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Z-ring membrane anchors associate with cell wall
synthases to initiate bacterial cell division

Manuel Pazos'! Katharina Peters!, Mercedes Casanova?, Pilar Palacios?, Michael VanNieuwenhze® 3,

Eefjan Breukink® %, Miguel Vicente? & Waldemar Vollmer!

During the transition from elongation to septation, Escherichia coli establishes a ring-like
peptidoglycan growth zone at the future division site. This preseptal peptidoglycan synthesis
does not require the cell division-specific peptidoglycan transpeptidase PBP3 or most of the
other cell division proteins, but it does require FtsZ, its membrane-anchor ZipA and at least
one of the bi-functional transglycosylase-transpeptidases, PBP1A or PBP1B. Here we show
that PBP1A and PBP1B interact with ZipA and localise to preseptal sites in cells with inhibited
PBP3. ZipA stimulates the glycosyltransferase activity of PBP1A. The membrane-anchored
cell division protein FtsN localises at preseptal sites and stimulates both activities of PBP1B.
Genes zipA and ftsN can be individually deleted in ftsA* mutant cells, but the simultaneous
depletion of both proteins is lethal and cells do not establish preseptal sites. Our data support
a model according to which ZipA and FtsN-FtsA have semi-redundant roles in connecting the
cytosolic FtsZ ring with the membrane-anchored peptidoglycan synthases during the pre-
septal phase of envelope growth.
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ost bacteria contain a peptidoglycan (PG) sacculus to

counteract the osmotic pressure and maintain the shape

of the celll. During the cell cycle, the sacculus is
enlarged and remodelled to facilitate cell growth and division. In
Escherichia coli this process is achieved by dynamic multi-enzyme
complexes, the elongasome and divisome, involved in elongation
or septation, respectively, which are anchored to the cytoplasmic
membrane. The periplasmic steps of PG synthesis are catalysed
by glycosyltransferases (GTases), which polymerise the lipid II
substrate into glycan strands, and transpeptidases (TPases) that
cross-link the peptides of adjacent strands®. PBP2 and PBP3 are
essential TPases involved in cell elongation and division,
respectively’=. The bifunctional synthases PBP1A and PBP1B
(encoding both GTase and TPase activities) have semi-redundant
roles in cell elongation and division®. PBP1B interacts with PBP3
and is enriched at division sites”. PBP1A interacts with PBP2 and
affects cell diameter®, suggesting a role in elongation. However,
single-molecule tracking of fluorescent PBP1A fusion proteins
revealed slow and fast moving molecules with different trajec-
tories than the essential cell elongation proteins PBP2 and
RodA®10, The activities of the PG synthases are coordinated or
regulated by outer membrane lipoproteins (LpoA and LpoB) and
components of the divisome and elongasome, the SEDS proteins
(RodA and FtsW) and bacterial cytoskeletal proteins (MreBCD
and FtszZ)»11-13,

The synthesis of the septal PG at mid-cell is controlled by the
divisome complex, the components of which span from the
cytosol to the outer membrane. At early stages of cell division
FtsZ forms a cytosolic ring-like structure (Z-ring) that is
anchored to the inner membrane by ZipA and FtsAl415. This
proto-ring complex'® serves as a scaffold to hierarchically recruit
the other components of the divisome including FtsK, FtsQLB,
FtsW, FtsI (PBP3) and FtsN'L. FtsN was originally reported as the
last essential protein recruited to division site!” but recent studies
showed that a portion of FtsN is also recruited at early stages
through a cytosolic interaction with FtsA®1°. The main septal
PG synthases PBP1B and PBP3 interact with each other’ and
with different components of the divisome such as FtsN and
FtsW, which regulate their synthetic activities!>20. The integral
membrane protein FtsW flips lipid 112! and lacks GTase activity'?
in the test tube. However, other groups proposed that FtsW and
other members of the SEDS proteins have GTase activity?>23, as
has been shown for RodA from B. subtilis*2, a RodA-PBP2 fusion
from E. coli?* and FtsW from several species?®. FtsN also interacts
with PBP1A20, consistent with the observation that PBP1A is able
to bypass the absence of PBP1B during septal PG synthesis. In
fact, there is evidence for interactions between components of the
elongasome and divisome during the transition from cell elon-
gation to division26-28,

During this transition new PG is synthesised at mid-cell before
any visible constriction, causing cell elongation in a ring-like
growth zone at the future division (preseptal) site. This PG is
inserted in a PBP3-independent manner, as it takes place in the
presence of the PBP3-inhibitor aztreonam, and therefore was
named PIPS for PBP3-(or Penicillin-) Independent Peptidoglycan
Synthesis?*=31. For the purpose of this study, we refer to PIPS as
preseptal PG synthesis. Preseptal PG synthesis can be readily
observed in cells upon long-term in situ labelling of PG with p-
cysteine followed by growth in aztreonam-containing medium,
isolation of sacculi and visualisation of D-cysteine residues, and
appears as label-free zones at future division sites’*31. In E. coli
preseptal synthesis has a relatively small contribution to the total
length growth of the cell®?, but Caulobacter crescentus elongates
significantly using this mode of growth32. So far, in E. coli only
FtsZ, ZipA and either PBP1A or PBPI1B are described as essential
proteins for preseptal PG synthesis, and several proteins from

both elongasome and divisome complexes are not required, e.g.
RodA, FtsA, FtsEX, FtsK or FtsQ3!. However, even though these
proteins or downstream cell division proteins are not required for
preseptal PG synthesis, they might still localise at these sites.

The minimal requirement of cell division proteins for preseptal
PG synthesis might suggest that ZipA acts as a linker between the
cytosolic Z-ring and the periplasmic PG synthases. ZipA is dis-
pensable in cells containing certain point mutations in ftsA (named
ftsA*)33-35 and preseptal PG synthesis takes also place in these
strains’!, indicating that a possible role of ZipA in linking the Z-
ring and the PBPs could be bypassed in the ftsA* background.

In this work we show that ZipA interacts with both, PBP1A
and PBP1B, linking the cytosolic Z-ring with the PG synthases.
Also FtsN localises at preseptal sites and both, FtsN and ZipA
stimulate PBP1A and PBP1B (albeit differently), implying roles of
FtsN and ZipA in preseptal PG synthesis. Our observation of the
synthetic lethality of zipA and ftsN in a ftsA* mutant strain and
the drastic decrease of preseptal PG synthesis bands during zipA
and ftsN depletion supports a model according to which ZipA
and FtsN (the latter bound to FtsA) have redundant functions in
linking the Z-ring and the PBPs during preseptal PG synthesis.

Results

ZipA interacts with PBP1A, PBP1B and PBP3 and not with
FtsN. We hypothesised that PG synthases are guided by cytoske-
letal elements during preseptal PG synthesis, as they are during cell
elongation and division, and that this is achieved by interactions
between the relatively few proteins essential for the process. ZipA
anchors FtsZ to the membrane via its transmembrane region and
would be ideally positioned to connect the cytosolic Z-ring with the
membrane-anchored PBPs required for the synthesis of new PG in
the periplasm (Fig. 1a). We tested if ZipA interacts in vivo with
PBP1A and PBP1B, and with the late cell division proteins PBP3
and FtsN. Using specific antibodies in a cellular cross-linking and
co-immunoprecipitation assay we detected interactions between
ZipA and PBP1A, PBP1B and PBP3, but not with FtsN (Fig. 1b). To
elucidate if these interactions are direct, we purified the proteins
with or without an oligohistidine tag and performed pulldown
assays with nickel-nitrilotriacetic acid (Ni-NTA) agarose. ZipA
interacted directly with the PBPs as untagged PBP1A and PBP1B
were retained on the Ni-NTA beads only in the presence of His-
ZipA (Fig. 1c, d), and the untagged ZipA was retained only in the
presence of His-PBP3 (Fig. 1e). A soluble version of ZipA lacking its
first 25 amino acid residues showed decreased interaction with any
of the PBPs (Fig. 1c—e), suggesting that the transmembrane and/or
adjacent regions of ZipA are involved in these interactions. We next
replaced the transmembrane region of ZipA by the unrelated
WALP23 peptide, which forms a single transmembrane alpha helix
formed by repeats of alternating leucine and alanine residues,
flanked by two tryptophan residues at the N- and C-termini, and
has been previously studied as an artificial transmembrane pep-
tide30. Purified WALP23-sZipA did not interact with PBPIA,
PBP1B or PBP3 (Supplementary Fig. 1c and 1d), showing that the
interaction of ZipA with PBPs requires the native amino acid
sequence of its transmembrane region and does not occur with just
any transmembrane helix. In these pulldown assays we also
observed an interaction between ZipA and FtsN. However unlike
the interactions between ZipA and PBP1A or PBPIB, the
ZipA-FtsN interaction was not detected at higher concentration of
detergent (Supplementary Fig. 1). Hence, the ZipA-FtsN interac-
tion might be disrupted by hydrophobic molecules such as deter-
gents and phospholipids, which would be consistent with the
inability to cross-link both proteins in the cell (Fig. 1b). All together
these results suggest that ZipA interacts with PBPs and that it might
link the Z-ring with the PG synthases.
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Fig. 1 ZipA interacts directly with PBP1A, PBP1B and PBP3 when its periplasmic and transmembrane regions are present. a Schematic representation of
proteins essential for preseptal PG synthesis and the FtsA-PBP3 (3) and FtsA-FtsN (N) interactions. The residues defining the N-terminal periplasmic and
transmembrane regions of ZipA are labelled. b Wild-type cells were cross-linked by the addition of DSP, co-immunoprecipitated using specific antibodies
recognising PBP1A, PBP1B, PBP3 or ZipA, and bound to G-agarose beads. The cross-linking was reversed by the addition of B-mercaptoethanol, the proteins
were separated by SDS-PAGE and the interacting proteins, ZipA or FtsN, were immunodetected by western blot using specific antibodies. SN unbound
proteins, E elution. Uncropped scans of the western blots are supplied as Supplementary Fig. 9. c-e Interactions assayed using purified proteins in a cross-
linking/pulldown experiment in the presence of 0.05% Triton X-100, in which His-ZipA or sZipA-His, a soluble variant lacking the first 25 residues
(periplasmic and transmembrane regions), were incubated with either PBP1A (¢) or PBP1B (d), and His-PBP3 was incubated with either ZipA or sZipA (e).
In all the cases, the histidine tagged proteins were able to retain the untagged protein when ZipA contained the periplasmic and transmembrane regions.
The soluble version of ZipA did not retain either PBPTA or PBP1B, and it was not retained by His-PBP3. Uncropped pictures of the gels are supplied as
Supplementary Fig. 10. M molecular weight markers, kDa kilodalton, App. applied sample, Elut. sample eluted from Ni-NTA beads

