–8 kDa, Merck, Darmstadt, Ger-
many) overnight at 4 °C against distilled water.

Laccase activity assay

During the purification process, laccase activity was meas-
ured spectrophotometrically using ABTS as a substrate. 
Each 200 µL reaction mixture contained 20 µL of eluted 
protein fractions, 1 µL of 100 mM ABTS (in 100 mM citrate 
buffer, pH 4.5) and 179 µL of 100 mM citrate buffer, pH 
4.5. Reactions were incubated at 25 °C in microtiter plates, 
and oxidation of ABTS was followed by a linear increase in 
absorbance at 418 nm (εABTS = 36,000 M−1cm−1). One unit 
of laccase activity was defined as the amount of enzyme oxi-
dizing 1 µmol of the substrate per minute. Laccase activity 
was expressed as units per milliliter (U/mL).

ABTS was also used as a substrate for determination of 
the pH and temperature dependence of laccase activity. The 

activity of purified laccases in various buffers with pH val-
ues ranging from 2 to 8.5 was measured in a mixture con-
taining 194 µL of an appropriate 100 mM buffer, 5 µL of 
enzyme (initial concentration was 0.05 mg/mL) and 1 µL of 
100 mM ABTS. For thermostability measurements, 5 µL of 
enzyme (initial concentration was 0.05 mg/mL) was incu-
bated in 194 µL of 100 mM citrate buffer, pH 4.5, at various 
temperatures in the 25–70 °C range for 1 h. Then, 1 µL of 
100 mM ABTS was added to the reaction to determine the 
residual laccase activity. The activity of laccases measured 
at 25 °C after 1 h was set at 100%.

All experiments were performed in triplicates, and data 
are shown as averages ± standard deviation.

Substrate specificity measurement

Substrate specificity assays involved one non-phenolic 
ABTS substrate and two phenolic substrates: metol and 
syringaldazine. Each reaction contained 5 µL of ~ 0.01 mg/
mL purified enzyme and 195 µL of substrate in an appropri-
ate buffer. Reactions were incubated at 25 °C in microtiter 
plates. Substrate oxidation was measured spectrophotomet-
rically as an absorbance change. The conditions for each 
substrate were as follows: 0.01–50 mM ABTS in 100 mM 
citrate buffer (pH 4.5), absorbance measurement at 418 nm 
(ɛABTS = 36,000 M−1  cm−1); 10–250 mM metol in 100 mM 
acetate buffer (pH 4.5), 540 nm (ɛmetol = 2,000 M−1  cm−1); 
0.0001–0.05 mM syringaldazine in 100 mM phosphate 
buffer (pH 6), 530 nm (ɛsyringaldazine = 65,000 M−1  cm−1). The 
Michaelis constant (Km) and the maximal reaction velocity 
(Vmax) were calculated according to the Michaelis–Menten 
equation: V = Vmax × [S]/Km + [S], where V is reaction rate 
and S is substrate concentration. Non-linear regressions were 
performed with SigmaPlot software, version 11.0 (Systat 
Software Inc., USA). All experiments were performed 
in triplicate, and data are shown as averages ± standard 
deviation.

Deglycosylation assay

The NetNGlyc 1.0 Server (http://www.cbs.dtu.dk/servi ces/
NetNG lyc/) was used to predict N-glycosylation sites in 
MtL and TtL sequence. Deglycosylation reactions, in a 
total volume of 265 µL containing 10 µg purified laccase, 
5 µL N-glycosidase F, 10 µL of 0.5 M sodium citrate buffer 
(pH 5.5) and an appropriate amount of sterile distilled 
water, were incubated overnight at 37 °C. To compare 
the glycosylated and deglycosylated forms of laccases, 
SDS-PAGE (protein bands visualized by Coomassie-
based staining solution; Instant Blue™, Expedeon, Cam-
bridge, UK) and native-PAGE (protein bands visualized 
by 100 mM ABTS in citrate buffer, pH 4.5) analysis were 
carried out. Laccase activity was assessed before and after 

http://www.cbs.dtu.dk/services/NetNGlyc/
http://www.cbs.dtu.dk/services/NetNGlyc/


 3 Biotech (2018) 8:505

1 3

505 Page 4 of 13

treatment with N-glycosidase F. The activity measure-
ments were performed in triplicate, and data are shown as 
averages ± standard deviation.