PBP1A, PBP1B, ZipA and FtsN localise at preseptal positions.
To test if PBP1A and PBP1B are recruited to preseptal positions
in the cell, we localised both PBPs in exponentially growing cells
using specific antibodies before and after the inhibition of cell
division by aztreonam. The effect of aztreonam on cell growth
and division was monitored by measuring the optical density and
the increase in particle counts (Supplementary Fig. 2). Before the
addition of aztreonam, both PBPs localised along the lateral cell
periphery and in case of PBP1B also at cell division site (Fig. 2
and Supplementary Fig. 3), confirming previous localisation
data”8, Interestingly, the localisation pattern of PBP1A and
PBP1B changed when cells grew in the presence of aztreonam.
Forty minutes after the addition of the antibiotic, both PBPs
localised mainly at potential cell division sites where they may be
available to participate in preseptal PG synthesis (Fig. 2 and
Supplementary Fig. 4). We also determined the localisation of
FtsN, as we hypothesised that it might be recruited to preseptal
positions based on its known interaction with FtsA, PBP1A and
PBP1B!820, FtsN was present at preseptal or cell division sites
and along the cell membrane in the presence or absence of
aztreonam (Fig. 2 and Supplementary Fig. 4). As control we also
localised FtsZ and ZipA, which both showed the expected loca-
lisation at cell division site (in the absence of aztreonam) and at
potential cell division sites (in the presence of aztreonam) (Fig. 2
and Supplementary Fig. 4). We also localised the above-

mentioned proteins in cells lacking PBP1A (AmrcA) or PBP1B
(AmrcB) to test if the observed localisation patterns depend on
the presence of either PBP1A or PBPIB, as it is known that both
proteins can perform preseptal PG synthesis. Nearly all the
examined cells showed rings containing FtsN (>77%), FtsZ
(>92%) or ZipA (>95%) irrespective of the time of incubation
with aztreonam. The number of rings with associated PBP1A
(>77%) or PBP1B (>92%) decreased slightly upon incubation
with the antibiotic (by 10% or 20%, respectively) (Supplementary
Fig. 3 and Supplementary Table 3). The normal localisation of
FtsZ, ZipA and FtsN in cells lacking one of the PBPs might be
expected because each of them is capable of compensating for the
absence of the other. These data suggest that PBP1A and PBP1B
are recruited to preseptal positions in the cell, presumably linked
to the Z-ring by ZipA, although FtsN and other cell division
proteins may also contribute to their recruitment.

To test if ZipA is required for the localisation of PBP1A and
PBPIB at preseptal positions, both PBPs were immunolocalised
in ZipA-depleted cells. As previously described®” the depletion of
ZipA was not complete but the amount of ZipA was sufficiently
reduced to cause filamentation of cells. In these cells, the residual
ZipA localised along the cell length (Supplementary Fig. 5).
PBP1A and PBP1B mirrored ZipA localisation along the length of
the filamented cells (Supplementary Fig. 5), in contrast to the
preseptal localisation of ZipA in aztreonam-treated WT cells
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PBP1A PBP1B FtsN

Fig. 2 PBP1A, PBP1B, FtsN, FtsZ and ZipA localise at potential cell division sites in the presence of aztreonam. Merged micrographs of phase contrast and
immunolocalisation images of PBP1A, PBP1B, FtsN, FtsZ or ZipA, detected with purified antibodies, in BW25113 cells grown in the absence or presence of
0.3 pg mL~" aztreonam (for 20 or 40 min). Scale bar represents 5 pm

(Fig. 2). FtsA and FtsZ-rings localised at preseptal sites in ZipA-
depleted cells as expected (Supplementary Fig. 5)'4. These data
suggest that ZipA is required for the correct localisation of
PBP1A and PBP1B at preseptal positions.

Effects of ZipA and FtsN on the GTase activity of PBPs. To
further characterise the interactions between ZipA and PBPs, we
tested the effect of ZipA on the activities of PBP1A and PBP1B.
Measuring the consumption of fluorescently labelled lipid II we
observed a 2.6 + 0.2-fold increase in the GTase rate of PBP1A and
a 1.4 +0.1-fold increase in the GTase rate of PBP1B GTase by
ZipA (Fig. 3a, b, left panels; Supplementary Fig. 6). A soluble
version of ZipA (sZipA) had weaker or no effect on the GTase
activity of PBP1A or PBP1B. FtsN slightly increased the activity
of PBP1A (1.3 +0.2-fold) and, as published previously33, stimu-
lated PBP1B 2.6 + 0.4-fold. For PBP1A the effects of ZipA and
FtsN were additive, yielding a 3.4+0.5-fold stimulation of
PBP1A, whereas for PBP1B the stimulation was 3.0 + 0.7-fold.
PBP3 did not significantly affect the stimulation of PBPs by ZipA
and FtsN. To quantify the TPase activity we determined the
percent of peptides present in cross-links in an endpoint assay
using radiolabelled lipid II substrate. ZipA alone or in combi-
nation with FtsN, PBP3, or both proteins, did not significantly
alter the percentage of cross-links produced by PBP1A or PBP1B
(Fig. 3a,b, right panels). These results suggest that the interactions
of ZipA and FtsN with either PBP1A or PBP1B stimulate the
GTase activity of each protein by compatible mechanisms.

Stimulation of PBP1A and PBP1B at low concentration.
PBP1B self-interacts and shows poor GTase and TPase activities
at concentrations significantly below the Kp of dimerisation, i.e.
when it adopts a monomeric state. At this condition, FtsN
increases both the GTase and the TPase activities suggesting that
it might stabilise the more active dimeric form of PBP1B20-°, We
therefore tested the effects of interacting proteins on PBP1A and
PBP1B, using the endpoint PG synthesis assay with PBP1A and
PBP1B present at low concentration. The reaction products were
separated by high-pressure liquid chromatography (HPLC). At
low enzyme concentration PBP1A was poorly active, and it was
not significantly stimulated by the addition of ZipA, FtsN, PBP3
or its specific activator LpoA (Fig. 4a). The lack of stimulation by
LpoA was expected under these conditions since PBP1A alone
has neglectable GTase activity and LpoA only stimulates the
TPase activity which depends on ongoing GTase reactions*%:41,

FtsZ ZipA

0 min

20 min

40 min

In case of PBP1B, the presence of ZipA increased the
monomeric GTase product peak (Penta, compound 2) in
comparison to the reaction without ZipA (Fig. 4b). Both samples
contained very low amount of the cross-linked GTase/TPase
product peak (TetraPenta; compound 3), suggesting poor cross-
linking activity. When PBP3 or FtsN was added to PBP1B, lipid I
was quantitatively consumed and the Penta and TetraPenta
products were found (Fig. 4b), showing stimulation of PBP1B and
confirming the previous data for the effect of FtsN2. The absence
of the transmembrane region of FtsN (sFtsN) significantly
decreased the stimulation of PBP1B (Supplementary Fig. 7b)
consistent with previously published data2’. As expected, PBP1B’s
specific activator LpoB alone or in combination with PBP3 or
ZipA also stimulated both activities of PBP1B (Fig. 4b). The
structures of the main reaction products is shown in Fig. 4c. As
expected, ZipA, FtsN or PBP3 alone were inactive (Supplemen-
tary Fig. 7a), which excludes the presence of a contaminating PG
synthase in these protein preparations.

We next assessed the GTase activity at low concentration of
PBP1A or PBPIB in the presence of ampicillin using a fluorescent
labelled lipid II and separating by sodium dodecyl sulfate
polyacrylamide gel electrophoresis (SDS-PAGE) the glycan chains
produced (Fig. 4d, e). In the case of PBP1A, glycan chains were
barely detected consistent with the data from the endpoint assay
with radioactive lipid II (Fig. 4d). Glycan chains could be detected
by increasing the contrast of the image. The quantity and length
distribution of the glycan chains produced by PBP1A was not
altered by ZipA, FtsN, PBP3, LpoA or combinations of these
proteins (Fig. 4d). PBP1B had poor GTase activity at low
concentration producing almost undetectable glycan chains
(Fig. 4e). Consistent with the previous findings (Fig. 4b) PBP1B
produced significantly more glycan chains in the presence of
PBP3, LpoB or FtsN, and GTase activity was moderately
increased in the presence of ZipA (Fig. 4e). The highest activity,
as judged from the almost complete consumption of lipid II, was
obtained in the presence of LpoB and either ZipA or PBP3. The
control protein bovine serum albumin (BSA) did not stimulate
PBP1B at low concentration, excluding the possibility that
proteins in general unspecifically stimulate the synthase at this
condition. Our analysis also showed that PBP1B produced more
of the longer glycan chains (with more than 20 disaccharide
units) in the presence of FtsN, which were not produced in the
presence of soluble version of FtsN (sFtsN) (Supplementary
Fig. 7¢); the glycan chains produced in the presence of LpoB,
PBP3 or ZipA were shorter. As expected, ZipA, PBP3, FtsN or
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Fig. 3 ZipA stimulates the GTase but not TPase activity of PBP1A and
PBP1B. Synthetic activities of PBP1A (a) and PBP1B (b) in the presence of
different interacting partners. GTase activity (left panels) was measured as
the consumption of dansylated lipid Il substrate by PBP1A or PBP1B. The
GTase rates are shown as mean +s.d. of three independent experiments,
after normalisation to PBP1A or PBP1B alone values. TPase activities (right
panels) were determined by the percentage of peptides in cross-links
present in newly synthesised PG by PBP1A or PBP1B using radiolabelled
lipid Il substrate, and they are shown as mean £ s.d. of three independent
experiments. The corresponding dot plots (filled circles) are overlaid in
each bar chart. Student's t-test (two-tailed) was used for statistical analysis
(N.S. not significant; *P < 0.05)

sFtsN alone were inactive in this assay excluding any possible
contamination by a GTase (Supplementary Fig. 7c).

Overall, our activity assays show that ZipA moderately
stimulates the GTase activity of PBP1A and PBP1B, probably
via a different mechanism than FtsN, which also stimulates the
TPase activity of PBP1B. FtsN, PBP3 and LpoB might stabilise the
more active dimeric form of PBP1B%,

ZipA and FtsN have different but synergistic roles. Although
ZipA is essential for preseptal PG synthesis, certain point muta-
tions in ftsA (called ftsA*) allow the cells to perform preseptal PG
synthesis in the absence of zipA. FtsA* versions appear to be
impaired in self-interaction, resulting in an earlier or more effi-
cient recruitment of PBP3 and FtsN by FtsA* monomers3+42,
Because PBP3 is not required for preseptal PG synthesis, we
hypothesised that the interaction between FtsA* and FtsN, and

hence FtsN itself, could be essential for preseptal cell wall
synthesis in the absence of zipA. To test this hypothesis we
visualised the incorporation of a fluorescent p-amino acid
(HADA)® into single and double zipA and ftsN conditional
mutants (both genes encoded in thermosensitive replication
plasmids) in an ftsA* (ftsAE124A) background strain upon addi-
tion of aztreonam to generate preseptal PG growth zones. FtsA*
mutant cells grew in the absence of ZipA or FtsN (although the
colony formation was not fully restored in the absence of
FtsN4445) but were not viable in the absence of both (Fig. 5a)
demonstrating that each protein becomes essential in the absence
of the other. After 1.5h at non-permissive temperature PG was
labelled by the incorporation of HADA for 30 min and the excess
of dye was removed prior to the inhibition of septation for 40 min
by addition of aztreonam. The parental and single depletion
strains showed preseptal PG synthesis, as demonstrated by the
presence of non-labelled zones at potential cell division sites
(Fig. 5d-f). In the case of the zipA ftsN double mutant there was a
drastic decrease in localised insertion of preseptal PG, leading to a
continuously labelled side wall (Fig. 5g). FtsZ-rings were present
in these filamentous cells indicating that the lack of preseptal PG
synthesis was not due to mislocalised FtsZ (Supplementary
Fig. 8). Quantification of preseptal PG synthesis zones per cell
length unit revealed an ~80% decrease in the double mutant
strain compared to the WM2935 parental strain (Fig. 5¢ and
Supplementary Table 1). Similar results were obtained for an
ftsA* AzipA AftsN mutant strain containing only the zipA-
encoding plasmid (Supplementary Table 1). Importantly, the cells
were still elongating as demonstrated by the brighter signal at cell
poles, indicating PG incorporation into the side wall during the
chase period, and the increase in the optical density of the culture
during the time period (1.5-3 h at non-permissive temperature)
of the experiment (Fig. 5b). These data indicate that FtsN and
ZipA are both able to support preseptal PG synthesis which,
however, does not take place in the simultaneous absence of both
proteins.

Discussion

In this work we show that ZipA interacts with PBP1A, PBP1B
and PBP3 through the transmembrane region, but not with FtsN.
The transmembrane region of ZipA is essential for its full func-
tioning, and more specific roles have been suggested for it in
addition to anchoring the protein to the inner membrane®.
These roles might include the specific interaction with other
divisome components such as the PG synthases. Our results
support a role for ZipA as a linker between the cytosolic Z-ring
and the periplasmic PG synthases. Our localisation data suggest
that these interactions occur during preseptal PG synthesis
although we cannot exclude that they also occur during later
stages of cell division. It also suggests that the absence of preseptal
PG synthesis in ZipA-depleted cells is due to the mislocalisation
of PBP1A and PBP1B.

Most of the FtsA* versions that compensate the absence of
zipA show reduced self-interaction, suggesting that FtsA mono-
mers recruit late cell division proteins such as PBP3 and FtsN
more efficiently than FtsA oligomers3*3>47. ZipA could be nee-
ded to disrupt FtsA oligomers to produce sufficient amount of
active monomers, explaining why ZipA becomes dispensable in
cells expressing FtsA*. Some of the FtsA* mutants (including
FtsAE124A) can also bypass the absence of other downstream cell
division proteins such as FtsN or FtsK, but the ftsN gene could
not be deleted in a ftsA* AzipA strain®. This suggests that ZipA
must have an essential role that overlaps with the role of FtsN.
Our results support a model according to which an overlapping
essential role of ZipA and FtsN is the interaction with the PG
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Fig. 4 Stimulation of PBP1A and PBP1B activities at low concentration. a, b Representative HPLC chromatograms of PBP1A (a) and PBP1B (b) in vitro PG
synthesis reactions in the presence of the proteins indicated, using radioactive lipid I as substrate. The synthesised PG was digested with cellosyl, reduced
with sodium borohydride and analysed by HPLC. Peak 1is generated from glycan chain ends and unreacted lipid I, peak 2 is a GTase product and peak 3 is
a GTase/TPase product. (¢) Structures of the main products of the in vitro synthesis reactions. d, e SDS-PAGE analysis of glycan chains synthesised by
PBP1A (d) and PBP1B (e) GTase activity at low concentration. Reactions were incubated at 37 °C for 1h, using a mixture of unlabelled and ATTO(550)-
labelled lipid Il as substrate, in the presence of the indicated interacting proteins. The numbers refer to disaccharide units. The contrast of the image in

panel d was increased due to the low signal observed

synthases initially participating in preseptal PG synthesis (PBP1A
or PBPIB) and later on in septation (PBP1A or PBPIB, and
PBP3)713:20:48 Indeed, ZipA and FtsA, presumably bound to
FtsN, localise at the constriction site until septation is com-
pleted®®, suggesting that this linker function extends from pre-
septal PG synthesis into septum synthesis. The FtsA-FtsN

6

interaction has recently been shown to promote the recruitment
of late cell division proteins and is essential to bypass the absence
of FtsEX and FtsK>C.