Decolorization studies

The purified laccases were used to decolorize two triph-
enylmethane dyes, Bromophenol Blue (BB, λmax = 595 nm) 
and Coomassie Brilliant Blue (CBB, λmax = 612  nm); 
one azo dye, Saturn Blue (SB, λmax = 595 nm); and one 
antraquinonic dye, Remazol Brilliant Blue R (RBB, 
λmax = 595 nm). Stock solutions of dyes (1 mg/mL) were 
prepared in sterile water, pH was adjusted to 4.5 with 
NaOH, and the solutions were filtered (Millex-GP syringe 
filter unit, disposable, 0.22 µm pore size, 33 mm diameter, 
Millipore, Tullagreen, Carrigtwohill, Co. Cork, Ireland). 
A 10 mg/mL stock solution of the 1-hydroxybenzotriazole 
(HBT) mediator was prepared in DMF. In the initial assay, 
the reaction was carried out in a microtiter plate in a total 
volume of 200 µL in sterile distilled water with final con-
centrations of 50 mg/L dye and 0.05 U/mL laccase. The 
mixture was incubated for 20 h at 30 °C, and decoloriza-
tion was monitored spectrophotometrically as the relative 
decrease in absorbance at the appropriate wavelength after 
20 h. During optimization of decolorization conditions, 
different laccase concentrations, pH values, and tempera-
tures, as well as the presence or absence of HBT mediator, 
were tested. In these experiments, the decrease in absorb-
ance was monitored continuously for 30 min (for TtL) and 
also after 60, 90, and 120 min (for MtL).

Samples of textile factory WW (WW 1–5) contained dyes 
and many other chemicals from textile production (CNM 
textil a.s., Baška, Czech Republic). WW no. 4 (black with 
pH 11.2) and WW no. 5 (violet with pH 9.1) were filtered 
(Millex-GP syringe filter unit, disposable, 0.22 µm pore size, 
33 mm diameter, Millipore, Tullagreen, Carrigtwohill, Co. 
Cork, Ireland) to remove solid particles prior to decoloriza-
tion tests. Similar to our decolorization experiments with 
dyes, we optimized conditions for WW decolorization (lac-
case concentration, pH, temperature, presence of a media-
tor). During these assays, the decrease in absorbance was 
measured after 20 h.

Decolorization was calculated as follows: decolorization 
(%) = [(A0 − At)/A0] × 100, where A0 is the initial absorb-
ance of the dye and At is the absorbance of the dye after 
time. All experiments were performed in triplicate, and data 
are shown as averages ± standard deviation. Dyes with heat-
inactivated laccases were used as negative controls only in 
the experiments under initial conditions (not under opti-
mized conditions for dye and WW decolorization). Every 
experiment included blanks containing all components of 
the reaction mixture except dyes and WWs.

Toxicity study

Human peripheral blood mononuclear cells (PBMCs) were 
separated from the peripheral blood of healthy donors by 
gradient centrifugation on Ficoll-Hypaque (Sigma-Aldrich, 
St. Louis, MO, USA) at room temperature (RT). Briefly, 
PBS-diluted blood (1:1) was layered onto the Ficoll Paque 
medium without disturbing the layer and centrifuged at 
400×g for 35 min at RT without brake. Cells at the Ficoll-
plasma interface were collected and washed with PBS con-
taining 2 mM EDTA. The remaining red blood cells were 
lysed with ammonium chloride-based red blood cell (RBC) 
lysis buffer.