Our model (Fig. 6) proposes that the Z-ring and PG synthases
are linked at early stages of cell division by ZipA and FtsA-FtsN,
although the latter linker requires the presence of ZipA to
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Fig. 5 FtsN and ZipA are required for preseptal peptidoglycan synthesis. a Ten-fold serial dilutions spotted plate of the parental strain WM2935
(ftsAE124A)  MPW22 (ftsAE124A AzipA/repts zipA), MPW23 (ftsAF124A AftsN/repts ftsN) and MPW29 (ftsAF124A AzipA AftsN//rep!s zipA ftsN) strain
cultures incubated at 30 °C (permissive) and 42 °C (non-permissive). b Representative growth curves of strains under permissive (open symbols) and
non-permissive temperature (close symbols). Cell culture optical density (578 nm) was kept below 0.4 during the whole experiment. ¢ Quantification of

preseptal peptidoglycan synthesis (PIPS) bands per unit of cell length in the

mentioned strains under non-permissive conditions (42 °C). d-g Phase

contrast and HADA fluorescent images for detection of preseptal PG synthesis in WM2935 (d), MPW22 (e), MPW23 (f) and MPW29 (g) cells under
non-permissive conditions (42 °C). The non-fluorescently labelled preseptal PG synthesis bands are indicated by yellow arrows. Scale bars represent 5um

promote FtsA monomerization34. The ftsA* allele increases the
number of FtsA* monomers and, hence, the number of FtsA*-
FtsN complexes available for interactions with the PBPs, ren-
dering ZipA dispensable. If zipA is absent, FtsN becomes the only
linker between the cytosolic proto-ring (formed by FtsA* and
FtsZ) and the bifunctional PG synthases, explaining the lack of
viability of the ftsA* cells in the absence of both, ZipA and FtsN.
A similar defect in the transition from cell elongation to cell
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division has been proposed to occur when the direct interaction
between MreB and FtsZ is impaired, causing cell filamentation
and loss of viability?®. Although mature cell division rings
(containing PBP3 and FtsN among other proteins) were located
at the division sites, in this case there was no preseptal or septal
PG synthesis, suggesting a defective transfer of the PG synthesis
machinery from the elongasome and the divisomeZ®. Although
other cell division proteins (FtsK, FtsQ, FtsEX, PBP3) are
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Fig. 6 Model for preseptal PG synthesis in the presence or absence of ZipA.

FtsZ, ZipA and either PBP1A or PBP1B are essential for preseptal PG synthesis.

The cytosolic FtsZ ring (Z-ring) and the PG synthases are linked at early stages of cell division by ZipA and by FtsA-FtsN. ZipA promotes monomerization
of FtsA, which is needed to obtain the FtsA-FtsN complex. In the presence of FtsA* (FtsA mutants impaired in dimerisation) the interaction between FtsA*
and FtsN is enhanced, rendering ZipA dispensable and FtsN essential to link the Z-ring and the PG synthesis machinery. In the absence of FtsN, ZipA

becomes the only linker between both cytosolic and periplasmic proteins. When both ZipA and FtsN are absent the link is lost, leading to non-viable cells.

The cell membrane is not shown in this diagram

dispensable for preseptal PG synthesis?! and become essential
only later in cell division!34>°1-53, we cannot exclude that they
localise at preseptal positions and affect the activities of PBP1A or
PBPIB. The recently proposed GTase FtsW is unlikely to be
required and present at preseptal positions because neither FtsK
nor FtsQ are required for preseptal PG synthesis’!, and it is
known that FtsK and the FtsQLB complex are necessary for
recruiting FtsW to mid-cell>4-26,

In addition to the role of ZipA and FtsN in the recruitment of
the PG synthases to mid-cell, our results show that both proteins
have a positive effect on the activities of PBP1A and PBP1B. At
high concentration of PBP1A and PBP1B, both of their GTase
rates were modestly increased by ZipA, and in case of PBP1A
there was a synergistic effect with FtsN. The cross-linking of the
PG produced was unaffected. This suggests that ZipA and FtsN
exert their stimulatory effects by compatible mechanisms. At low
concentrations of PBP1A and PBP1B (below the Kp of dimer-
isation) their activities were significantly decreased. Previous
work suggests that PBP1B monomers are less active than dimers
and that the stimulation of both GTase and TPase activities by
FtsN may be due to the stabilisation of PBP1B dimers?. It
remains to be tested if dimer stabilisation is the reason for the
effect of FtsN and other proteins that stimulate the enzyme at low
concentration. PBPIB interacts with a number of proteins
including PBP3 (ref. 7), FtsW3, FtsN20, LpoB#0->7:58, CpoB>?,
MipA®, PgpB®! and now ZipA. It is unlikely that all PBP1B
molecules in the cell interact with all of these proteins at all times.
Hence, it remains to be determined when and how precisely these
interactions contribute to controlling the activities and func-
tioning of PBP1B in the cell.

A functional connection between ZipA and FtsN has been
suggested due to their presence in y-proteobacteria®? and because
of the synthetic lethality of the double mutant in an ftsA* back-
ground strain®>. Our data are consistent with a synergistic and
semi-redundant role of both proteins in acting as linkers between
the cytosolic Z-ring and the PG synthases during preseptal PG
synthesis. We hypothesise that redundancy in linker function
contributes to the robustness of the process, similar to the
redundancies found for other PG-related functions®3.

Methods

Strains, plasmids and growth conditions. E. coli strains and plasmids used are
listed in Supplementary Table 2. Standard genetic methods including P1 phage
transduction and transformation were used for strain construction.

Strains: To produce strain MPW22 [ftsAB124A zipA::aph/pCH32 (zipA, ftsZ)],
WM2935 (fisAF1244) was transformed with pCH32 (zipA, ftsZ) and transduced
with the P1 lysate from the strain WM1304 (AzipA:aph). Strain MPW23
[ftsAE124A fisN::cat/pWM2245 (ftsN)] was constructed using WM2935 (ftsAE1244)
cells transformed with pWM?2245 (ftsN) and transduced with the P1 lysate from
the strain WM2355 (AftsN:cat). To produce strain MPW29 [ftsAF124A zipA:aph
ftsN:cat/pCH32 (zipA, ftsZ) pWM2245 (ftsN)], cells from MPW22 [ftsAF124A
zipA:aph/pCH32 (zipA, ftsZ)] were transformed with pWM?2245 (ftsN) and
transduced with the P1 lysate from the strain WM2355 (AftsN::cat). Strain MPW30
[ftsAE124A zipAzaph ftsN:cat/pCH32 (zipA, ftsZ)] was constructed by transduction
of MPW22 [ftsAEI24A zipAr:aph/pCH32 (zipA, ftsZ)] cells with the P1 lysate from
the strain WM2355 (AftsN:cat). Mutations were verified by PCR. The depletion of
the proteins of interest was quantified by western blot using specific antibodies.

Plasmids: Plasmid pPZW05 was generated by two PCR fragments: an amplified
product obtained from pET28a(+) and the oligonucleotides FwZipAHis-V (5'-
TTA GTT CCT CGT GGT TCT CTC GAG CAC CAC CAC CAC CAC-3’) and
RvZipAHis-V (5'-CAA ATC CTG CAT CAT CCA TGG TAT ATC TCC TTC
TTA AAG-3'), and an amplified product obtained from BW25113 genomic DNA
and the oligonucleotides FwZipAHis-I (5'-GAA GGA GAT ATA CCA TGG ATG
ATG CAG GAT TTG CGT CTG-3’) and RvZipAHis-I (5'-AGA ACC ACG AGG
AAC TAA GGC GTT GGC GTC TTT GAC TTC-3'). Same volumes of each PCR
fragments were mixed, heated to 98 °C and cooled down to room temperature. The
DNA mix was digested with Dpnl and transformed into DH5a competent cells.
pPZWO06 was obtained by the same procedure, using pET28a(+) and the
oligonucleotides FwZipAHis-V (5'-TTA GTT CCT CGT GGT TCT CTC GAG
CAC CAC CAC CAC CAC-3') and RvsolZipAHis-V (5'-ACG GCT GGT CCA
CAT CCA TGG TAT ATC TCC TTC TTA AAG-3’), and BW25113 genomic DNA
and the oligonucleotides FwsolZipAHis-I (5'-GAA GGA GAT ATA CCA TGG
ATG TGG ACC AGC CGT AAA GAA C-3') and RvZipAHis-I (5'-AGA ACC
ACG AGG AAC TAA GGC GTT GGC GTC TTT GAC TTC-3'). pPZW22 was
obtained by the same procedure, using pPZW06 and the oligonucleotides
FwZipAHis-V (5'-TTA GTT CCT CGT GGT TCT CTC GAG CAC CAC CAC
CAC CAC-3’) and RvWALPZipA-V (5'-CAG GGC GAG AGC AAG CGC CAA
TGC CAA GGC TAA CCA CCA AGC CAT CCA TGG TAT ATCTCCTTC TTA
AAG-3’), and pPZWO06 and the oligonucleotides FWWALPZipA-I (5'-GCG CTT
GCT CTC GCC CTG GCA TTG GCG TTA GCC CTG TGG TGG GCG TGG
ACC AGC CGT AAA GAA CGA TC-3') and RvZipAHis-I (5'-AGA ACC ACG
AGG AAC TAA GGC GTT GGC GTC TTT GAC TTC-3"). In this construct the
WALP23 peptide (MAWWLALALALALALALALALWWA) was fused to the N-
ter end of the soluble ZipA. Constructs were confirmed by DNA sequencing the
genes of interest.

Growth of E. coli cells: Unless stated otherwise, cells were grown in Miller Luria-
Bertani (LB) medium (1% tryptone, 0.5% yeast extract, 1% NaCl) for protein
production. Cells of temperature-sensitive (ts) strains were grown at 30 °C
(permissive condition) or 42 °C (non-permissive condition) in Lennox LB medium
(1% tryptone, 0.5% yeast extract, 0.5% NaCl). When appropriate, antibiotics were
supplied to the media (100 pg mL~! ampicillin, 10 pgmL~! chloramphenicol, 50
pg mL~! kanamycin, 50 pg mL~! spectinomycin). For in vivo co-
immunoprecipitation assays cells were grown in Lennox LB medium (Fischer
Scientific) at 37 °C.

Protein purification. The following proteins were purified following published
protocols: PBP1B7, LpoA(sol)®4, LpoB(sol)*’, FtsN-Hisé, His-PBP3%8, FtsN-His
(sol)®8 and PBP1A®>.
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PBPIA: LOBSTR cells containing plasmid pTK1Ahis were grown in
autoinduction medium (Miller LB medium supplemented with 0.5% glycerol,
0.05% glucose and 0.2% a-lactose) supplemented with ampicillin for 18 h at 30 °C.
Cells were harvested by centrifugation (6200 x g, 15 min, 4 °C) and the pellet was
resuspended in buffer I (25 mM Tris/HCl, 100 mM NaCl, 10 mM MgCl,, pH 7.5).
After addition of 200 uM phenylmethylsulfonylfluoride (PMSF), 1 in 1000 dilution
of protease inhibitor cocktail (Sigma-Aldrich) and DNase, the cells were disrupted
by sonication (Branson digital). The cell lysate was centrifuged (130,000 x g, 60
min, 4 °C) and the supernatant was discarded. The membrane pellet was
resuspended in buffer II (25 mM Tris/HCI, 1 M NaCl, 10 mM MgCl,, 10% glycerol,
pH 7.5) during 3 h at 4°C, and centrifuged (130,000 x g, 60 min, 4 °C). The
supernatant was discarded and the membrane pellet was resuspended in extraction
buffer (25 mM Tris/HCI, 1 M NaCl, 2% Triton X-100 reduced (Sigma-Aldrich), 10
mM MgCl,, 10% glycerol, pH 7.5) and incubated overnight with mixing at 4 °C.
Resuspended sample was centrifuged (130,000 x g, 60 min, 4 °C) and the
supernatant was incubated with 5 mL of Ni-NTA Superflow (Qiagen) during 2 h at
4 °C with gentle stirring, which had been pre-equilibrated in extraction buffer. The
resin was poured into a gravity column and washed with 10 volumes of wash buffer
(25 mM Tris/HC, 1 M NaCl, 0.2% Triton X-100 reduced, 10% glycerol, 10 mM
MgCl,, 20 mM imidazole, pH 7.5). Bound protein was eluted with elution buffer
(25 mM Tris/HCI, 1 M NaCl, 0.2% Triton X-100 reduced, 10% glycerol, 10 mM
MgCl,, 500 mM imidazole, pH 7.5). About 2 U mL~! of restriction grade thrombin
(Merck Millipore) were added to the Ni-NTA eluted protein to remove the
oligohistidine tag during dialysis against 3 L of dialysis buffer I (25 mM Tris/HCI, 1
M NaCl, 10% glycerol, 10 mM EGTA, 10 mM MgCl,, pH 7.5) for 20 h at 4 °C.
Sample was dialysed against 3 L of dialysis buffer II (10 mM sodium acetate, 500
mM NaCl, 10 mM MgCl,, 10% glycerol, pH 4.8) for 4h at 4 °C, and 3 L of dialysis
buffer III (10 mM sodium acetate, 300 mM NaCl, 10 mM MgCl,, 10% glycerol, pH
4.8) for 18 h at 4 °C. The sample was diluted 1:1 with buffer IV (10 mM sodium
acetate, 10 mM MgCl,, 10% glycerol, 0.2% Triton X-100 reduced, pH 4.8) and
applied in buffer AKTA A (10 mM sodium acetate, 150 mM NaCl, 10% glycerol,
10 mM MgCl,, 0.2% Triton X-100 reduced, pH 4.8) to a 5mL HiTrap SP HP
column using an AKTA Prime (GE Healthcare Bio-Sciences) for cation exchange
chromatography (flow rate 1 mL min~!). The protein eluted in a gradient from
150 mM to 1 M NaCl. Protein-containing fractions were dialysed against storage
buffer (25 mM HEPES/NaOH, 500 mM NaCl, 10 mM MgCl,, 10% glycerol, pH
7.5) and stored at —80 °C.

PBPI1B: His-PBP1B was purified from strain BL21(DE3) pDML924 grown in
1.5L of LB supplemented with kanamycin at 30 °C to an ODs;g of 0.4-0.6.
Overproduction was induced by adding 1 mM of IPTG and incubating the cells for
3h at 30 °C. Cells were harvested by centrifugation (10,000 x g, 15 min, 4 °C) and
the pellet resuspended in 80 mL of buffer I (25 mM Tris/HCI, 500 mM NaCl, 1 mM
EGTA, 10% glycerol, pH 7.5) to which 1 in 1000 protease inhibitor cocktail, 100
uM PMSF and DNase were added. The resuspension was frozen at —80 °C until
required (<3 months), at which time it was rapidly thawed and cells disrupted by
sonication. The membrane fraction was pelleted by centrifugation at 130,000 x g
for 1h at 4°C and resuspended in buffer IT (25 mM Tris/HCl, 5mM MgCl,, 1 M
NaCl, 20% glycerol, 2% Triton X-100, pH 7.5) with protease inhibitor cocktail and
PMSF added as before. Extracted membranes were again centrifuged at 130,000 x g
for 1 h at 4 °C to remove remaining insoluble debris before 1:1 dilution with buffer
I (25 mM Tris/HCl, 5 mM MgCl,, 1 M NaCl, 40 mM imidazole, 20% glycerol, pH
7.5) and application to an equilibrated 5 mL HisTrap column attached to an AKTA
Prime system with fraction collection. Once the sample had been fully applied the
column was washed with 40 mL of buffer IV (25 mM Tris/HCI, 5 mM MgCl,, 1 M
NaCl, 40 mM imidazole, 20% glycerol, 0.2% Triton X-100, pH 7.5). Bound His-
PBP1B was eluted stepwise with buffer V (25 mM Tris/HCI, 5mM MgCl,, 1 M
NaCl, 400 mM imidazole, 20% glycerol, 0.2% Triton X-100, pH 7.5). His-PBP1B
containing fractions were pooled into a regenerated cellulose dialysis membrane
with a molecular weight cut-off of 6-8 kDa (Spectrum Labs) and treated with 2 U
mL~! of thrombin (Novagen) for 20 h at 4 °C during dialysis against dialysis buffer
I (25 mM Tris/HCI, 5 mM MgCl,, 1 M NaCl, 20% glycerol, pH 7.5). Protein was
then dialysed in preparation for ion exchange chromatography, first against dialysis
buffer II (20 mM sodium actetate, 1 M NaCl, 10% glycerol, pH 5.0); then against
dialysis buffer II with 300 mM NaCl; and finally against dialysis buffer II with 100
mM NacCl prior to application to an equilibrated 1 mL HiTrap SP HP column
attached to an AKTA Prime system with fraction collection. The column was
equilibrated in buffer A (20 mM sodium acetate, 100 mM NaCl, 10% glycerol,
0.02% NaN3, 0.2% Triton X-100 reduced, pH 5.0). Once the sample had been
applied the column was washed with 5 mL buffer A before elution of bound protein
a gradient from 0 to 100% buffer B (as A, with 2 M NaCl) over 14 mL. PBP1B
containing fractions were pooled, dialysed in 3 mL volume dialysis cassettes
(D-Tube maxi, molecular weight cut-off 6-8 kDa; Merck) against storage buffer
(20 mM sodium acetate, 500 mM NaCl, 20% glycerol, pH 5.0) and stored at —80 °
C.