The CellTiter-Glo Luminescent Cell Viability Assay 
kit (Promega, Madison, WI, USA) was used to determine 
the number of viable cells according to the manufacturer’s 
instructions. This luminescent method is based on quantita-
tion of ATP present in the cell lysate, which corresponds 
to the number of metabolically active cells. The concen-
tration of isolated PBMCs was adjusted to 2.2 × 106 cells/
mL in RPMI 1640 medium (Biowest, Nuaillé, France) sup-
plemented with 10% heat-inactivated Fetal Bovine Serum 
(FBS; Biosera, Nuaillé, France) and glutamine (2 mM). A 
90 µL aliquot of the cell suspension (~ 200,000 cells) was 
seeded into each well of a white 96-well flat-bottomed plate 
(Thermo Fisher Scientific, Waltham, MA, USA) and incu-
bated at 37 °C in a 5%  CO2 atmosphere with 95% humid-
ity. After overnight culture, 10 µL of sample (WWs, dyes 
or purified laccases) were added to wells, and cells were 
incubated for an additional 72 h. Each sample was tested in 
quadruplicate wells. After incubation, an equal volume of 
CellTiter-Glo™ reagent (100 µL) was added to each well to 
lyse the cells and generate a luminescent signal. The plate 
was shaken at 500 RPM for 10 min at RT, the signal was 
allowed to stabilize for 15 min at RT, and luminescence was 
measured in a Tecan Genios microplate reader (Tecan, Aus-
tria GmbH, Grödig, Austria) with an integration time of 1 s 
per well. Cell viability was calculated by normalizing the 
sample luminescence to that of a control containing 10 µL 
MilliQ water.

Results and discussion

Production and purification of recombinant laccases

First, we tested different cultivation conditions to optimize 
production of MtL in S. cerevisiae. We detected MtL activ-
ity in crude S. cerevisiae supernatants in the presence of 
different concentrations of  Cu2+ under various cultivation 
temperatures (Online Resource, Fig. S1a, b). We achieved 
the highest MtL production in YNB medium containing 
0.8% (w/v) alanine and 0.6 mM  CuSO4 with cultivation at 
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30 °C for 3 days. These cultivation conditions were used for 
production of both laccases.

MtL and TtL were purified from the cultivation media by 
consecutive hydrophobic and gel chromatography (Fig. 1), 
and the purity of the isolated proteins was determined by 
mass spectrometry analysis and N-terminal sequencing. Pro-
tein yields from each purification step are summarized in 
Table 1. The molecular weights of native MtL and TtL are 
85 kDa (Hollmann et al. 2008) and ~ 60 kDa (Ai et al. 2015; 
Zouari-Mechichi et al. 2006), respectively. However, the 
molecular weights of recombinant laccases may be higher 
due to hyperglycosylation in different microorganisms 
(Colao et al. 2006; Chen et al. 2012). MtL and TtL purified 
from S. cerevisiae displayed molecular weights > 100 kDa 
and ~ 65 kDa, respectively, confirming hyperglycosylation 
of MtL and indicating a low degree of glycosylation of TtL.

We measured the activities of isolated protein fractions 
spectrophotometrically using ABTS as a substrate. The 
specific activity of MtL was six times higher than that of 
TtL (see Table 1). This can be attributed to our use of the 
T2 mutant of MtL, designed by Bulter et al. (2003), which 
allows production of a laccase with higher-specific activity, 
but can lead to lower protein stability.

Syringaldazine is the preferred substrate for MtL 
and TtL

The kinetic parameters (Km, kcat and Vmax) for laccase-
mediated oxidation of two phenolic substrates (syringal-
dazine and metol) and one non-phenolic substrate (ABTS) 
(for chemical formulas, see Online Resource, Table S1) 
were estimated from Michaelis–Menten nonlinear regres-
sion curves using SigmaPlot software (Table 2). Both lac-
cases exhibited the highest catalytic efficiency (kcat/Km) 
for oxidation of syringaldazine and the lowest for metol, 
which was a relatively poor substrate. In contrast to pre-
vious studies (Ai et al. 2015; Colao et al. 2006; Zouari-
Mechichi et al. 2006) indicating that ABTS is a preferred 
substrate, we found that the catalytic efficiencies of both 
laccases were roughly six to seven times lower for ABTS 
oxidation than syringaldazine oxidation. This may be 
caused by different reaction conditions and a lower degree 
of purity of the laccase preparations used in previous stud-
ies. Our work with highly purified laccases strongly sug-
gests that syringaldazine is the preferred substrate for MtL 
and TtL.