LpoA(sol): His-LpoA(sol) was purified from strain BL21(DE3) pET28His-LpoA
(sol) grown in 1.5 L of LB supplemented with kanamycin at 30 °C to an ODs;g of
0.4-0.6. Overproduction was induced by adding 1 mM of IPTG and incubating the
cells for 3 h at 30 °C. Cells were harvested and resuspended in buffer I (25 mM
Tris/HCI, 10 mM MgCl,, 500 mM NaCl, 20 mM imidazole, 10% glycerol, pH 7.5).
DNase, protease inhibitor cocktail (Sigma) and PMSF was added before cells were
disrupted by sonication. The lysate was centrifuged (130,000 x g, 60 min, 4 °C) and

the supernatant was applied to a 5 mL HisTrap HP column (GE Healthcare)
attached to an AKTA PrimePlus (GE Healthcare) at 1 mL min—!. The column was
washed with buffer I before stepwise elution of bound proteins with buffer II (25
mM Tris/HCl, 10 mM MgCl,, 500 mM NacCl, 400 mM imidazole, 10% glycerol, pH
7.5). Fractions containing the protein were pooled and dialysed against IEX buffer
A (20 mM Tris/HCl, pH 8.0), supplemented with 2 U mL~! of thrombin
(Novagen) to remove the His-tag, and applied to a 5mL HiTrap Q HP column
(GE Healthcare). The column was washed with 85% IEX buffer A and 15% IEX
buffer B (20 mM Tris/HCI, 500 mM NaCl, pH 8.0) before a linear gradient from 15
to 100% B over 150 mL was applied. The eluted LpoA protein was pooled and
concentrated for application to a Superdex200 HiLoad 16/600 column at 1 mL min
~! for size exclusion chromatography in a buffer containing 25 mM Tris/HCl, 10
mM MgCl,, 500 mM NaCl, 10% glycerol at pH 7.5. Finally, the protein was
dialysed against storage buffer (25 mM HEPES/NaOH, 200 mM NaCl, 10% glycerol
at pH 7.5) and stored at —80 °C.

LpoB(sol): His-LpoB(sol) was purified from strain BL21(DE3) pET28His-LpoB
(sol) following a similar protocol as described for LpoA(sol), with some
modifications. After the first purification step with a HisTrap HP column, fractions
containing the protein were pooled, supplemented with 2 U mL~! of thrombin
(Novagen) to remove the His-tag, dialysed against 25 mM Tris/HCI, 100 mM NaCl,
10% glycerol, pH 8.3 and applied to a 5 mL HiTrap Q HP column (GE Healthcare)
attached to an AKTA Prime (GE Healthcare) at 0.5 mL min—. LpoB was collected
in the flow-through, concentrated for application to a Superdex200 HiLoad 16/600
column at 1 mL min~! for size exclusion chromatography in a buffer containing
25 mM HEPES/NaOH, 1 M NaCl, 10% glycerol at pH 7.5. Finally, the protein was
dialysed against storage buffer (25 mM HEPES/NaOH, 200 mM NaCl, 10% glycerol
at pH 7.5) and stored at —80 °C.

His-PBP3: Cells of XL1-Blue 4+ pMvR-1 were grown in 5L of LB medium with
chloramphenicol and 5% glycerol at 30 °C to an ODs,g of 0.6-0.8. His-PBP3 was
overproduced by adding 0.05 mM of IPTG and incubating the cells overnight at 30
°C. Cells were harvested by centrifugation (10,000 x g, 15 min, 4 °C) and the pellet
was resuspended in 80 mL buffer I (25 mM HEPES/NaOH, pH 8.0) and centrifuge
as before. The pellet was resuspended in 80 mL buffer II (25 mM HEPES/NaOH, 1
M NaCl, pH 8.0) and a small amount of DNase, protease inhibitor cocktail (Sigma,
1/1000 dilution) and 100 uM PMSF was added before cells were disrupted by
sonication (Branson Digital). The lysate was centrifuged (130,000 x g, 1 h, 4 °C) and
the resulting membrane pellet was resuspended in extraction buffer (25 mM
HEPES/NaOH, 10 mM MgCl,, 1 M NaCl, 2% Triton X-100, pH 8.0) with protease
inhibitor cocktail and incubated for 5h at 4 °C with mixing. The extract was
centrifuged (130,000 x g, 1h, 4 °C) and the resulting supernatant was applied to 3
mL of Ni-NTA superflow beads (QIAGEN), supplemented with 20 mM imidazole
and protease inhibitor cocktail and incubated for 18 h at 4 °C. Beads were washed
with 3 x 10 mL wash buffer I (25 mM HEPES/NaOH, 1 M NaCl, 10 mM MgCl,, 20
mM imidazole, 10% glycerol, 0.2% Triton X-100 reduced, pH 8.0) and 3 x 10 mL
wash buffer II (wash buffer I but with 40 mM imidazole). Bound protein was eluted
with 10 x 3 mL elution buffer (wash buffer I but with 400 mM imidazole) into tubes
containing 1 mM EGTA. Appropriate fractions were pooled and dialysed into
storage buffer (25 mM HEPES/NaOH, 1 M NaCl, 10 mM MgCl,, 10% glycerol, pH
8.0) and stored in aliquots at —80 °C.

FtsN-His: Cells of BL21(DE3) pFE42 were grown in 2 L of LB medium with
ampicillin at 37 °C to an ODs;yg of 0.4. FtsN-His was overproduced by adding 1
mM IPTG to the cell culture followed by a further incubation for 2 h at 37 °C. Cells
were harvested by centrifugation (10,000 x g, 15 min, 4 °C) and the pellet was
resuspended in buffer I (25 mM Tris/HCI, 1 M NaCl, pH 6.0). A small amount of
DNase, protease inhibitor cocktail (Sigma, 1/1000 dilution) and 100 uM PMSF was
added before cells were disrupted by sonication (Branson digital). The lysate was
centrifuged (130,000 x g, 1 h, 4 °C). The resulting membrane pellet was
resuspended in extraction buffer (25 mM Tris/HCl, 1 M NaCl, 40 mM imidazole,
1% Triton X-100, pH 6.0) and incubated overnight with mixing at 4 °C. The sample
was centrifuged (130,000 x g, 1 h, 4°C) and the supernatant applied to a 5mL
HisTrap HP column (GE Healthcare, USA) attached to an AKTA Prime (GE
Healthcare), at 1 mL min—!. The column was washed with four volumes of
extraction buffer, followed by four volumes of wash buffer I (25 mM Tris/HCI, 1 M
NaCl, 40 mM imidazole, 0.25% Triton X-100, pH 6.0). Bound protein was eluted
stepwise with elution buffer (25 mM Tris/HCl, 1 M NaCl, 400 mM imidazole,
0.25% Triton X-100, pH 6.0). FtsN-His was dialysed into storage buffer (25 mM
HEPES/NaOH, 500 mM NaCl, 10% glycerol, pH 7.5) and stored in aliquots at —80
°C.

FtsN-His(sol): Cells of BL21-A1 pHis17-ECN2 were grown in 2 L of LB medium
supplemented with ampicillin at 30 °C to an ODs;g of 0.5. FtsNA1-57-His was
overproduced by adding 0.2% arabinose to the cell culture followed by a further
incubation for 3 h at 30 °C. Cells were harvested by centrifugation (10,000 x g, 15
min, 4 °C) and the pellet was resuspended in buffer I (25 mM Tris/HCI, 500 mM
NaCl, pH 6.0). A small amount of DNase, protease inhibitor cocktail (Sigma, 1/
1000 dilution) and 100 uM PMSF was added before cells were disrupted by
sonication (Branson digital). The lysate was centrifuged (130,000 x g, 1 h, 4 °C).
The resulting supernatant was applied to 1.5 mL of Ni-NTA superflow beads
(Qiagen), supplemented with 10 mM imidazole and incubated for 18 h at 4°C.
Beads were washed with 7 x 10 mL wash buffer (25 mM Tris/HCI, 500 mM NaCl,
20 mM imidazole, pH 6.0) and bound protein eluted with 10 x 1 mL elution buffer
(25 mM Tris/HCI, 500 mM NaCl, 300 mM imidazole, pH 6.0). Appropriate
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fractions were pooled and dialysed into storage buffer (25 mM HEPES/NaOH, 500
mM NaCl, 10% glycerol, pH 6.0) and stored in aliquots at —80 °C.

His-ZipA and WALP-ZipA-His: BL21(DE3)pLysS cells containing plasmid
pET15Zip®® were grown in 1L of autoinduction medium (Miller LB medium
supplemented with 0.5% glycerol, 0.05% glucose and 0.2% a-lactose) supplemented
with ampicillin for 18 h at 30 °C. Cells were harvested by centrifugation (6200 x g,
15 min, 4 °C) and the pellet was resuspended in buffer I (50 mM Tris/HC, 20%
sucrose, pH 8.0). After addition of 200 uM PMSF, 1/1000 dilution of protease
inhibitor cocktail (Sigma-Aldrich, St. Louis, MO) and DNase, the cells were
disrupted by sonication (Branson digital). The cell lysate was centrifuged
(130,000 x g, 60 min, 4 °C) and the supernatant was discarded. The membrane
pellet was resuspended in extraction buffer (50 mM Tris/HCI, 150 mM NaCl, 2%
Triton X-100 reduced (Sigma-Aldrich, St. Louis, MO), 10% glycerol, pH 8.0) and
incubated overnight with mixing at 4 °C. Resuspended sample was centrifuged
(130,000 x g, 60 min, 4 °C) and the supernatant was incubated with 5mL of Ni-
NTA Superflow (Qiagen) for 2 h at 4 °C with gentle stirring, which had been pre-
equilibrated in extraction buffer. The resin was poured into a gravity column and
washed with 10 volumes of wash buffer (50 mM Tris/HCI, 150 mM NacCl, 0.05%
Triton X-100 reduced, 10% glycerol, 50 mM imidazole, pH 8.0). Bound protein was
eluted with elution buffer (50 mM Tris/HCI, 150 mM NaCl, 0.05% Triton X-100
reduced, 10% glycerol, 600 mM imidazole, pH 8.0). Eluted protein was dialysed
into storage buffer (25 mM HEPES/NaOH, 150 mM NaCl, 10% glycerol, pH 8.0),
concentrated four-fold using a VivaSpin-6 column (MWCO 6000 Da) and stored at
—80 °C. WALP-ZipA-His was purified from E. coli LOBSTR cells transformed with
plasmid pPZW?22 following a similar procedure. WALP-ZipA was obtained by
overnight digestion of WALP-ZipA-His with thrombin at 20 °C.

ZipA, sZipA and sZipA-His: BL21(DE3) cells containing plasmid pPZWO05 or
PPZWO06 were grown in 2 L of LB medium supplemented with kanamycin at 37 °C
to an ODsyg of 0.4-0.5. Protein overproduction was induced by addition of 0.5 mM
IPTG to the cell culture which was further incubated for 2 h at 37 °C. For ZipA, the
procedure was similar as described for His-ZipA except that 2 U mL~! of
restriction grade thrombin (Merck Millipore, Darmstadt, Germany) were added to
the Ni-NTA eluted protein to remove the oligohistidine tag during dialysis against
3 L of dialysis buffer I (50 mM Tris/HCI, 150 mM NaCl, 10% glycerol, 10 mM
EGTA, pH 8) for 20 h at 4 °C. Sample was dialysed against 3 L of dialysis buffer II
(10 mM sodium acetate, 150 mM NaCl, 10% glycerol, pH 4.8) for 20 h at 4 °C and
applied in buffer A (10 mM sodium acetate, 150 mM NaCl, 10% glycerol, 0.05%
Triton X-100 reduced, pH 4.8) to a 5mL HiTrap SP HP column using an AKTA
Prime (GE Healthcare Bio-Sciences) for cation exchange chromatography (flow
rate 1 mL min~!). The protein eluted in a gradient from 150 mM to 2 M NaCl.
Protein-containing fractions were dialysed against storage buffer (25 mM HEPES/
NaOH, 150 mM NaCl, 10% glycerol, pH 8.0), concentrated four-fold using a
VivaSpin-6 column (MWCO 6000 Da) and stored at —80 °C. sZipA was purified
from the supernatant of the cell lysate centrifugation using the protocol for ZipA
but omitting detergent in buffers. sZipA-His was purified following a similar
procedure but no thrombin was added to the sample during dialysis against dialysis
buffer I.

In vivo and in vitro interaction assays. In vivo cross-linking/co-immunopreci-
pitation assays were performed using dithiobis(succinimidyl) propionate (DSP;
ThermoFischer Scientific) as cross-linker reagent. DSP is able to diffuse across the
cell membrane allowing for cross-linking reactions in the cytoplasm®. E. coli
BW25113 cells were grown in 150 mL of Lennox LB medium (Fischer Scientific) at
37°C to an OD of 0.5. Cells were harvested by centrifugation (4000 x g, 20 min, 4 °
C) and resuspended in 6 mL cold CL buffer I (50 mM NaH,PO,, 20% sucrose, pH
7.4). Freshly prepared DSP solution (10 mg mL~! in DMSO) was added and cells
were incubated for 1 h with mixing. Cross-linked cells were harvested by cen-
trifugation (4000 x g, 15 min, 4 °C) and resuspended in 6 mL of CL buffer II (100
mM Tris/HCl, 10 mM MgCl,, 1 M NaCl, pH 7.5). Protease inhibitor cocktail
(Sigma), a small amount of DNase and 100 uM PMSF were added. The cells were
disrupted by sonication and membranes were ultracentrifuged (90,000 x g, 60 min,
4°C) and resuspended in 2.5 mL of CL buffer IIT (25 mM Tris/HCI, 10 mM MgCl,,
1 M NaCl, 20% glycerol, 1% Triton X-100, pH 7.5). Membranes were extracted
overnight at 4 °C with mixing. After a second centrifugation step (90,000 x g, 60
min, 4 °C) the supernatant was taken and diluted with CL buffer IV (75 mM Tris/
HCI, 10 mM MgCl,, 1 M NaCl, pH 7.5). The specific antibodies were added and the
sample was incubated for 5h at 4 °C. As a control, sample was incubated without
antibody. One hundred microliters of protein G-coupled agarose beads, previously
washed with cold water and CL wash buffer (a 2:1 mix of CL buffer III and IV),
were added to the membrane fraction and the sample was incubated overnight at 4
°C with mixing. The beads were centrifuged and the supernatant sample was
collected. The beads were then washed with 10 mL of CL wash buffer and boiled for
10 min in 50 pL of sample buffer for SDS-PAGE. The supernatant was collected
after centrifugation (9,600 x g, 5 min, room temperature) and analysed by SDS-
PAGE followed by western blot and immunodetection. MVC1 antibody (1:5,000)
and a-FtsN (1:5,000) were used to detect ZipA and FtsN, and anti-rabbit IgG-HRP
TrueBlot (Rockland, 18-8816-33) (1:5,000) was used to detect the antibodies of
ZipA and FtsN. Uncropped scans of the western blots shown in Fig. 1 are supplied
as Supplementary Fig. 9.

For in vitro pulldown assays proteins were mixed at a final concentration of 1
uM in 200 pl of binding buffer (10 mM HEPES/NaOH, 10 mM MgCl,, 150 mM

NaCl, 0.05% or 1% Triton X-100, pH 7.5). Samples were incubated at room
temperature for 10 min before addition of cross-linker, 0.2% (w/v) formaldehyde
(Millipore Sigma), followed by incubation at 37 °C for 15 min. Excess cross-linking
was blocked by addition of 100 mM Tris/HCI, pH 7.5. Samples were applied to 100
pL of washed and equilibrated Ni-NTA superflow beads (Qiagen, Hilden,
Germany), and incubated overnight at 4 °C with mixing. Beads were washed
eight times with 1.5 mL of wash buffer (10 mM HEPES/NaOH, 10 mM MgCl,,
150 mM NacCl, 0.05% or 1% Triton X-100, 50 mM imidazole, pH 7.5). Retained
proteins were eluted by boiling the beads in SDS-PAGE loading buffer; beads were
then removed, and samples resolved by SDS-PAGE. Uncropped pictures of the gels
shown in Fig. 1 are supplied as Supplementary Fig. 10.