Fig. 1  Purification of a MtL 
and b TtL. Lane M, protein 
marker; lane 1, crude culture 
filtrate; lane 2, laccase purified 
by hydrophobic chromatog-
raphy (HiTrap™ Phenyl FF) 
and concentrated for the next 
purification step; lane 3, laccase 
purified by gel chromatography 
(Superdex™ 75 10/300 GL). 
Protein fractions were separated 
on 12% polyacrylamide gels and 
stained using Instant Blue™ 
solution

Table 1  Summary of purification steps and yields of recombinant MtL and TtL

Laccase Purification step Volume (mL) Activity (U/mL) Protein (mg/mL) Specific activ-
ity (U/mg)

Activity 
yield (%)

Purifica-
tion (fold)

MtL Culture filtrate 1900 0.03 0.01 1.69 100 1
HiTrap™ Phenyl FF 25 1.88 0.17 10.81 99 6
Superdex™ 75 10/300 GL 5 4.50 0.23 19.68 47 12

TtL Culture filtrate 1900 0.003 0.016 0.207 100 1
HiTrap™ Phenyl FF 25 0.241 0.084 2.857 95 14
Superdex™ 75 10/300 GL 2 0.34 0.11 3.13 11 15
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Glycosylation is important for laccase activity

We predicted six N-glycosylation sites in the MtL sequence 
(Asn 92, 135, 248, 263, 291 and 336) using the NetNGlyc 
1.0 Server. In the TtL sequence, we found only two Asn 
residues, at positions 72 and 454, that may be glycosylated. 
To assess the effect of glycosylation on laccase activity, 
we treated the purified enzymes with N-glycosidase F and 
analyzed the glycosylated and deglycosylated forms by 
SDS-PAGE and native-PAGE stained with ABTS (Fig. 2a). 
Deglycosylation of MtL resulted in a decrease in molecular 
weight of ~ 25 kDa (confirmed by peptide mass fingerprint-
ing; data not shown), which is in agreement with results 
obtained by Bulter et al. (2003) and Piscitelli et al. (2005) 
for MtL produced in S. cerevisiae. Our prediction of a lower 
glycosylation level for TtL was confirmed; no significant 
differences in the molecular weights of the glycosylated 
and deglycosylated forms were detected by SDS–PAGE. 
However, the activity of deglycosylated TtL was 10% lower 
than that of glycosylated TtL (Fig. 2b). The activity of 

deglycosylated MtL decreased by 25% (Fig. 2b). Similarly, 
other researchers have found that deglycosylation of lac-
case from the white-rot fungi Pycnoporus sanguineus led 
to the an 18% reduction in its oxidation activity (Vite-Vallejo 
et al. 2009), while laccases from Lentinus sp. lost up to 50% 
of activity after mutation of predicted glycosylation sites 
(Maestre-Reyna et al. 2015). Our results, as well as previous 
findings, clearly show that laccase glycosylation contributes 
to efficient oxidation.

pH, salt, and temperature influence laccase activity

The efficiency of laccase-mediated WW decolorization can 
be influenced by several factors, including the high pH of 
WW and the presence of different cations, salts, and other 
chemicals.

To identify the pH optima of the enzymes, we tested 
their activity at different pH values using ABTS as a sub-
strate (Fig. 3). Both laccases exhibited highest activity 
at pH 4.5, and activity decreased at lower and higher pH 

Table 2  Kinetic parameters of recombinant MtL and TtL

Parameters were calculated according to the Michaelis–Menten equation

Substrate MtL TtL

Km (µM) Vmax (µM/sec) kcat  (s−1) kcat/Km Km (µM) Vmax (µM/s) kcat  (s−1) kcat/Km

ABTS 20.9 ± 5 0.0019 13.2 ± 0.5 0.6 38 ± 9.6 0.0009 8.5 ± 0.2 0.2
Metol 21 800 ± 6 600 0.00016 19.8 ± 0.5 0.0009 57 600 ± 23 700 0.000005 0.1 ± 0.003 0.000002
Syringaldazine 17 ± 5 0.00063 63.7 ± 0.8 3.7 0.074 ± 0.014 0.00018 0.11 ± 0.003 1.5

Fig. 2  a Analysis of glycosylated and deglycosylated forms of puri-
fied MtL and TtL. Right side—SDS-PAGE, 12% polyacrylamide 
gels stained by Coomassie-based staining solution; left side—native-
PAGE, 12% polyacrylamide gels stained with 100  mM ABTS (in 
100  mM citrate buffer, pH 4.5). b Detection of enzymatic activ-

ity of glycosylated and deglycosylated purified MtL and TtL using 
100 mM ABTS (in 100 mM citrate buffer, pH 4.5) as a substrate. The 
experiments were performed in triplicate, and data are shown as aver-
ages ± standard deviation
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values. MtL became completely inactive at pH > 8, and 
TtL at pH > 6.5. The loss of activity at higher pH was 
likely caused by hydroxide anions binding to the cata-
lytic center (especially to the T2/T3 copper center) and 
decreasing the oxygen reduction potential (Xu 1997). 
The absence or very low activity of MtL at pH < 4 is a 
result of MtL gene mutation by directed evolution. The T2 
mutant of MtL has only 50% of the wild-type activity at 
pH 3 and no activity at pH 2 (Bulter et al. 2003).

We next determined the effect of 80 mM NaCl, the 
most common salt present in textile WWs, on laccase 
activities in buffers with various pH values (Online 
Resource, Fig. S2a, b). At pH 4.5, the activity of MtL 
and TtL decreased by 37% and 45%, respectively, in the 
presence of NaCl compared to buffers without NaCl. Our 
results are in agreement with those of Zilly et al. (2011) 
and Champagne et al. (2013), who determined the effect 
of NaCl on decolorization of dyes. Chloride ions bind to 
the catalytic center of laccases (especially to the T2 site) 
and block electron transfer from the T1 site to the T2/
T3 cluster site, similar to the effect of hydroxide anions 
(Kepp 2015; Raseda et al. 2014).

Dye decolorization by laccases is more effective at 
higher temperatures (Nyanhongo et al. 2002), and we, 
therefore, assessed the thermal stability of purified lac-
cases (Fig. 4). At 40 °C, MtL retained 61% and TtL 86% 
of the initial activity determined at 25 °C. At 50 °C, the 
activity of TtL decreased by only 23%, whereas MtL lost 
92% of its initial activity. TtL retained more than 50% 
activity even at 60 °C. Daâssi et al. (2013) reported an 
optimal temperature of 50 °C for TtL-catalyzed decolori-
zation of azo dye Acid Orange 51, indicating the broader 
potential of TtL for dye decolorization.

MtL and TtL serve as non‑toxic, effective catalysts 
for decolorization of synthetic textile dyes

We assessed the abilities of laccases to decolorize two triph-
enylmethane dyes, Bromophenol Blue (BB) and Coomassie 
Brilliant Blue (CBB); one azo dye, Saturn Blue (SB); and 
one antraquinonic dye, Remazol Brilliant Blue R (RBB) (for 
chemical formulas, see Online Resource, Table S1). Under 
the initial conditions (50 mg/L dye, 0.05 U/mL purified 
laccase, pH 7, 30 °C, 20 h), purified MtL-decolorized all 
the dyes very poorly compared with the negative control 
(heat-inactivated laccase). In contrast, purified TtL decol-
orized the dyes with the following efficiencies: BB − 99%, 
RBB − 95%, CBB − 47%, and SB − 42%. We next measured 

Fig. 3  pH–activity profiles of purified MtL (filled diamond) and TtL 
(filled square). Laccase activities were measured in 100 mM buffers 
(sodium acetate buffer for pH 2, 3, 4; sodium citrate buffer for pH 2.5, 
3.5, 4.5, 5.5; potassium phosphate buffer for pH 5, 6, 7; sodium phos-

phate buffer for pH 6.5 and Tris buffer for pH 7.5, 8, 8.5) at 25  °C 
using ABTS as a substrate (in 100 mM citrate buffer, pH 4.5). The 
experiments were performed in triplicate, and data are shown as aver-
ages ± standard deviation

Fig. 4  Thermostability of purified MtL (filled diamond) and TtL 
(filled square). The activities were measured in 100  mM citrate 
buffer, pH 4.5, at various temperatures between 25 and 70 °C for 1 h 
using ABTS (in 100 mM citrate buffer, pH 4.5) as a substrate. The 
experiments were performed in triplicate, and data are shown as aver-
ages ± standard deviation