PG synthesis assays. [“C]GlcNAc-labelled lipid II*°, dansylated lipid I1° and
ATTO* lipid I121:38 were prepared as previously published. Continuous fluorescence
GTase assays was performed as described®, using 0.5 uM of each protein (except His-
PBP3 that was at 1.5 uM) in buffer with a final concentration of 50 mM HEPES/
NaOH pH 7.5, 150 mM NaCl, 25 mM MgCl, and 0.04% Triton X-100. Briefly,
dansylated lipid II was added to start the reactions and the decrease in fluorescence at
37 °C was measured over time using a plate reader (excitation wave length of 330 nm,
emission of 520 nm). Endpoint GTase-TPase activity assay was performed as
described® using 0.75 uM of each protein and a final concentration of 10 mM
HEPES/NaOH pH 7.5, 174 mM NaCl and 0.07% Triton X-100 in the reaction buffer.
Briefly, 1.2 nmol (11,000 dpm) of ["C]GlcNAc-labelled lipid II were dried in a glass
vial using a vacuum concentrator and resuspended in 5 pL of 0.2% Triton X-100. To
start the reactions the assayed proteins were added to the resuspended lipid II and
further incubated for 60 min at 37 °C with shaking (800 rpm). Reactions were stopped
by boiling for 5 min, and further cellosyl digestion, reduction and analysis by HPLC
were performed as described in ref. ®. The following protein concentrations were
used in the assays with low concentrations of PBP1A or PBP1B: 0.075 uM PBP1A,
0.038 uM PBP1B, 0.38 uM LpoB, 3.75 uM BSA. In samples with low PG synthase
activity (with abundant unused lipid II) the total radioactivity eluted from the HPLC
column (C18) differs between samples due to differences in peak 1, the phosphory-
lated disaccharide pentapeptide. Peak 1 is generated by acid hydrolysis of unused lipid
1I (or glycan chains ends carrying the C55-PP moiety) after the GTase-TPase reaction
because lipid II (without hydrolysis) does not elute from the C18 HPLC column used
to separate the muropeptides. In samples with abundant unused lipid II, peak 1 varies
due to differences in the efficiency of the acid hydrolysis of lipid II between samples.
This effect does not impair the quantification of other peaks (PG products). Tris-
Tricine SDS-PAGE was used to separate glycan chains’’, using the same protein
concentrations and reaction conditions than in the TPase activity experiment at low
PBP1A/PBP1B concentration but in the presence of 1 mM ampicillin to inhibit the
TPase activity.

Cell parameter measurements and protein immunolocalisation. E.coli strains
BW25113 (wt), BW25113 AmrcA and BW25115 AmrcB were used for in vivo studies.
Wild-type cells were grown in Luria-Bertani (LB) broth, kanamycin was added to the
LB to grow mutants. Cells were cultured (overnight, 37 °C) and then diluted (1:75) in
fresh pre-warmed medium. Optical density at 600 nm (ODgoo) was measured at
intervals with a CO8000 Cell Density Meter (WPA biowave). To attain exponential
balanced growth the cultures were grown in a shaking water bath with aeration and
maintained at ODgq values below 0.3 by suitable dilutions with pre-warmed medium
for at least 4 mass doublings. At this time the cultures were divided in two portions,
and maintained at exponential balanced growth phase for 120 min with or without
aztreonam (0.3 pg mL~!) depending on the strain. Samples were removed from
cultures at 20 min intervals along 120 min. Samples were removed from cultures at 20
min intervals along 120 min and fixed in 0.75% formaldehyde. The number of par-
ticles per volume was determined using a Beckman Coulter Multisizer 3 multi-
channel analyzer equipped with a 30 pm diameter orifice. Cell samples for immu-
nofluorescence microscopy were obtained and processed as described’!. They were
fixed with methanol/acetic acid (4:1) and adhered to poly-L-lysine pre-treated cov-
erslips and permeabilised with lysozyme (100 ug mL~!, 2 min). Non-specific binding
sites were first blocked by incubating cells in 2% bovine albumin (BSA, Serva) in PBS
1 x (20 min) followed by incubation (overnight, 4 °C) with purified antibodies diluted
in blocking solution. PBP1A, PBP1B, FtsN, FtsZ, ZipA and FtsA proteins were
detected with antibodies a-PBP1A (diluted 1:400), a-PBP1B (1:400), MVGI (1:500),
MVC2 (1:400), MVCI (1:500) and MVC3 (1:200), respectively. Unbound primary
antibodies were removed by extensive washing, followed by incubation with sec-
ondary antibody Alexa 594-conjugate anti-rabbit (Invitrogen A-11037) to detect the
proteins (red signal). Coverslips were then mounted in Vectashield medium (Vector
Laboratories) and sealed. Cells were imaged with a Hamamatsu 3CCD Digital Camera
C7780 coupled to a BX61 Olympus fluorescence microscopy, equipped with a 100 x
immersion oil lens. The filter used to detect the red signal (protein) was U-MWTY2.
The images were captured and deconvolved with SimplePCI imaging software.
Intensity levels and image overlay were adjusted using Adobe Photoshop CS3. For
quantification purposes, a fluorescent ring was defined either as a sharp bands that
crosses the cell from side to side (close ring) or as two bright dots at both sides of the
cell (open ring)’373,

Purification of polyclonal antisera. Affinity-purification of polyclonal antisera a-
PBP1A, a-PBP1B, MVG1, MVC2 and MVC1 was performed by a modified
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published procedure’#. Purified proteins were separated by SDS-PAGE and
transferred to Immobilon-P membranes. The protein band of interest was visua-
lised by staining with 0.1% Ponceau S and cut out. The membrane strip was
blocked with 5% dry milk in PBS. The antiserum (200 pL) was layered on top of the
membrane strip and incubated with shaking for 2-3 h. After removal of the
antiserum and three washing steps for 10 min with PBS, the antibody was eluted
with 200 pL of elution buffer (0.2 M glycine, 1 mM EGTA, pH 2.7) for 10 min. The
eluted sample was quickly neutralised with an equal volume of 100 mM Tris base.
To increase the specificity, the a-PBP1A and a-PBP1B antibodies were repurified
using total extracts of mutants BW25113AmrcA and BW25115AmrcB, respectively,
to remove undesired species. Purified antibodies were stored at —20 °C.

Spot plate assay of thermosensitive strains. Cells were grown overnight at
permissive temperature (30 °C), the optical density was normalised for each strain
assayed in the plate and the cells were spotted in a 10-fold dilution series on
Lennox LB plates, which were incubated overnight at permissive or non-permissive
temperature (42 °C).

Detection of preseptal PG synthesis by labelling using HADA. Cells were
streaked on Lennox LB agar plates. Single colonies were used to inoculate 20 mL of
media and cultures were incubated overnight at 30 °C. Overnight cultures were
diluted 1:500 and grown for 1h at 30 °C. Depletion of ZipA and/or FtsN was
achieved by incubating the cultures at 42 °C for 1.5 h. During this time the cultures
were kept in exponential phase (ODs;5 between 0.2-0.4). Samples were diluted to
ODs;5 of 0.2 in a final volume of 500 uL, and further incubated with 250 uM of the
fluorescent derivative of p-Ala (HADA) for 30 min at 42 °C (long pulse labelling).
To remove the excess of HADA, 2 mL of pre-warmed media supplemented with
aztreonam (1 ugmL~!) were added to the samples, followed by centrifugation
(1,900 x g, 3 min, 40 °C). The cell pellets were washed a second time and the cells
were resuspended in 1 mL pre-warmed media containing aztreonam, and incu-
bated 40 min at 42 °C with shaking. One hundred microliters of a 10 x sodium
citrate buffer (805 mM citric acid, 1.19 M NaCl, 410 mM NaOH, pH 2.25) were
added to each 1 mL sample. The samples were put immediately on ice and cen-
trifuged (16,200 x g, 2 min, 4 °C). Afterwards the samples were washed once with
1.5 mL of sodium citrate buffer (80.5 mM citric acid, 119.4 mM NaCl, 41 mM
NaOH, pH 3.0) and twice with PBS (1.7 mM KH,PO,, 5 mM Na,HPO,, 150 mM
NaCl, pH 7.4). The final cell pellets were resuspended in 12.5 L PBS and 12.5 pL of
3% paraformaldehyde (diluted in PBS) were added for cell fixation. The cell
samples were analysed using a Nikon Eclipse Ti microscope (Nikon Plan Fluor
%100/1.30 Oil Ph3 DLL objective) coupled to a photometrics/Cool SNAP HQ?
CCD camera using the phase contrast and the DAPI channel (DAPI filter set:
Chroma 49000, excitation at 350/50 nm, emission 460/50 nm). To quantify the
number of preseptal sites per cell length unit (um), cell lengths were measured and
the preseptal PG synthesis zones were counted using the Object] plug-in [https://
sils.fawi.uva.nl/bcb/objectj/] (University of Amsterdam) of the Image] software”.
Preseptal PG synthesis sites were defined as non-fluorescent bands across the whole
width of the cell in the fluorescence image and no visible constriction in the phase
contrast image. All quantified cells showed growth during the chase period, indi-
cated by brighter cell poles compared to the side wall due to PG incorporation
during elongation.

Data availability
The relevant data supporting the findings of this study are available from the
corresponding author.
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