 3 Biotech (2018) 8:505

1 3

505 Page 8 of 13

decolorization under optimized conditions (0.2 U/mL puri-
fied laccase, citrate buffer, pH 4.5, 40 °C) with or without 
HBT mediator with 30 min reaction times for TtL and 20 h 
for MtL (Fig. S3 and S4 in Online Resource). Compared 
with the initial conditions, these conditions significantly 
improved the ability of MtL to decolorize BB and RBB (by 
56% and 58%, respectively) and moderately increased its 
activity toward SB and CBB (see Fig. 5). Addition of HBT 
improved the MtL-catalyzed decolorization of SB and CBB 
by 78% and 65%, respectively. Decolorization of all dyes by 
TtL was more effective than the MtL-catalyzed reactions 
under the initial conditions and was significantly faster 
under optimized conditions. Under optimized conditions, we 
observed some degree of decolorization of all dyes within 
30 min. Use of optimized conditions and addition of HBT 
increased decolorization of SB to nearly 100% and RBB to 
90%. A high degree of CBB decolorization by TtL occurred 
only in the presence of HBT. Several previous studies have 
described decolorization of synthetic dyes by TtL (Colao 
et al. 2006; Grassi et al. 2011; Ranieri et al. 2009; Zouari-
Mechichi et al. 2006), but the efficiency of decolorization 
differs among these studies due to different experimental 

conditions (e.g., concentrations of enzymes, dyes and media-
tors; temperature; pH; time of incubation). To the best of our 
knowledge, this is the first report describing recombinant 
MtL as an efficient tool for decolorization of synthetic dyes.

In general, many synthetic dyes, particularly azo dyes, 
are potentially toxic or mutagenic and negatively influence 
the environment and human health (Carneiro et al. 2010; 
Mahmood et al. 2016; Robinson et al. 2001; Sen et al. 2016). 
Dye toxicity is usually tested in bioassays based on inhibi-
tion of microorganism or plant root growth or germination 
of plant seeds (Abadulla et al. 2000; Chhabra et al. 2015; 
Yang et al. 2015). Only a few studies have tested dye toxic-
ity using human cells (Vanhulle et al. 2008). Here, we used 
human PBMCs to determine the toxicity of dye decoloriza-
tion products. First, we tested the toxicity of the purified 
laccases. Both laccases were non-toxic (data not shown), 
and the results are in agreement with data obtained for MtL 
by Brinch and Pedersen (2002). The dyes used in this study 
did not show any toxicity either before or after decoloriza-
tion by laccases, even when HBT was present in the reaction 
(Online Resource, Fig. S5a, b). Nevertheless, the ability of 
laccases to reduce the toxicity of several toxic dyes has been 

Fig. 5  a Decolorization of synthetic dyes by purified MtL under ini-
tial and optimized (opt.) conditions after 20 h. The experiments were 
performed in triplicate, and data are shown as averages ± standard 
deviation. b Photographic record of dyes before and after treatment 
with purified MtL (under optimized conditions). c Decolorization 

of synthetic dyes by purified TtL under initial and optimized (opt.) 
conditions after 20 h and 30 min, respectively. The experiments were 
performed in triplicate, and data are shown as averages ± standard 
deviation. d Photographic record of dyes before and after treatment 
with purified TtL under optimized conditions



3 Biotech (2018) 8:505 

1 3

Page 9 of 13 505

described by Rezaei et al. (2015), Daâssi et al. (2013) and 
Shanmugam et al. (2017).

Efficiencies of WW decolorization and detoxification 
differ among laccases and depend on wastewater 
properties

Five samples of WW collected at different times from a tex-
tile factory in the Czech Republic were initially tested for 
toxicity using human PBMCs. Information about the WW 
content was not available, as the textile factory runs a combi-
nation of different manufacturing processes and the content 
of individual dyes varies over time. Of the five WW samples 
analyzed, two (WW4 and WW5) were toxic (see Fig. 6). 
PBMC viabilities in the presence of WW4 and WW5 were 
63% and 35%, respectively. These two samples were used for 
further decolorization and detoxification analysis. For WW 
decolorization, we applied the optimal conditions used in 
our prior experiments with dyes. The WW pH was adjusted 
to 4.5 with HCl, and samples were incubated at 40 °C for 
20 h in the presence or absence of purified laccases. No 
changes in absorbance were detected when WWs were incu-
bated without laccases, indicating that the selected condi-
tions did not affect WW properties and that WW decoloriza-
tion can be attributed to laccase activity. Purified MtL and 
TtL decolorized WW4 with the same efficiency (45%), and 
addition of HBT increased the extent of decolorization to 
50% and 74%, respectively (Fig. 7a, b). Similar results were 
obtained for WW5. MtL and TtL decolorized WW5 with 
30% and 42% efficiency, respectively (Fig. 7 c, d). However, 
addition of HBT influenced the reactions catalyzed by MtL 
and TtL very differently. While decolorization of WW5 by 
MtL slightly increased in the presence of the mediator, a 

more colored product was formed during the TtL-catalyzed 
reaction (Fig. 7d). Fragments of azo bond cleavage in the 
presence of HBT, which enables laccases to oxidize non-
phenolic substrates or substrates with a high redox potential 
(Moilanen et al. 2014), can undergo autooxidation under 
aerobic conditions and form colored products (Tauber et al. 
2008). Our results suggest that decolorization efficiency can 
be affected not only by the type of laccase, but also by the 
type of mediator, pH value, reaction temperature, and pres-
ence of other inhibitors in the reaction. The decolorization 
of industrial WWs by different laccase systems has been 
studied by Antosova et al. (2018); Bello-Gil et al. (2018) and 
Sondhi et al. (2018); these studies have reported decoloriza-
tion with up to 90% efficiency.

We next assessed the toxicity of decolorized WWs. The 
change in pH and higher temperature had no effect on WW 
toxicity (data not shown). Treatment of WW4 with MtL with 
or without HBT, which decolorized the samples to 50%, 
nearly eliminated their toxicity (cell viability within treated 
WW4 was 97%) (Fig. 7a, light gray columns). In contrast, 
the WW4 decolorization by TtL to 55 and 26% (in the pres-
ence of mediator) led to more toxic products than prior to 
laccase treatment (cell viability was only 7% in the absence 
of HBT, and 15% in its presence) (Fig. 7b). We observed 
different results for WW5 treated with MtL and TtL. While 
detoxification and decolorization of WW5 by MtL was com-
parable to that obtained for WW4 with exception of higher 
product toxicity (cell viability in the presence and in the 
HBT absence was only 78 and 81%, respectively) (Fig. 7c), 
the decolorization of WW5 by TtL in the presence of HBT 
resulted in a more colored product, but cell viability was 
70% (Fig. 7d). In summary, our results show that the effi-
ciency of WW detoxification differs among laccases and is 
dependent on the chemical composition of WWs. Previous 
work has demonstrated WW decolorization and detoxifica-
tion by laccases from Pseudomonas peli (Dellai et al. 2013) 
and Trametes hirsuta (Abadulla et al. 2000). Application 
of a natural laccase-mediator such as acetosyringone is a 
less effective decolorizing agent but usually generates non-
toxic products. In contrast, addition of HBT contributes to 
a higher rate of WW decolorization but typically does not 
significantly decrease the toxicity of treated WW (Khlifi 
et al. 2010).

Conclusion

Our experiments with MtL and TtL purified to high homoge-
neity provided accurate data on multiple parameters impor-
tant for optimization of decolorization processes, includ-
ing the thermal stabilities of these enzymes, their activity 
dependence on salt concentration and pH, and their sub-
strate specificities. Determining the precise concentrations 

Fig. 6  Cell viability in the presence of different wastewaters (1–5). 
Cell viability tests were carried out on PBMCs using the CellTiter-
Glo® Luminescent Cell Viability Assay, which determines the num-
ber of viable cells based on the cellular ATP level. The experiments 
were performed in triplicate, and data are shown as averages ± stand-
ard deviation
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of purified laccases enabled us to directly compare the 
decolorization and detoxification efficiencies of laccases 
from different microorganisms. Our results suggest the 
great importance of toxicity testing during laccase-mediated 
decolorization of WWs. The favorable properties of laccases 
continue to be improved by genetic engineering and other 
methods, and use of these enzymes—in combination with 
other physicochemical methods—has great potential appli-
cation in WW treatment processes.
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